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Supervised Learning

Supervised Learning

Given a labeled data set {(xi , yi )}Ni=1 ⊂ Rm × Rn, fit a parametric family
of functions y = f (x, θ) ∈ Rm × Rp → Rn to the data;

Use a neural network for f (x , θ)

Choose a loss function L(f (xi , θ), yi )

find θ ∈ Rp by minimizing L(θ) := 1
N

∑N
i=1 L(f (xi , θ), yi )
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Deep Neural Network

Image source: Goodfellow, et al.

Composition of L functions:

f (x, θ) = f (3)(f (2)(f (1)(x)))

hidden variables at `-th layer:

h(`) = f (`)(h(`−1))

:= g(W (`)h(`−1) + b(`))

g(t): an elementwise nonlinear
activation function: e.g.
g(t) = max{t, 0}
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Loss Function

Loss for a model output ŷ := f (x , θ):

Regression: MSE
L(ŷ , y) = ‖ŷ − y‖2

Classification: Cross-Entropy

L(ŷ , y) =
∑
j

yj log ŷj
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Optimization/Training

Gradient descent:
θ ← θ − λ∇L(θ)

λ > 0 - learning rate

Mini-batch training: sample a mini-batch {xi1 , xi2 , · · · , xiN} and train
with

∇L(θ) =
1

N

N∑
j=1

∇L(f (xij , θ), yij )

Accelerations: Momentum, Adagrad, RMSProp, Adams, Batch
normalization, ...
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Batch Normalization (BN)

Consider the `-th hidden layer:

h(`) = g(W (`)h(`−1) + b(`)); h(0) = x .

For a mini-batch of inputs {x1, x2, . . . , xN}, the corresponding h(`−1):

A = {h(`−1)1 , h
(`−1)
2 , . . . , h

(`−1)
N }.

BN - Ioffe and Szegedy (2015)

Internal Covariate Shift during training, where the statistics of a
hidden variable changes due to

mini-batch inputs
training

Normalize the hidden variable statistics
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BN replaces the `-th hidden layer by

h(`) = g
(
W (`)Bβ,γ(h(`−1)) + b(`)

)
where

Bβ,γ
(
h(`−1)

)
= γ

h(`−1) − µA
σA

+ β

µA, σ
2
A are mean and variance of A, and γ, β are the re-scaling and

re-centering trainable parameters.
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Batch Normalization Training Network

Advantages of BN

Faster Convergence

Larger learning rate;

Better generalization

Partial Analysis:

Scale-invariant properties - Arora et al. (2018), Cho and Lee

(2017)

Improved Lipschitzness of the loss and boundedness of Hessian -
Santurkar et al. (2019)

Convergence analysis of special 1-layer/2-layer networks - Cai et

al. (2019), Kohler et al. (2018), Ma and Klabjan

(2019)
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Batch Normalization

Difficulties:

Training Network contains Bβ,γ
(
h(`−1)

)
that depends on mini-batch

Inference network has one input and µA and σA are not defined:

Use mean µA and σA computed during training.

Small mini-batch sizes.

Lack of theoretical understanding:

Different ways that are applied to CNNs and RNNs.

Some Alternatives:

Batch Renormalization - Ioffe (2017);

Layer Normalization (LN) - Ba, Kiros, and Hinton (2016)

Group Normalization (GN) - Wu and He (2018)

BN+GN and other techniques - Summers and Dinneen (2020)
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Preconditioned Gradient Descent
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Preconditioned Gradient Descent

Gradient Descent:
θk+1 ← θk − α∇θL(θ)

Let θ∗ be a local minimizer and λmin > 0 and λmax be the minimum and
maximum eigenvalues of Hessian ∇2

θL(θ∗).

‖θk+1 − θ∗‖2 ≤ (r + ε)‖θk − θ∗‖2

where r = max{|1− αλmin| , |1− αλmax|}

Need α < 2/‖∇2
θL(θ∗)‖.

Optimal r = κ−1
κ+1 where κ = κ(∇2

θL(θ∗)) = λmax/λmin is the
condition number.
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Preconditioned Gradient Descent

Consider a change of variable: θ = Pz and L = L(θ) = L(Pz).

Gradient Descent in z :

zk+1 = zk − αPT∇θL (Pzk)

Equivalently
θk+1 = θk − αPPT∇θL (θk) .

‖zk+1 − z∗‖ ≤ (r + ε) ‖zk − z∗‖ where r = κ′−1
κ′+1

κ′ = κ(∇2
zL (Pz∗)) = κ(PT∇2

θL (θ∗)P).

Preconditioning: choose P such that PT∇2
θL (θ∗)P has a better

condition number
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Neural Networks Loss

Consider one weight and bias for layer `. Recall

h(`) = g
(
W (`)h(`−1) + b(`)

)
∈ Rn

Let w
(`)T

i ∈ R1×m be the ith row of W (`) and b
(`)
i be the ith entry of b(`).

Let
a
(`)
i = w

(`)T

i h(`−1) + b
(`)
i = ŵT ĥ ∈ R

where

ŵT =
[
b
(`)
i ,w

(`)T

i

]
∈ R1×(m+1), ĥ =

[
1

h(`−1)

]
∈ R(m+1)×1,
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Neural Network Loss Hessian

Theorem 1

Consider a loss function L and write L = L
(
a
(`)
i

)
= L

(
ŵT ĥ

)
. When training

over a mini-batch of N inputs, let {h(`−1)1 , h
(`−1)
2 , . . . , h

(`−1)
N } be the associated

h(`−1) and let ĥj =

[
1

h
(`−1)
j

]
∈ R(m+1)×1. Let L = L(ŵ) := 1

N

∑N
j=1 L

(
ŵT ĥj

)
.

Then,
∇2

ŵL(ŵ) = ĤTSĤ

where

Ĥ =


1 h

(`−1)T
1

...
...

1 h
(`−1)T
N

 and S =
1

N


L′′
(
ŵT ĥ1

)
. . .

L′′
(
ŵT ĥN

)
 ,
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Batch Normalization Preconditioning (BNP)

Precondition Ĥ = [e, H]:

ŵ = Pz , where

P := UD, U :=

[
1 −µTA
0 I

]
, D :=

[
1 0
0 diag (σA)

]−1
,

where

µA :=
1

N

N∑
j=1

h
(`−1)
j , and σ2A :=

1

N

N∑
j=1

(h
(`−1)
j − µA)2
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Preconditioned Gradient Descent

Theorem 2

The preconditioned Hessian matrix is

∇2
zL = PT∇2

ŵLP = ĜTSĜ .

where Ĝ := ĤP, i.e.

Ĝ =

1 gT
1

...
...

1 gT
N

 =


1 h

(`−1)T
1

...
...

1 h
(`−1)T
N

 [1 −µTA
0 I

] [
1 0
0 diag (σA)

]−1
, (1)

and gj = (h
(`−1)
j − µA)/σA is h

(`−1)
j normalized to have zero mean and

unit variance.
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Preconditioned Gradient Descent

Ĝ = HUD or gj = (h
(`−1)
j − µA)/σA improves conditioning in two ways:

Theorem 3

κ(ĤU) ≤ κ(Ĥ)

and (by a theorem of van der Sluis)

κ(Ĝ ) ≤
√
m + 1 min

D0 is diagonal
κ(ĤUD0).

If there is a large variations in σA, then κ(Ĝ )�
√
m + 1κ(Ĥ).
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Ĝ = HUD or gj = (h
(`−1)
j − µA)/σA improves conditioning in two ways:

Theorem 3
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Balancing the norms of Hessians

G ’s entries has mean 0 and variance 1. By a theorem of Seginer:

E[‖G‖] ≤ C max{
√
m,
√
N}

E[‖Ĝ‖] = max{
√
N,E[‖G‖]} ≤ C ′max{

√
m,
√
N}

Scale ∇2
zL(θ∗) by q = max{

√
m/N, 1} to get similar norms for all layers:

(1/q)E[‖Ĝ‖] ≤ C ′
√
N

Learning rate: α < 2/‖∇2
zL(θ∗)‖.

A large ‖∇2
zL(θ∗)‖ at one layer will require a smaller α;
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BNP Algorithm

BNP Gradients on W (`), b(`)

Input: A = {h(`−1)1 , h
(`−1)
2 , . . . , h

(`−1)
N } ⊂ Rm and the parameter

gradients: Gw ← ∂L
∂W (`) ∈ Rn×m, Gb ← ∂L

∂b(`)
∈ R1×n

1. Compute µA, σ
2
A;

2. Compute: µ← ρµ+ (1− ρ)µA, σ2 ← ρσ2 + (1− ρ)σ2A;
3. Set σ̃2 = σ2 + ε1 max{σ2}+ ε2 and q2 = max{m/N, 1};
4. Update: Gw ← 1

q (Gw − µGb)/σ̃2; Gb ← 1
qGb − µTGw ;

The same framework is applied to CNNs.

Use mean and variance of hidden tensor over the mini-batch and the
spacial dimensions, as used in BN.
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Experiments
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Datasets

CIFAR10: 60,000 labeled 32x32 color images with 50,000/10,000 split
for training/testing. There are 10 classes.

Qiang Ye (UKY) Structured Preconditioning for Neural Network Training
Conference on Fast Direct Solvers - Purdue University 23

/ 28



Fully Connected Network/CIFAR 10

Fully-Connected Neural Network: three hidden layers of size 100 each and
an output layer of size 10

Figure: Mini-batch size = 60.
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Fully Connected Network/CIFAR 10

Batchsize = 6

Figure: Mini-batch size = 6.
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CNNs/CIFAR10

5-layer CNN: 3 convolution layers of 3× 3 kernel with 32-64-32 filters,
followed by two dense layers.

Figure: Mini-batch size =2
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ResNet110/CIFAR10

ResNet-110: 54 residual blocks, containing two 3× 3 convolution layer
each.

Figure: ResNet BS=128
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Conclusions

Preconditioning framework applicable to a variety of networks.

Outperform BN for small mini-batches.

Provide partial theoretical justifications for BN.

Work in progress: applications to other network architectures.
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