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© Deep Learning
© Batch Normalization
© Batch Normalization Preconditioning (BNP)

@ Experiments
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Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}¥; C R™ x R", fit a parametric family
of functions y = f(x,0) € R™ x RP — R" to the data;
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Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}¥; C R™ x R", fit a parametric family
of functions y = f(x,0) € R™ x RP — R" to the data;

@ Use a neural network for f(x, )
@ Choose a loss function L(f(x;,0),y;)
o find 0 € RP by minimizing £(6) := & SN, L(f(x;,0), yi)

Qiang Ye (UKY) Structured Preconditioning for Neural Networ



Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}¥; C R™ x R", fit a parametric family
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Deep Neural Network

@ Composition of L functions:

hidden layers

f(x,0) = FO(FA(FD(x)))
@ hidden variables at ¢-th layer:
O = AR
g(WORE=1) 4 b0y

input layer

e g(t): an elementwise nonlinear

activation function: e.g.
Image source: Goodfellow, et al.
g(t) = max{t,0}
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Loss for a model output y := f(x, 0):

@ Regression: MSE
Ly, y) =y - yI?

@ Classification: Cross-Entropy

L(9,y) = yjlogJ
j
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Optimization/Training

Gradient descent:
0+ 60— VL)

@ )\ > 0 - learning rate

e Mini-batch training: sample a mini-batch {x;, x;,,-- - , xj, } and train
with

N
VL) = 1 VL (. 0).%)
j=1

@ Accelerations: Momentum, Adagrad, RMSProp, Adams, Batch
normalization, ...
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Batch Normalization (BN)

Consider the ¢-th hidden layer:

Ao — g( WO p=1) 4 b(f)); h0) —
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Batch Normalization (BN)

Consider the ¢-th hidden layer:
hO = g(WORED) 4 0. pO) = .
For a mini-batch of inputs {x, X0, ..., xn}, the corresponding h(!~1):

A= {pED pD Ry
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Batch Normalization (BN)

Consider the ¢-th hidden layer:
Ao — g( WO p=1) 4 b(f)); h0) —
For a mini-batch of inputs {x, X0, ..., xn}, the corresponding h(!~1):
—1) (6-1 -1
A= {pED pD Ry

BN - Ioffe and Szegedy (2015)

@ Internal Covariate Shift during training, where the statistics of a
hidden variable changes due to
e mini-batch inputs
e training

@ Normalize the hidden variable statistics
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BN replaces the /-th hidden layer by
) =g (W(Z)Bﬁy(h“_l)) + b(@)

where

ple-1) _
(e-1)\ _ KA
86’7 (h > 7 OA

,uA,ai are mean and variance of A, and ~, 3 are the re-scaling and
re-centering trainable parameters.

+ 5
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Batch Normalization Training Network

Advantages of BN
o Faster Convergence
o Larger learning rate;

o Better generalization
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Batch Normalization Training Network

Advantages of BN
o Faster Convergence
o Larger learning rate;
o Better generalization
Partial Analysis:
@ Scale-invariant properties - Arora et al. (2018), Cho and Lee
(2017)
@ Improved Lipschitzness of the loss and boundedness of Hessian -
Santurkar et al. (2019)

e Convergence analysis of special 1-layer/2-layer networks - Cai et
al. (2019), Kohler et al. (2018), Ma and Klabjan

(2019)

Qiang Ye (UKY) Structured Preconditioning for Neural Networ



Batch Normalization

Difficulties:
o Training Network contains Bg,, (h(*~1)) that depends on mini-batch

@ Inference network has one input and pa and o4 are not defined:
o Use mean pa and o4 computed during training.

Small mini-batch sizes.

Lack of theoretical understanding:
o Different ways that are applied to CNNs and RNNs.
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Batch Normalization

Difficulties:
o Training Network contains Bg,, (h(*~1)) that depends on mini-batch

@ Inference network has one input and pa and o4 are not defined:
o Use mean pa and o4 computed during training.

@ Small mini-batch sizes.
@ Lack of theoretical understanding:
o Different ways that are applied to CNNs and RNNs.

Some Alternatives:
@ Batch Renormalization - Toffe (2017);
o Layer Normalization (LN) - Ba, Kiros, and Hinton (2016)
@ Group Normalization (GN) - Wu and He (2018)
@ BN+GN and other techniques - Summers and Dinneen (2020)
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Preconditioned Gradient Descent
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Preconditioned Gradient Descent

Gradient Descent:
0k+1 — (9;( — on(;L(G)

Let 0* be a local minimizer and Amin, > 0 and Amax be the minimum and
maximum eigenvalues of Hessian V3.L(6*).

10k41 = 0%ll2 < (r + )10k — 7|2

where r = max{|1 — aAmin|, |1 — aAmax|}
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Preconditioned Gradient Descent

Gradient Descent:
0k+1 — (9;( — on(;L(Q)
Let 6* be a local minimizer and Ay > 0 and Apax be the minimum and
maximum eigenvalues of Hessian V3.L(6*).
10k41 = 0%ll2 < (r + )10k — 7|2
where r = max{|1 — aAmin|, |1 — aAmax|}
o Need o < 2/||V3L(6%)].

e Optimal r = Z—jr} where k = K(Vgﬁ(ﬁ*)) = Amax/Amin is the
condition number.
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).

@ Gradient Descent in z:

Zki1 = Zk — aP vyl (Pzx)
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).

@ Gradient Descent in z:
Zki1 = Zk — aP vyl (Pzx)

Equivalently
i1 = Ok — PP VL (6y).
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).
o Gradient Descent in z:

Zki1 = Zk — aP vyl (Pzk)

Equivalently
i1 = Ok — PP VL (6y).

o llzis1 — 27| < (r+¢€) |z — 2*|| where r = &=L

K = r(V2L(Pz*)) = k(PTV3L(6*) P).
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).
o Gradient Descent in z:

Zki1 = Zk — aP vyl (Pzk)

Equivalently
i1 = Ok — PP VL (6y).

o llzis1 — 27| < (r+¢€) |z — 2*|| where r = &=L

K = r(V2L(Pz*)) = k(PTV3L(6*) P).

o Preconditioning: choose P such that PTV2L (0*) P has a better

condition number
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Neural Networks Loss

Consider one weight and bias for layer ¢. Recall
) =g (W(f)h(f—l) + b(@) cR"

Let w!?" € RIX™ be the ith row of W(®) and b{") be the ith entry of b(®).

Let ; R
a) = wO =D 4 O — FThe R

i i

where

aT = [b,(Z),Wi(Z)T} c Rlx(m—i—l)’ h— [h(l ] c R(m—&-l)xl,
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Neural Network Loss Hessian

Theorem 1

Consider a loss function L and write L = L a(é)

over a mini-batch of N /nputs let {h 5

(=D and let by = [ (-n| € RN Lot £ = £(w):= § XL L(WTH).
Then, N
VZL(w)=HTSH
where
e 1 L (wThy)
H=|: : and S = N ,
1 A L (W)

(=1 ple- 1),...,h(2 1)

wTh). When training

} be the associated
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Batch Normalization Preconditioning (BNP)

Precondition H = [e, H]:

@ w = Pz, where
_uT -1
P = UD, U::[l “A}, D::[l 0 ] ,
OA)

where
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Preconditioned Gradient Descent

The preconditioned Hessian matrix is

V2L =PTVZLP =GTSG.
where é = ﬁP, i.e.

1 g 1oAY i
é‘_ . . . . 1 —,UX 1 0 (1)

S e 1 10 1 ][0 diag(oa)]
1 gy 1 h%‘l)

and gj = (hj(-efl) — pa)/oa is hj(-efl) normalized to have zero mean and
unit variance.
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Preconditioned Gradient Descent

G = HUD or g = (hJ(-e_l) — pa)/oa improves conditioning in two ways:
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Preconditioned Gradient Descent

G = HUD or g = (hJ(-e_l) — f1a)/ oA improves conditioning in two ways:

k(HU) < k(H)

and (by a theorem of van der Sluis)

K(G)<Vm+1  min  k(HUDy).
Do Is diagonal
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Preconditioned Gradient Descent

G = HUD or g = (h(e b pa)/oa improves conditioning in two ways:

k(HU) < k(H)

and (by a theorem of van der Sluis)

K(G)<Vm+1 min  k(HUDy).

Do Is diagonal

If there is a large variations in o4, then (G) < v/m + 1x(H).
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Balancing the norms of Hessians

G's entries has mean 0 and variance 1. By a theorem of Seginer:

E[||G] < € max{v/m, VN}

E[GIll = max{v/N,E[|G|]} < €’ max{/m, VIV}
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Balancing the norms of Hessians

G's entries has mean 0 and variance 1. By a theorem of Seginer:
E[||G[[] < C max{y/m, VN}
E[||G|] = max{VN,E[|G[|]} < €’ max{y/m, VN}
Scale V2L(0*) by g = max{+/m/N, 1} to get similar norms for all layers:
(1/QE[IG]] < C'VN

e Learning rate: a < 2/||V2L(0")]|.

o A large |[V2L(0*)|| at one layer will require a smaller «;
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BNP Algorithm

BNP Gradients on W p®)

Input: A= {h(e 2 h(e 1) (Z_l } C R’" and the parameter
gradients: G, < g € R”X’" Gb — 8b(‘f) € R1xn

1. Compute ,uA,aA,

2. Compute: < pp+ (1 — p)ua, 02 < po? + (1 — p)o3;
3. Set 52 = 02 + e; max{o?} + €2 and ¢*> = max{m/N, 1};
4. Update: G, + %(Gw — 11Gp)/52; Gp %Gb — 1" Gy
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BNP Algorithm

BNP Gradients on W(‘j) b

Input: A= {h(e 2 h(e 1) (Z_l } C R’" and the parameter
gradients: G, < g € R”X’" Gb — 8b(‘f) € R1xn

1. Compute ,uA,aA,

2. Compute: < pp+ (1 — p)ua, 02 < po? + (1 — p)o3;
3. Set 52 = 02 + e; max{o?} + €2 and ¢*> = max{m/N, 1};
4. Update: G, + %(Gw — 11Gp)/52; Gp %Gb —u'Gy;

The same framework is applied to CNNs.

@ Use mean and variance of hidden tensor over the mini-batch and the
spacial dimensions, as used in BN.
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Experiments
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e CIFAR10: 60,000 labeled 32x32 color images with 50,000/10,000 split
for training/testing. There are 10 classes.
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Fully Connected Network/CIFAR 10

Fully-Connected Neural Network: three hidden layers of size 100 each and
an output layer of size 10
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Fully Connected Network Five Run Average: CIFAR10

r 3.00
r2.75
1 +2.50
— == Wanilla Train Loss 2.25
—— Vanilla Test Accuracy
——- BN Train Loss L
——— BN Test Accuracy 2.00
7 —=—=- BNP Train Loss
— NP Test Accuracy 175
——- LN Train Loss
______ —— LN Test Accuracy 150
] — R e
] 125
‘‘‘‘‘‘‘ L r 100
o N R A
e | 075
T T T T T T T 0.50
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

Figure: Mini-batch size = 60.
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Fully Connected Network/CIFAR 10

Batchsize = 6
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Figure: Mini-batch size = 6.
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CNNs/CIFAR10

5-layer CNN: 3 convolution layers of 3 x 3 kernel with 32-64-32 filters,
followed by two dense layers.

5-Layer CNN Five Run Average Batch Size 2: CIFAR 10
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Figure: Mini-batch size =2
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ResNet110/CIFAR10

ResNet-110: 54 residual blocks, containing two 3 x 3 convolution layer
each.

ResNet-110: CIFAR10
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Figure: ResNet BS=128
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Conclusions

@ Preconditioning framework applicable to a variety of networks.
@ Outperform BN for small mini-batches.
@ Provide partial theoretical justifications for BN.

@ Work in progress: applications to other network architectures.
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