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Inverse problem

Inverse problem: discover internal structure from boundary measurements

I Farfield imaging

I Seismic imaging

I Electrical impedance tomography

I Traveltime tomography

I Optical tomography

Goal: inverse map

I From boundary measurement d to internal parameter η

I (-) Often ill-conditioned

I (-) A high dimensional nonlinear function
[Image credit: Google]



Deep learning

Key ingredients

I Neural network: A flexible representation for high-dim functions

I Automatic feature extraction

I Efficient optimization: stochastic gradient (SGD), backpropagation, ...

I Software and hardware support
[Image credit: Google]



Deep learning for inverse problems

Goal: representing the inverse map with a DNN

Challenges

I Limited data for inverse problems

I Regression instead of classification

Plan: a seamless integration of physics and data

I Use math/physics to design new DNN modules

I Use math/physics to assemble the DNN from these modules

I Train weights end-to-end using limited data

Applications

I Farfield imaging

I Traveltime tomography

I Seismic imaging

I Electrical impedance tomography

I Optical tomography
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New modules

Mathematical structures and DNN modules

I Dense operator: fully-connected

I Translation-inv local operator: CNN

I Markov chain: RNN

I ODE/time-stepping/semi-group: ResNet

We will consider operators used a lot in inverse problems

I (A) Pseudo-differential operators (e.g. normal op) ???

I (B) Fourier integral operators (e.g. forward wave op) ???



(A) Pseudo-differential operators (PDOs)

(Af)(x) =

∫
K(x, y)f(y)dy =

∫
a(x, ξ)e2πix·ξf̂(ξ)dξ

PDOs: generalization of diff and conv ops

I Green’s fns, normal ops

I Keep the location of singularity

How to build a DNN module for PDOs?

I Sparse approximation for PDO ⇒ linear DNN

I Generalize to nonlinear DNN

Sparse approximation

I Viewed as a matrix, off-diagonal blocks are smooth and low-rank

I Wavelet transform and non-standard form
I (Fast multipole, hierarchical matrices)

I Leads to multiscale neural network (MNN), joint work with Yuwei Fan,
Jordi Feliu-Faba, Lin Lin, Leo Zepeda-Nunez



PDO: Wavelets

Given an n× n PDO A, the non-standard form (Beylkin, Coifman, Rokhlin)

I Represents in the redundant wavelet/scaling function frame

I Keeps only O(n) significant coefficients

I MatVec implemented with (FWT, sparse multiplication, IWT)

Represent MatVec at each scale ` as a DNN



PDO: BCR-Net [Fan, Orozco, Y.]

Represent the whole MatVec as a DNN (dotted line = copying the scaling coeffs)

Generalize via inserting ReLUs (to support nonlinearity)



(B) Fourier integral operators (FIOs)

(Af)(x) =

∫
a(x, ξ)e2πiΦ(x,ξ)f(ξ)dξ

FIOs: generalization of Fourier transform

I Wave propagation in variable media

I Moves singularities in a well-defined way (Hamiltonian flow)

How to build a DNN module for FIOs?

I Sparse approximate for FIO ⇒ linear DNN

I Generalize to nonlinear DNN

Sparse approximation

I Viewed as a matrix, “square-root-sized” blocks are numerically low-rank

I Butterfly factorization



FIO: Butterfly factorization

Given an n× n Fourier integral operator A

I Partition hierarchically into
√
n×
√
n blocks

I Apply a low-rank approximation to each block

(a hierarchical butterfly factorization also exists)



FIO: SwitchNet [Khoo, Y.]

Represent the whole MatVec as a DNN

Generalize via inserting ReLUs (to support nonlinearity)
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Applications

Consider several inverse problems

I (A) Farfield imaging

I (B) Traveltime tomography

For each one, the workflow is

I 1. Design DNN for the inverse map
Motivation: perturbation theory, filtered backprojection
Hypothesis: DNN figures out where to do perturbation
Components: BCR-Net, SwitchNet, conv layers

I 2. Train the weights end-to-end from limited data

I 3. Use DNN for prediction



Related work on DL for inverse problem

Reviews:

I [Arridge et al., 2019, Kong et al., 2019, McCann and Unser, 2019,
Ravishankar et al., 2019, Wiecha et al., 2021]

Microlocal analysis:

I [Andrade-Loarca et al., 2021, Bubba et al., 2021]

Linear inverse problem:

I [Hand and Voroninski, 2018, Ongie et al., 2020]

Unrolling approach:

I [Adler and Öktem, 2017, Cheng et al., 2019, de Hoop et al., 2019,
Gilton et al., 2019, Hauptmann et al., 2020, Monga et al., 2021,
Putzky and Welling, 2019, Zhang and Dong, 2020]

Stability:

I [Antun et al., 2020, Colbrook et al., 2021, Genzel et al., 2020,
Gottschling et al., 2020]



(A) Farfield imaging [Khoo, Y.]

Helmholtz equation Lu = (−∆− ω2

c(x)2
)u = 0 for the total field u(x)

I ω frequency, c(x) unknown sound speed

I c0 background velocity. Eqv. unknown η(x) = ω2

c(x)2
− ω2

c20

I u(x) = us(x) + eiωs·x

incoming wave eiωs·x for s ∈ S1, scattered field us(x)

I Far field pattern u∞s (r) ≡ limρ→∞ us(ρ · r)
√
ρe−iωρ at dir r ∈ S1.

Define d(r, s) = u∞s (r)

I Inverse problem: d(r, s)⇒ η(x)



Analysis

Consider first the forward map A : η(x)⇒ d(r, s)

I The linear regime (η small) as a motivation

d(r, s) ≈
∫
x∈Ω

eiω(s−r)·xη(x)dx

I A is an FIO from x ∈ Ω to (r, s) ∈ S1 × S1 (nonuniform FT)

I Use the SwitchNet module to represent A (and its adjoint A∗)



DNN Architecture

Inverse map d(r, s)⇒ η(x)

I Consider the filtered backprojection (linear regime)

η ≈ (A∗A+ εI)−1A∗d

I A∗ is also an FIO operator (SwitchNet)

I (A∗A+ εI)−1 is a PDO (BCR-Net)

DNN

I Use the same architecture of filtered backprojection but include
nonlinearities

d(r, s)⇒ SwitchNet⇒ BCR-Net⇒ η(x)

I Train all parameters end-to-end



Results

I ω = 60. Ω: unit box discretized with 80× 80 samples.

I d(r, s): (r, s) uniformly on S1 × S1, 80× 80 discretization.

I η(x) : Gaussian mixture.

I 12.5K (η, d) pairs for training and testing.

I Relative error: inverse map ≈ 1%; forward map ≈ 4%.

DNN results ground truth



(B) Traveltime tomography [Fan, Y.]

Eikonal equation |∇u(x)| = 1
c(x)

= 1 + η(x) for traveltime u(x)

I η(x): unknown slowness deviation

I Let us(·) be the solution with condition us(s) ≡ 0 for boundary point s

I Record solution us(r) at boundary point r.
Define d(r, s) ≡ us(r)

I Inverse problem: d(r, s)⇒ η(x)



Analysis

Consider first the forward map A : η(x)⇒ d(r, s)

I The linear regime (η small) as a motivation
d in the source/offset coordinates with (r, s) ≡ (s+ h, s)
η in the polar coordinates (ρ, θ)

d(s, h) ≈
∫ 1

0

∫ 2π

0

κ(h, ρ, s− θ)η(θ, ρ)dρdθ

This is a 1d convolution in s/θ with h and ρ as channels

I Use CNN or BCR-Net for A (and its adjoint A∗)



DNN architecture

Inverse map d(r, s)⇒ η(x)

I Consider the filtered backprojection (linear regime)

η ≈ (A∗A+ εI)−1A∗d

I A∗ is 1d convolution (1d CNN or BCR-Net)

I (A∗A+ εI)−1 is a PDO (BCR-Net)

DNN

I Use the same architecture of filtered backprojection but include
nonlinearities

d(s, h)⇒ 1d-CNN⇒ BCR-Net⇒ η(θ, ρ)

I Train all parameters end-to-end



Results

I d(r, s): (r, s) uniformly on the boundary of Ω

I η(x): a group of ellipsis inclusions

I 20K (η, d) pairs used for training and testing

I Results with different noise added



Summary

New modules for incorporating math/physics into DNN design

I BCR-Net from PDOs

I Switch-Net from FIOs

Applications from inverse problems

I Farfield imaging

I Traveltime tomography

Take-away message

I Fast algorithm decides the structure

I Data decides the weights

I Modularized construction

I End-to-end training
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