Computing the Bogoliubov-de Gennes excitations of dipolar Bose-Einstein condensates

Yong ZHANG

Center for Applied Mathematics, TianJin University (TJU)

Joint works with: Qinglin TANG (SiChuan Uni) and Manting XIE (TJU)

24/Oct/2021, Purdue

() < </p>

Outline

Introduction

2 BdGEs properties

Output: Second Action 10 Control 10 Contr

- Nonlocal interaction evaluation
- Eigenvalue-function solver

4 Numerical results

- Spectral Accuracy
- Eigenvalue distribution
- 3-dimensional case

5 Conclusion

() < </p>

Schrödinger equation

- Bose-Einstein condensate (BEC) many-body system, bosons occupy the same quantum state if *T* < *T_c* ⇒ single-particle approximation with nonlinearity (local and/or nonlocal) ⇒ Nonlinear Schrödinger equation (NLSE)
- Theoretical prediction: Bose & Einstein 1924, Experimental realisation: JILA, 1995
- 2001 Nobel prize in physics: E. A. Cornell, W. Ketterle, C. E. Wieman
- Experiments & Theoretical:
 E.P. Gross, L.P. Pitaevskii, L. Erdos, B. Schlein, H. T. Yau H. Pu, S. Yi, L. Santos, O'Dell, Lieb, Carles, Markowich, Bao, ...

イロト イヨト イヨト イヨト

Gross-Pitaevskii equations (GPE)

$$i\partial_t\psi(\mathbf{x},t) = -\frac{1}{2}\nabla^2\psi + V(\mathbf{x})\psi + \beta |\psi|^2\psi + \alpha (U * |\psi|^2)\psi, \quad \mathbf{x} \in \mathbb{R}^d$$
(1)

- $\psi(\mathbf{x}, t)$: complex-valued wave function
- $V(\mathbf{x})$: real-valued external potential, e.g. harmonic trapping potential:

$$V(\mathbf{x}) = \frac{1}{2}(\gamma_x^2 x^2 + \gamma_y^2 y^2 + \gamma_z^2 z^2)$$

- $\alpha, \beta \in \mathbb{R}$ are constants, repulsive /negative
- * is the convolution operator, $U(\mathbf{x})$ is the fundamental interaction
- Conservation: Mass $M = ||\psi||_{L^2}^2$ and Energy

$$E(\psi) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla \psi|^2 + V(\mathbf{x}) |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{\alpha}{2} (U * |\psi|^2) |\psi|^2 d\mathbf{x}$$

・ロト ・四ト ・ヨト ・ヨト

Introduction

Schrödinger equation

Dipole-Dipole Interaction (DDI)

$${}^{a}U(\mathbf{x}) = \left\{ egin{array}{ll} -\delta(\mathbf{x}) - 3\,\partial_{\mathbf{n}\mathbf{n}}\left(rac{1}{4\pi|\mathbf{x}|}
ight), & \mathbf{x}\in\mathbb{R}^{3}, \ -rac{3}{2}\left(\partial_{\mathbf{n}_{\perp}\mathbf{n}_{\perp}} - n_{3}^{2}
abla^{2}
ight)\left(rac{1}{2\pi|\mathbf{x}|}
ight), & \mathbf{x}\in\mathbb{R}^{2}. \end{array}
ight.$$

(2)

Here $\mathbf{n} = (n_1, n_2, n_3)^T \in \mathbb{S}^2$ is the dipole moment

^aRep. Prog. Phys. 72 (2009) 126401

Introduction

Schrödinger equation

Stationary state

• Stationary state: $\psi(\mathbf{x},t) = e^{i\mu_s t}\phi_s(\mathbf{x})$ satisfying

$$u_{\mathfrak{s}}\phi_{\mathfrak{s}}(\mathbf{x}) = \left[-\frac{1}{2}\nabla^{2} + V(\mathbf{x}) + \beta|\phi_{\mathfrak{s}}|^{2} + \lambda\left(U * |\phi_{\mathfrak{s}}|^{2}\right)\right]\phi_{\mathfrak{s}}(\mathbf{x}), \quad \|\phi_{\mathfrak{s}}(\mathbf{x})\| = 1, \qquad (3)$$

• Ground state: minimizer (non-convex constraint)

$$\phi_g = \operatorname*{argmin}_{\phi \in S} E(\phi), \quad S := \{\phi(\mathbf{x}) \mid \|\phi\|^2 := \int_{\mathbb{R}^d} |\phi(\mathbf{x})|^2 d\mathbf{x} = 1, \ E(\phi) < \infty\}. \tag{4}$$

Existing methods

- Gradient flow equation (dissipative equation) ^a
- Riemannian manifold optimization ^b

 ^3Bao & Du, SISC 04' etc, PCG Tang, JCP 17', CiCP 18' etc, SAV Zhuang & Shen, JCP 19' $^b\text{Huang}$ @ XiaMen Uni

() < </p>

Bogoliubov-de Gennes excitations

Bogoliubov-de Gennes excitations

$$\psi(\mathbf{x},t) = e^{-i\mu_s t} \left[\phi_s(\mathbf{x}) + p \sum_j \left(u_j(\mathbf{x}) e^{-i\omega_j t} + \bar{v}_j(\mathbf{x}) e^{i\omega_j t} \right) \right], 0 (5)$$

subject to constrain:

$$\int_{\mathbb{R}^d} \left(|u_j(\mathbf{x})|^2 - |v_j(\mathbf{x})|^2 \right) d\mathbf{x} = 1.$$
(6)

() < </p>

Collecting the linear terms in p and separating the frequency $e^{-i\omega_j t}$ and $e^{i\omega_j t}$:

$$\mathcal{L}_{\rm GP} u_j + \beta |\phi_s|^2 u_j + \beta \phi_s^2 v_j + \lambda U * \left(\bar{\phi}_s u_j + \phi_s v_j\right) \phi_s = \omega u_j, \tag{7}$$

$$\mathcal{L}_{\rm GP} \mathbf{v}_j + \beta \bar{\phi}_s^2 \mathbf{u}_j + \beta |\phi_s|^2 \mathbf{v}_j + \lambda \ \mathbf{U} * \left(\bar{\phi}_s \mathbf{u}_j + \phi_s \mathbf{v}_j \right) \bar{\phi}_s = -\omega \mathbf{v}_j, \tag{8}$$

with

$$\mathcal{L}_{\rm GP} := -\frac{1}{2}\nabla^2 + V(\mathbf{x}) + \beta |\phi_s|^2 + \lambda \Phi_s - \mu_s, \quad \Phi_s = U * |\phi_s|^2.$$
(9)

Bogoliubov-de Gennes excitations

BdG equation

$$\begin{pmatrix} \mathcal{L}_{11} & \mathcal{L}_{12} \\ \mathcal{L}_{21} & \mathcal{L}_{22} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \omega \begin{pmatrix} u \\ v \end{pmatrix},$$
(10)

with constraint

$$\int_{\mathbb{R}^d} \left(|u(\mathbf{x})|^2 - |v(\mathbf{x})|^2 \right) \, d\mathbf{x} = 1.$$
 (11)

$$\mathcal{L}_{11} = \mathcal{L}_{\rm GP} + \beta \left|\phi_{s}\right|^{2} + \lambda \,\widehat{\chi}_{1}, \quad \mathcal{L}_{22} = -\mathcal{L}_{\rm GP} - \beta \left|\phi_{s}\right|^{2} - \lambda \,\widehat{\chi}_{1}^{*} \tag{12}$$

$$\mathcal{L}_{12} = \beta \,\phi_s^2 + \lambda \,\widehat{\chi}_2, \quad \mathcal{L}_{21} = -\beta \,\overline{\phi}_s^2 - \lambda \,\widehat{\chi}_2^*, \tag{13}$$

with nonlocal actions $\widehat{\chi}_{j}$ & $\widehat{\chi}_{j}^{*}$ (j=1,2)

$$\widehat{\chi}_1(\xi) := \phi_s \left[U * (\overline{\phi}_s \xi) \right], \quad \widehat{\chi}_2(\xi) := \phi_s \left[U * (\phi_s \xi) \right], \tag{14}$$

$$\widehat{\chi}_1^*(\xi) := \overline{\phi}_s \left[U * (\phi_s \xi) \right], \quad \widehat{\chi}_2^*(\xi) := \overline{\phi}_s \left[U * (\overline{\phi}_s \xi) \right], \tag{15}$$

イロト イヨト イヨト イヨト

Bogoliubov-de Gennes excitations

Refromulation

Change of variables $u(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}), v(\mathbf{x}) = f(\mathbf{x}) - g(\mathbf{x})$, we have

$$H_+f(\mathbf{x}) = \omega g(\mathbf{x}), \qquad H_-g(\mathbf{x}) = \omega f(\mathbf{x}), \quad \Re\left(\int_{\mathbb{R}^d} (f(\mathbf{x})\,\bar{g}(\mathbf{x}))\,d\mathbf{x}\right) = \frac{1}{4}, \qquad (16)$$

which immediately leads to a decoupled linear eigen-system for $f(\mathbf{x})$ and $g(\mathbf{x})$

$$H_{-}H_{+}f(\mathbf{x}) = \omega^{2}f(\mathbf{x}), \qquad H_{+}H_{-}g(\mathbf{x}) = \omega^{2}g(\mathbf{x}).$$
(17)

Here, $\Re(\alpha)$ denotes the real part of α and $H_+ := \mathcal{L}_{\mathrm{GP}} + 2\beta |\phi_s|^2 + 2\lambda \hat{\chi}_1, \ H_- = \mathcal{L}_{\mathrm{GP}}.$

イロト イヨト イヨト イヨト

BdG property

Lemma (general potential)

If $\{u, v, \omega\}$ ($\omega \in \mathbb{C}$) is a solution pair, then $\{\bar{v}, \bar{u}, -\bar{\omega}\}$ is also a solution and

$$(\omega - \bar{\omega}) \int_{\mathbb{R}^d} (|u(\mathbf{x})|^2 - |v(\mathbf{x})|^2) \, d\mathbf{x} = 0.$$
(18)

Furthermore, if $u(\mathbf{x})$, $v(\mathbf{x})$ satisfy the normalization constraint (11), i.e., the elementary excitations, the eigen-frequency ω then is real.

Lemma (Harmonic trap: Analytical eigenfunction-value pairs)

Let ϕ_s be the real-valued stationary state, then we have the following solution pair :

$$\{u_{\alpha}, v_{\alpha}, \omega_{\alpha}\} =: \left\{ \frac{1}{\sqrt{2}} \left(\gamma_{\alpha}^{-1/2} \partial_{\alpha} \phi_{s} - \gamma_{\alpha}^{1/2} \alpha \phi_{s} \right), \frac{1}{\sqrt{2}} \left(\gamma_{\alpha}^{-1/2} \partial_{\alpha} \phi_{s} + \gamma_{\alpha}^{1/2} \alpha \phi_{s} \right), \gamma_{\alpha} \right\},$$
(19)

with $\alpha = x, y$ in 2D and $\alpha = x, y, z$ in 3D.

() < </p>

BdG with Harmonic traps

Lemma (Thomas-Fermi regime with $\mathbf{n} = e_z$ & cylindrical trap)

The ground state profile $\phi_g(\mathbf{x})$ could be well approximated by the TF density $\phi_g^{TF}(\mathbf{x})$ with chemical potential μ_g^{TF} :

$$\phi_{g}(\mathbf{x}) \approx \phi_{g}^{\mathrm{TF}}(\mathbf{x}) := \sqrt{\frac{15}{8\pi R_{x}^{2} R_{z}} \left(1 - \frac{x^{2}}{R_{x}^{2}} - \frac{y^{2}}{R_{y}^{2}} - \frac{z^{2}}{R_{z}^{2}}\right)_{+}}, \qquad \mu_{g}^{\mathrm{TF}} = \frac{15 \left(\beta - \lambda \eta(\kappa)\right)}{8\pi R_{x}^{2} R_{z}},$$

where $\mu_g^{\rm TF}$ is the chemical potential, $f_+(\mathbf{x}) := \max\{0, f(\mathbf{x})\}$, $R_x = R_y$ and

$$\eta(\kappa):=rac{1+2\kappa^2}{1-\kappa^2}-rac{3\kappa^2{
m arctanh}(\sqrt{1-\kappa^2})}{(1-\kappa^2)^{3/2}}.$$

where the ratio $\kappa := R_x/R_z$ is determined by the following transcendental equation

$$\frac{3\lambda\kappa^2}{\beta} \left[\left(\frac{\gamma_z^2}{2\gamma_x^2} + 1 \right) \frac{\eta(\kappa)}{1 - \kappa^2} - 1 \right] + \left(\frac{\lambda}{\beta} - 1 \right) \left(\kappa^2 - \frac{\gamma_z^2}{\gamma_x^2} \right) = 0.$$
 (20)

The radii R_x is given explicitly

$$R_{x} = \left[\frac{15\kappa}{4\pi\gamma_{x}^{2}}\beta\left(1 + \frac{\lambda}{\beta}\left(\frac{3\kappa^{2}\eta(\kappa)}{2(1-\kappa^{2})} - 1\right)\right)\right]^{\frac{1}{5}}.$$
(21)

Y. ZHANG (TJU)

Lemma (Thomas-Fermi *limit* with $\mathbf{n} = e_z \&$ cylindrical trap)

Under the same conditions as the last lemma, the Bogoliubov eigenvalues ω_{β} is well approximated by ω_{∞} as $\beta \to \infty$. The limit eigenvalue ω_{∞} satisfies

$$-\left(1-\frac{1}{2}(\gamma_x^2x^2+\gamma_x^2y^2+\gamma_z^2z^2)\right)\Delta q(\mathbf{x})+(\gamma_x^2x\partial_x+\gamma_y^2y\partial_y+\gamma_z^2z\partial_z)q(\mathbf{x})=(\omega_\infty)^2q(\mathbf{x}),$$

for $\mathbf{x} \in D_{\infty}$ with $D_{\infty} := \left\{ \mathbf{x} \in \mathbb{R}^3 \left| 1 - \frac{1}{2} (\gamma_x^2 x^2 + \gamma_x^2 y^2 + \gamma_z^2 z^2) \ge 0 \right\}$. Especially, for a special isotropic harmonic trap, i.e. $\gamma_x = \gamma_y = \gamma_z = \sqrt{2}$, we have the explicit eigenvalues

$$\omega_{\infty}^{l,k} = \sqrt{2}\sqrt{l+3k+2kl+2k^2}, \qquad l \ge 0, \quad k \ge 0.$$

・ロト ・四ト ・ヨト ・ヨト

Simple Fast Spectral Convolution (SFSC)

Problem of interest

- **()** $\phi_s(\mathbf{x})$ smooth & fast-decaying, so are the excitation modes $u_j(\mathbf{x}), v_j(\mathbf{x})$
- **2** $U(\mathbf{x})$ singular and decay polynomially at the far-field

State of the art

- Nonuniform FFT (NUFFT) method ^a
- Gaussian-Sum method (GauSum)^b
- Sernel Truncation method (KTM)^c
- Anisotropic Truncated Kernel method (ATKM)^d

^aJiang, Greengard and Bao, SISC 14'; Zhang et al: JCP 15', CiCP 16',M2AN 17' ^bZhang et al: JCP 16',JCP,16'; ExI,CPC 16'. ^cPRB 06'; Vico etc JCP 16', Zhang, preprint 21' ^dGreengard, Jiang and Zhang,SISC 18'

<ロト < 回 > < 回 > < 回 > < 回 >

Simple Fast Spectral Convolution

Reduce to convolution with Coulomb kernel

$$\varphi = \left(\frac{1}{2\pi|\mathbf{x}|}\right) * \left(-\frac{3}{2}(\partial_{n_{\perp}n_{\perp}} - n_3^2 \nabla_{\perp}^2)\rho\right) := \left(\frac{1}{2\pi|\mathbf{x}|}\right) * \widetilde{\rho},\tag{22}$$

Simple Fast Spectral Convolution

- **9** Fourier spectral approximation of $\phi_s(\mathbf{x})f(\mathbf{x})$, so its derivatives to obtain $\tilde{\rho}$
- **2** Anisotropic Truncated Kernel method (ATKM) for convolution $U(\mathbf{x}) * \rho$

Basic idea of ATKM

$$\varphi(\mathbf{x}) = \int_{\mathbf{B}_{2}} U(\mathbf{y})\rho(\mathbf{x} - \mathbf{y})d\mathbf{y}$$

$$\approx \sum_{\mathbf{k}} \widehat{\rho}_{\mathbf{k}} \prod_{j=1}^{d} e^{\frac{2\pi i \ k_{j}}{b_{j} - a_{j}}(\mathbf{x}^{(j)} - a_{j})} \left(\int_{\mathbf{B}_{2}} U(\mathbf{y}) \prod_{j=1}^{d} e^{\frac{-2\pi i \ k_{j} \ \mathbf{y}^{(j)}}{b_{j} - a_{j}}} d\mathbf{y} \right)$$

$$:= \sum_{\mathbf{k}} \widehat{U}(\mathbf{k}) \widehat{\rho}_{\mathbf{k}} \prod_{j=1}^{d} e^{\frac{2\pi i \ k_{j}}{b_{j} - a_{j}}(\mathbf{x}^{(j)} - a_{j})}$$

$$(24)$$

Simple Fast Spectral Convolution

Example (Gaussian density and ground state: $f(\mathbf{x}) = e^{-\frac{|\mathbf{x}|^2}{2\sigma^2}}, \ \phi_s(\mathbf{x}) = f(\mathbf{x})$)

$$\begin{aligned} [\chi_{1}(f)](\mathbf{x}) &= \frac{3\sqrt{\pi}\,e^{-s}}{4\sigma} \left[(\mathbf{n}_{\perp}\cdot\mathbf{n}_{\perp})(l_{0}(s) - l_{1}(s)) - \frac{2(\mathbf{x}\cdot\mathbf{n}_{\perp})^{2}}{\sigma^{2}} \Big(l_{0}(s) - \frac{1+2s}{2s} l_{1}(s) \Big) \right] f(\mathbf{x}) \\ &+ \frac{3\sqrt{\pi}\,n_{3}\,n_{3}\,s\,e^{-s}}{\sigma} \left[l_{0}(s) - l_{1}(s) - \frac{l_{0}(s)}{2s} \right] f(\mathbf{x}), \quad s = \frac{|\mathbf{x}|^{2}}{2\sigma^{2}}, \quad \mathbf{x} \in \mathbb{R}^{2} \\ [\chi_{1}(f)](\mathbf{x}) &= -\left[\rho(\mathbf{x}) + 3\partial_{nn} \left(\frac{\sigma^{2}\sqrt{\pi}}{4} \frac{Erf(r/\sigma)}{r/\sigma} \right) \right] f(\mathbf{x}) = -[\rho(\mathbf{x}) + 3\,n^{T}B(\mathbf{x})n]f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{3} \end{aligned}$$

Table: Errors and CPU time for $\chi_1(f)$ by SFSC in 2D (fisrt) and 3D (second row).

	h = 2	h = 1	h = 1/2	h = 1/4
E _h	1.9385E-01	1.1617E-02	7.6144E-08	3.7585E-15
E _h	1.5743E-01	8.2904E-03	1.7048E-07	1.8485E-14
CPU	6.0000E-04	5.5000E-03	5.6300E-02	9.5620E-01

<ロト < 回 ト < 巨 ト < 巨 ト 三 - つへの

Eigenvalue-function solver

Existing method

- eigs with MATLAB for low-storage explicit matrix storage (lower spatial dimension)
- Block preconditioned 4D conjugate gradient algorithm (LOBP4DCG)
- Implicitly Restarted Arnoldi Methods & Reverse Communication by ARPACK

Our strategy: ARPACK + SFSC

- Fourier spectral discretization of spatial function
- Spectral accuracy for the nonlocal interaction
- **③** Flexible for 3-dimension problem with reverse communication interface
- Focus on the first few smallest magnitude eigenvalue

Spectral accuracy

Measure the errors

$$\mathbf{e}_{\omega_{\alpha}}^{h} := \frac{|\omega_{\alpha}^{h} - \omega_{\alpha}|}{|\omega_{\alpha}|}, \qquad \mathbf{e}_{\mathbf{uv}}^{h,\alpha} := \frac{\|\mathbf{u}_{\alpha}^{h} - \mathcal{P}_{u}\mathbf{u}_{\alpha}^{h}\|_{2}}{\|\mathbf{u}_{\alpha}^{h}\|_{2}} + \frac{\|\mathbf{v}_{\alpha}^{h} - \mathcal{P}_{v}\mathbf{v}_{\alpha}^{h}\|_{2}}{\|\mathbf{v}_{\alpha}^{h}\|_{2}}$$

Example (Accuracy verification)

Here, we consider both the 2D and 3D examples. To this end, we set $\beta = 100$, $\lambda = 50$ and consider the following four cases:

Case I. 2D case, let $\gamma_x = \gamma_y = 1$ and $\mathbf{n} = (\cos \theta, \sin \theta, 0)$ with different θ .

Case II. 2D case, let $\gamma_x = \gamma_y/2 = 1$ and $\mathbf{n} = (\cos \theta, \sin \theta, 0)$ with different θ .

Case III. 3D case, let $\gamma_x = \gamma_y = \gamma_z = 1$ and $\mathbf{n} = (0, 0, 1)$.

Case IV. 3D case, let $\gamma_x = \gamma_z = \gamma_y/2 = 1$ and n = (0, 0, 1).

イロト イヨト イヨト イヨト

Spectral accuracy

	h	$h_0 = 3/2$	$h_0/2$	$h_0/4$	h ₀ /8	$h_0/16$
	$e^{h}_{\omega_{x}}$	1.569E-01	6.618E-04	7.652E-07	1.516E-12	1.129E-11
$\theta = 0$	$e^{h}_{\omega_y}$	9.973E-02	1.927E-03	6.508E-08	7.641E-13	1.129E-11
	$e_{\mathbf{uv}}^{h,\omega_{x}}$	1.993E-01	1.211E-02	2.144E-04	3.474E-08	6.107E-11
	$e_{\mathbf{uv}}^{h,\omega_y}$	2.068E-01	1.932E-02	2.715E-05	4.611E-09	3.938E-11
	$e^{h}_{\omega_{x}}$	2.085E-01	6.525E-04	3.957E-07	1.451E-13	5.653E-12
$\theta = \pi/4$	$e^{h}_{\omega_y}$	1.283E-01	1.682E-03	1.967E-07	5.680E-13	1.299E-11
,	$e_{\mathbf{uv}}^{h,\omega_{x}}$	1.851E-01	1.644E-02	1.214E-04	8.606E-09	3.962E-11
	$e_{\mathbf{uv}}^{h,\omega_y}$	2.989E-01	1.657E-02	1.325E-04	8.822E-09	5.275E-11
	$e^h_{\omega_x}$	1.889E-01	7.926E-04	1.375E-07	4.345E-13	1.637E-11
$\theta = \pi/3$	$e^{h}_{\omega_y}$	1.209E-01	3.174E-03	1.234E-06	1.217E-12	7.761E-12
,	$e_{\mathbf{uv}}^{h,\omega_{\chi}}$	1.848E-01	1.490E-02	7.475E-05	1.851E-08	6.890E-11
	$e_{\mathbf{uv}}^{h,\omega_y}$	2.775E-01	1.779E-02	1.679E-04	1.873E-08	2.595E-11

Table: Errors of the eigenvalues and eigenvectors for $\mbox{Case I}$.

Y. ZHANG (TJU)

Spectral accuracy

Table: Errors of the eigenvalues and eigenvectors for Case II.						
	h	$h_0 = 3/4$	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
	$e^{h}_{\omega_{x}}$	1.583E-01	2.000E-03	2.131E-06	4.209E-12	1.220E-11
$\theta = 0$	$e^{h}_{\omega_y}$	1.858E-02	5.973E-03	1.388E-05	9.854E-13	9.976E-12
	$e_{\mathbf{uv}}^{h,\omega_{\chi}}$	4.431E-01	2.076E-02	2.421E-04	8.561E-08	5.781E-11
	e_{uv}^{h,ω_y}	2.000	7.879E-02	8.098E-04	8.165E-08	5.241E-11
	$e^{h}_{\omega_{x}}$	2.168E-01	3.823E-03	3.399E-06	1.854E-11	1.004E-11
$ heta=\pi/4$	$e^{h}_{\omega_y}$	1.215E-01	3.346E-02	1.104E-04	4.233E-10	3.712E-12
	$e_{{f u}{f v}}^{h,\omega_x}$	5.428E-01	2.272E-02	1.931E-04	4.903E-08	1.565E-10
	e_{uv}^{h,ω_y}	2.000	1.022E-01	2.049E-03	1.910E-06	1.962E-10
	$e^h_{\omega_x}$	2.251E-01	3.529E-04	7.674E-06	2.561E-11	4.069E-12
$\theta = \pi/3$	$e^{h}_{\omega_y}$	1.553E-01	5.355E-03	1.755E-04	1.225E-09	6.111E-13
	e_{uv}^{h,ω_x}	4.452E-01	2.279E-02	1.768E-04	6.936E-08	5.168E-10
	$e_{{f u}{f v}}^{h,\omega_y}$	2.000	1.014E-01	2.808E-03	3.584E-06	5.872E-11

Table: Errors of the eigenvalues and eigenvectors for Case II.

Y. ZHANG (TJU)

Example (Eigenvalue Distribution)

Here, we consider the effect of the interaction strength to the eigenvalues of the BdGEs with symmetric/asymmetric harmonic potentials in 2D. To this end, we study the following four cases:

Case I. Let $\gamma_x = \gamma_y = 1$, $\beta = 500$ and n = (0, 0, 1). Vary λ from -400 to 0.

Case II. Let $\gamma_x = \gamma_y = 1$, $\lambda = -100$ and $\mathbf{n} = (0, 0, 1)$. Vary β from 0 to 400.

Case III. Let $\gamma_x = 1$, $\gamma_y = \pi$, $\beta = 500$ and n = (1, 0, 0). Vary λ from 0 to 800.

Case IV. Let $\gamma_x = 1$, $\gamma_y = \pi$, $\lambda = 100$ and n = (1, 0, 0). Vary β from 0 to 800.

イロト イヨト イヨト イヨト

Eigenvalue distribution

Figure: The first nine smallest eigenvalues ω_{ℓ} for Case I-Case IV (top left \rightarrow bottom right).

() < </p>

Example (3D Case)

Here, we consider the case in 3D. We fixed $\beta = 100, \lambda = 90$ and study the following two cases:

Case I. Symmetric potential: $\gamma_x = \gamma_y = \gamma_z = 1$. Let $\mathbf{n} = (1, 0, 0)$.

Case II. Asymmetric potential: $\gamma_x = \gamma_z = 1$, $\gamma_y = 2$. Let $\mathbf{n} = (0, 0, 1)$.

3D case

Figure: Isosurface plots of amplitude of $\mathbf{u}_{\ell} = 10^{-3}$ (upper), $\mathbf{v}_{\ell} = 10^{-3}$ (lower) for Case I.

Y. ZHANG (TJU)

3D case

Figure: Isosurface plots of amplitude of $u_\ell = 10^{-3}$ (upper), $v_\ell = 10^{-3}$ (lower) for Case II .

Y. ZHANG (TJU)

Conclusion

Conclusion

- Analytical results on the BdG of dipolar BEC
- Accuracy: Spectral accuracy in both the eigenvalue and eigenfunction
- Efficiency and flexibility for higher-dimension via ARPACK

Discussion

- BdG of rotating, multi-component, spinor, spin-orbit coupling BEC
- BdG around excited states
- better linear response solver under development

<ロト < 回 > < 回 > < 回 > < 回 >

Thanks for all your attention !

E

▲□→ ▲圖→ ▲国→ ▲国→