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Outline
1. Elliptic interface problem

2. Poisson boundary value problem (BVP)
• 4th - 8th order for 2D & 3D cubic domains
• FFT for any boundary condition

3. Poisson interface problem
• Fourth order accuracy for curved interfaces
• FFT for both interface and boundary

4. Summary



1. Elliptic interface problem
Poisson’s equation over a rectangular domain

where 𝛽𝛽 = �𝛽𝛽
+, �⃗�𝑥 ∈ Ω+

𝛽𝛽−, �⃗�𝑥 ∈ Ω−

 General jump conditions

𝑢𝑢 ≔ 𝑢𝑢+ − 𝑢𝑢− = 𝜙𝜙(�⃗�𝑥)
𝛽𝛽𝑢𝑢𝑛𝑛 ≔ 𝛽𝛽+𝛻𝛻𝑢𝑢+ ⋅ 𝑛𝑛 − 𝛽𝛽−𝛻𝛻𝑢𝑢− ⋅ 𝑛𝑛 = 𝜓𝜓(�⃗�𝑥) (2)

−𝛻𝛻 ⋅ 𝛽𝛽𝛻𝛻𝑢𝑢 = 𝑓𝑓 �⃗�𝑥 , �⃗�𝑥 ∈ Ω
𝑢𝑢 = 𝑔𝑔 �⃗�𝑥 , �⃗�𝑥 ∈ 𝜕𝜕Ω (1)



Body-fitted meshes

 Pioneer studies (Babuska 1970; Chen, Zou 1998)
 Immersed FEM (IFEM) (Ewing, Li, Lin, Lin 1999)
 Extended FEM (XFEM) (Ji, Dolbow 2004)
 Discontinuous Galerkin (Huynh et. 2013)
 Weak Galerkin (Mu et. 2013)
 …

 Finite element methods (FEMs)

 Finite volume methods 

 Integral equation methods



Cartesian grid methods
 Immersed boundary method 

(Peskin 1977)
 Immersed interface method 

(IIM) (LeVeque, Li, 1994)
 Ghost fluid method  (Fedkiw, 

Osher, Liu 2000)
 Matched interface and 

boundary (MIB) (Zhou, Zhao, 
Wei 2006)

 …



Fast Poisson solvers for interface 
problems Geometric multigrid solver O(N)

• IIM (Adams, Li, 2004)
• Piecewise-polynomial interface method 
(Chen, Strang, 2008)
• Ghost fluid method (Coco, Russo, 2018)
• Virtual node method (Bedrossian, et. 2010)

 Fast Fourier transform (FFT) O(N logN)
• Augmented IIM (Li 1998)
• Explicit Jump IIM (Wiegmann, Bube, 2004)
• Augmented MIB (Feng, Long, Zhao, 2019)

 All existing methods are second order accurate



 Fourth order augmented MIB (AMIB4)

• BVP without interface (Feng, 
Zhao,  JCP, 109391, 2020). 

• BVP with interface (Feng, 
Zhao,  JCP, 109677, 2020). 

 Introduce auxiliary variables to preserve discrete 
Laplacian of central differences

 FFT will not sense discontinuities

Goal: Fourth order + Fast Poisson solver



2. Poisson boundary value problems

1. Dirichlet: 𝑢𝑢 = 𝜙𝜙𝑗𝑗

2. Neumann: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜙𝜙𝑗𝑗

3. Robin: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘𝑢𝑢 = 𝜙𝜙𝑗𝑗

subject to any 
boundary condition 
on Γ𝑗𝑗

Δ𝑢𝑢 = 𝑓𝑓 �⃗�𝑥 , (3)



Fast Poisson Solvers

 The most widely used FFT-Poisson solver

 Second order central difference: { 1
ℎ2

,− 2
ℎ2

, 1
ℎ2

}

 Complexity in 3D: O(𝑛𝑛3log𝑛𝑛)

 FISHPACK (Swarztrauber, Sweet)

1. Fast Sine transform (FST): 𝑓𝑓 → 𝑓𝑓

2. �𝑢𝑢 = �̂�𝑓
𝜆𝜆

, 𝜆𝜆𝑗𝑗 = 4 𝑠𝑠𝑠𝑠𝑛𝑛2 𝑗𝑗𝑗𝑗
𝜕𝜕

/(ℎ2)

3. Inverse FST:   �𝑢𝑢 → 𝑢𝑢

𝑢𝑢𝑥𝑥𝑥𝑥 = 𝑓𝑓, 𝑢𝑢 0 = 𝑢𝑢 1 = 0 (4)



FFT + fourth order central difference 
scheme Uniform grid: 𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝜕𝜕
 Five points stencil:  1
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12
, 4
3

,−5
2

, 4
3

,− 1
12

}

𝑢𝑢𝑥𝑥𝑥𝑥 = 𝑓𝑓, 𝑢𝑢 0 = 𝑢𝑢 1 = 0 (4)

 Example 1
𝑢𝑢 = sin 4𝜋𝜋𝑥𝑥 ,
𝑓𝑓 = 16𝜋𝜋2sin(4𝜋𝜋𝑥𝑥)

 Example 2
𝑢𝑢 = −cos 4𝜋𝜋𝑥𝑥 + 1 ,
𝑓𝑓 = 16𝜋𝜋2cos(4𝜋𝜋𝑥𝑥)

1. Fast Sine transform (FST): 𝑓𝑓 → 𝑓𝑓

2. �𝑢𝑢 = �̂�𝑓
𝜆𝜆

, 𝜆𝜆𝑗𝑗 = −(cos 𝑗𝑗𝑗𝑗
𝜕𝜕

− 1)(cos 𝑗𝑗𝑗𝑗
𝜕𝜕

− 7)/(3ℎ2)

3. Inverse FST:   �𝑢𝑢 → 𝑢𝑢



FFT vs LU decomposition

Example 1

Example 2

 FFT degrades to second order in Example 2 



Anti-symmetric property
𝑢𝑢 𝑥𝑥−1 = −𝑢𝑢 𝑥𝑥1 , 𝑢𝑢 𝑥𝑥𝑛𝑛+1 = −𝑢𝑢 𝑥𝑥𝑛𝑛−1 (5)

 Example 1
𝑢𝑢 = sin 4𝜋𝜋𝑥𝑥 ,
𝑓𝑓 = 16𝜋𝜋2sin(4𝜋𝜋𝑥𝑥)

 Example 2
𝑢𝑢 = −cos 4𝜋𝜋𝑥𝑥 + 1 ,
𝑓𝑓 = 16𝜋𝜋2cos(4𝜋𝜋𝑥𝑥)

 FFT degrades to second order, because (5) is not 
satisfied in Example 2 

 However, anti-symmetric property is invalid in 
general

𝑢𝑢𝑥𝑥𝑥𝑥 = 𝑓𝑓, 𝑢𝑢 0 = 𝑢𝑢 1 = 0 (4)



Zero solution

Anti-
symmetric 
property is 
satisfied

Zero padding zone

 Original boundary  immersed interface
 Boundary condition  interface condition



Matched interface and boundary (MIB) method
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝑘𝑘𝑢𝑢 = 𝜙𝜙3 (7) boundary condition:
 Second order MIB: 

Discretize (7) by using 
finite difference over 
𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

 Solve  fictitious value �𝑢𝑢2
as a linear combination 
of 𝑢𝑢3,𝑢𝑢4 and 𝜙𝜙3

 High order: repeatedly 
enforce (7) to generate 
more fictitious values

Fictitious point



MIB fictitious value representation

 Two layers outside 
boundary for fourth 
order MIB

 A linear combination of 
some neighboring nodes 
and boundary values

�𝑢𝑢𝑖𝑖,𝑗𝑗 = �
(𝑥𝑥𝐼𝐼,𝑦𝑦𝐽𝐽)∈𝑆𝑆𝑖𝑖,𝑗𝑗

𝑊𝑊𝐼𝐼,𝐽𝐽𝑢𝑢𝐼𝐼,𝐽𝐽 + 𝑊𝑊0𝜙𝜙 , (8)



Taylor expansion with jumps 𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗+1

𝛼𝛼

where [u(m)] are Cartesian derivative jumps

 Introduce Cartesian derivative jumps 
as auxiliary variables

𝑄𝑄 ≔ { 𝑢𝑢 𝑖𝑖 ,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 𝑖𝑖

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 𝑖𝑖

, … 𝑢𝑢 𝑗𝑗 ,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 𝑗𝑗

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 𝑗𝑗

, … }𝑇𝑇



A𝑈𝑈 + 𝐵𝐵𝑄𝑄 = 𝐹𝐹 (9)

• Poisson equation (3) is discretized as

where AU is the discrete Laplacian generated by 
the 9-points fourth order central difference

An augmented linear system

• Reconstruct Cartesian derivative 
jumps by using fictitious values

• By eliminating fictitious values, Q 
linearly depends on U

𝐶𝐶𝑈𝑈 + 𝑄𝑄 = Φ (10)



A Schur complement procedure

𝐶𝐶𝐶𝐶 + 𝐼𝐼𝐼𝐼 = Φ
A𝐶𝐶 + 𝐵𝐵𝐼𝐼 = 𝐹𝐹 (11)

 Solve a one-dimensionally smaller linear system 
iteratively

I − C𝐴𝐴−1𝐵𝐵 𝐼𝐼 = Φ− 𝐶𝐶𝐴𝐴−1𝐹𝐹

 Then, solve U by one more FFT inversion
A𝐶𝐶 = 𝐹𝐹 − 𝐵𝐵𝐼𝐼

 FFT inversion complexity in 2D O(𝑛𝑛2log𝑛𝑛)

U: unknown solution; Q: auxiliary variable 



Fourth order MIB and AMIB
 2D problem with Dirichlet boundaries
 AMIB=MIB+FFT, which is much faster than MIB



Higher order AMIB
 Dirichlet, Robin, Robin, and Neumann



Efficiency in 2D
 FISHPACK (Swarztrauber, Sweet)
 AMIB: Performance is not optimized

 On the same 
mesh, AMIB2 and 
AMIB4 are more 
expensive than 
FISHPACK

 All: O(𝑛𝑛2 log𝑛𝑛)



Comparison with FISHPACK: cost-efficiency

 For a high precision, AMIB4 is more efficient that 
FISHPACK

 Max error = 10−10, FISHPACK is 10,000 times slower

 Plot error against CPU time



AMIB in 3D
 Dirichlet boundaries
 Tensor product type algorithm
 Can be easily generalized to multi-dimensions



3. Elliptic interface problems in 2D
 Extend domain for FFT inversion
 MIB4 to handle interfaces and boundaries



AMIB4 VS MIB4

Solution Error

 Fourth order
 AMIB is faster



Gradient recovery
 4th order in solution 

and gradient
Solution Error



CPU time and efficiency for interface problem
 MIB
 FFT-AMIB

O(𝑛𝑛3)
O(𝑛𝑛2) or O(𝑛𝑛2 log𝑛𝑛)



4. Summary
 Develop Augmented Matched Interface and Boundary 

(AMIB) method for solving elliptic PDEs

 High order of accuracy

• 4th – 8th order accuracy for any boundary conditions

• 4th order accuracy for curve interfaces
 High efficiency of the FFT 

• 𝑂𝑂(𝑛𝑛2 log𝑛𝑛) in 2D

• 𝑂𝑂(𝑛𝑛3 log𝑛𝑛) in 3D
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