A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration

Shan Zhao

Department of Mathematics, University of Alabama, USA

Conference on Fast Direct Solvers October 24, 2021

Collaborators

- Dr. Emil Alexov (Clemson Univ. USA)
- Dr. Weihua Geng (Southern Methodist Univ. USA)
- Dr. Chuan Li, (West Chester Univ. of Pennsylvania, USA)
- Dr. Lunji Song, (Lanzhou Univ., China)
- Dr. Guangqing Long, (Nanning Normal Univ., China)

PhD students (Univ. of Alabama)

Dr. Hongsong Feng (Postdoc, Michigan State Univ.) Yimin Ren, Mark McGowan, Sylvia Amihere.

Funding support

NSF DMS-1812930 NSF DMS-2110914

Outline

- 1. Elliptic interface problem
- 2. Poisson boundary value problem (BVP)
 - 4th 8th order for 2D & 3D cubic domains
 - FFT for any boundary condition
- 3. Poisson interface problem
 - Fourth order accuracy for curved interfaces
 - FFT for both interface and boundary
- 4. Summary

1. Elliptic interface problem

Poisson's equation over a rectangular domain

$$-\nabla \cdot (\beta \nabla u) = f(\vec{x}), \quad \vec{x} \in \Omega$$

$$u = g(\vec{x}), \quad \vec{x} \in \partial \Omega$$
(1)
where $\beta = \begin{cases} \beta^+, & \vec{x} \in \Omega^+ \\ \beta^-, & \vec{x} \in \Omega^- \end{cases}$

$$\Omega^+$$

General jump conditions

$$[u] \coloneqq u^{+} - u^{-} = \phi(\vec{x})$$

$$[\beta u_{n}] \coloneqq \beta^{+} \nabla u^{+} \cdot \vec{n} - \beta^{-} \nabla u^{-} \cdot \vec{n} = \psi(\vec{x})$$
(2)

Body-fitted meshes

- Finite element methods (FEMs)
 - Pioneer studies (Babuska 1970; Chen, Zou 1998)
 - Immersed FEM (IFEM) (Ewing, Li, Lin, Lin 1999)
 - Extended FEM (XFEM) (Ji, Dolbow 2004)
 - Discontinuous Galerkin (Huynh et. 2013)
 - Weak Galerkin (Mu et. 2013)
 - • •
 - Finite volume methods
 - Integral equation methods

Cartesian grid methods

- Immersed boundary method (*Peskin 1977*)
- Immersed interface method (IIM) (LeVeque, Li, 1994)
- Ghost fluid method *(Fedkiw, Osher, Liu 2000)*
- Matched interface and boundary (MIB) (*Zhou, Zhao, Wei 2006*)

Fast Poisson solvers for interface problems Geometric multigrid solver O(N)

- IIM (Adams, Li, 2004)
- Piecewise-polynomial interface method (*Chen, Strang, 2008*)
- Ghost fluid method (Coco, Russo, 2018)
- Virtual node method (Bedrossian, et. 2010)
- ➤ Fast Fourier transform (FFT) O(N logN)
 - Augmented IIM (Li 1998)
 - Explicit Jump IIM (Wiegmann, Bube, 2004)
 - Augmented MIB (Feng, Long, Zhao, 2019)
 - All existing methods are second order accurate

Goal: Fourth order + Fast Poisson solver

➢ Fourth order augmented MIB (AMIB4)

- BVP without interface (*Feng, Zhao, JCP, 109391, 2020*).
- BVP with interface (*Feng, Zhao, JCP, 109677, 2020*).

 $\Omega = \Omega^+ | J \Omega^-$

 Ω^{-} \mathcal{R}^{-}

 $\Omega^{\scriptscriptstyle +} \ eta^{\scriptscriptstyle +}$

- Introduce auxiliary variables to preserve discrete
 Laplacian of central differences
- FFT will not sense discontinuities

2. Poisson boundary value problems

$$\Delta u = f(\vec{x}), \qquad (3)$$

1. Dirichlet:
$$u = \phi_j$$

subject to any boundary condition on Γ_j

2. Neumann:
$$\frac{\partial u}{\partial n} = \phi_j$$

3. Robin:
$$\frac{\partial u}{\partial n} + ku = \phi_j$$

Fast Poisson Solvers

- FISHPACK (Swarztrauber, Sweet)
- The most widely used FFT-Poisson solver
- Second order central difference: {1/h², -2/h², 1/h²}
 Complexity in 3D: O(n³log n)

$$u_{xx} = f, \qquad u(0) = u(1) = 0$$
 (4)

1. Fast Sine transform (FST): $f \rightarrow \hat{f}$

2.
$$\hat{u} = \frac{\hat{f}}{\lambda}$$
, $\lambda_j = 4 \sin^2\left(\frac{j\pi}{n}\right)/(h^2)$

3. Inverse FST: $\hat{u} \rightarrow u$

FFT + fourth order central difference scheifgem grid: $\{x_0, x_1, ..., x_n\}$

• Five points stencil: $\frac{1}{h^2} \{-\frac{1}{12}, \frac{4}{3}, -\frac{5}{2}, \frac{4}{3}, -\frac{1}{12}\}$

$$u_{xx} = f,$$
 $u(0) = u(1) = 0$ (4)

1. Fast Sine transform (FST): $f \rightarrow \hat{f}$

2.
$$\hat{u} = \frac{\hat{f}}{\lambda}$$
, $\lambda_j = -(\cos\left(\frac{j\pi}{n}\right) - 1)(\cos\left(\frac{j\pi}{n}\right) - 7)/(3h^2)$

- 3. Inverse FST: $\hat{u} \rightarrow u$
 - Example 1 $u = \sin(4\pi x)$, $f = 16\pi^2 \sin(4\pi x)$

• Example 2 $u = -\cos(4\pi x) + 1,$ $f = 16\pi^2 \cos(4\pi x)$

FFT vs LU decomposition

Exampl

·	N	FF	Γ	LU			
		Error	Order	Error	Order		
	32	2.607 E-4	—	2.607 E-4	_		
e 1	64	1.646E-5	3.99	1.646E-5	3.99		
	128	1.031E-6	4.00	1.031E-6	4.00		
	256	6.450 E-8	4.00	6.450 E-8	4.00		
	512	4.032E-9	4.00	4.032E-9	4.00		

	N	FF	Г	m LU		
		Error	Order	Error	Order	
	32	1.321E-2	—	5.229 E-4	_	
Example 2	64	3.235E-3	2.03	3.294E-5	3.99	
	128	8.046E-4	2.00	2.063E-6	4.00	
	256	2.009E-4	2.00	1.290E-7	4.00	
	512	$5.020 \text{E}{-5}$	2.00	8.061 E-9	4.00	

• FFT degrades to second order in Example 2

Anti-symmetric property

- $u(x_{-1}) = -u(x_1), \qquad u(x_{n+1}) = -u(x_{n-1})$ (5)
- Example 1 Example 2
 - $u = \sin(4\pi x),$ $u = -\cos(4\pi x) + 1,$ $f = 16\pi^2 \sin(4\pi x)$ $f = 16\pi^2 \cos(4\pi x)$
- FFT degrades to second order, because (5) is not satisfied in Example 2
- However, anti-symmetric property is invalid in general

$$u_{xx} = f, \qquad u(0) = u(1) = 0$$
 (4)

➢ Original boundary → immersed interface
➢ Boundary condition → interface condition

Matched interface and boundary (MIB) metho

- boundary condition:
- Second order MIB: Discretize (7) by using finite difference over {x₂, x₃, x₄}
- Solve fictitious value \hat{u}_2 as a linear combination of $\{u_3, u_4\}$ and ϕ_3
- High order: repeatedly enforce (7) to generate more fictitious values

$$\frac{\partial u}{\partial x} + ku = \phi_3 \qquad (7)$$

MIB fictitious value representation

- Two layers outside boundary for fourth order MIB
- A linear combination of some neighboring nodes and boundary values

$$\hat{u}_{i,j} = \sum_{(x_I, y_J) \in S_{i,j}} W_{I,J} u_{I,J} + W_0 \phi , \qquad (8)$$

Taylor expansion with jumps

Theorem 1. Corrected fourth differences. Let $x_j \leq \alpha < x_{j+1}, h^- = x_j - \alpha$, and $h^+ = x_{j+1} - \alpha$. Suppose $u \in C^6[x_j - 2h, \alpha) \bigcap C^6(\alpha, x_{j+1} + 2h]$, with derivative extending continuously up to the interface α . Then the following approximations hold to $O(h^4)$:

$$u_{xx}(x_{j-1}) \approx \frac{1}{h^2} \left[-\frac{1}{12} u(x_{j-3}) + \frac{4}{3} u(x_{j-2}) - \frac{5}{2} u(x_{j-1}) + \frac{4}{3} u(x_j) - \frac{1}{12} u(x_{j+1}) \right] + \frac{1}{12h^2} \sum_{m=0}^{5} \frac{(h^+)^m}{m!} [u^{(m)}], \qquad (22)$$

where [u^(m)] are Cartesian derivative jumps

$$\left[\frac{\partial^m u}{\partial x^m}\right]|_{x=\alpha} = \lim_{x \to \alpha^+} \frac{\partial^m u}{\partial x^m} - \lim_{x \to \alpha^-} \frac{\partial^m u}{\partial x^m}$$

$$Q \coloneqq \{[u]_i, \left[\frac{\partial u}{\partial x}\right]_i, \left[\frac{\partial^2 u}{\partial x^2}\right]_i, \dots [u]_j, \left[\frac{\partial u}{\partial y}\right]_j, \left[\frac{\partial^2 u}{\partial y^2}\right]_j, \dots\}^T$$

α

 x_{i+1}

 x_i

An augmented linear system

• Poisson equation (3) is discretized as

$$AU + BQ = F \qquad (9)$$

where AU is the discrete Laplacian generated by the 9-points fourth order central difference

- Reconstruct Cartesian derivative jumps by using fictitious values
- By eliminating fictitious values, Q linearly depends on U

$$CU + Q = \Phi \quad (10)$$

A Schur complement procedure AU + BQ = F $CU + IQ = \Phi$ (11)

- U: unknown solution; Q: auxiliary variable
- Solve a one-dimensionally smaller linear system iteratively

$$(I - CA^{-1}B)Q = \Phi - CA^{-1}F$$

• Then, solve U by one more FFT inversion

$$AU = F - BQ$$

• FFT inversion complexity in 2D $O(n^2 \log n)$

Fourth order MIB and AMIB

- 2D problem with Dirichlet boundaries
- AMIB=MIB+FFT, which is much faster than MIB

$[N_x, N_y]$						
	L_{∞}		L_2		CPU time(s)	iter no.
	Error	Order	Error	Order		
[11, 11]	4.408E-5	_	1.549E-5	_	4.823E-3	20
[27, 27]	1.096E-6	3.87	4.712E-7	3.65	1.290E-2	20
[59, 59]	4.662E-8	3.94	2.209E-8	3.81	4.056E-2	20
[123, 123]	2.442E-9	3.97	1.212E-9	3.90	0.139	21
[251, 251]	1.400E-10	3.98	7.111E-11	3.95	0.529	21
[507, 507]	7.771E-12	4.10	4.004E-12	4.08	2.403	21
$[N_x, N_y]$		MI	B4			
_	L_{∞}		L_2		CPU time(s)	
	Error	Order	Error	Order		
[13, 13]	4.070E-5	_	1.841E-5	_	2.00E-3	
[29, 29]	1.076E-6	4.28	5.267 E-7	4.19	2.466E-2	
[61, 61]	4.644E-8	4.12	2.345E-8	4.08	0.207	
[125, 125]	2.444 E-9	4.06	1.252E-9	4.04	1.836	
[253, 253]	1.423E-10	4.00	7.329E-11	4.00	15.386	
[509, 509]	3.363E-11	2.06	1.417 E-11	2.34	148.41	

Higher order AMIB

• Dirichlet, Robin, Robin, and Neumann

$[N_x, N_y]$	AMIB6 and $k = 10$						
	L_{∞}		L_2				
	Error	Order	Error	Order			
[25, 25]	1.072 E-2	—	1.522E-3	—	32		
[57, 57]	9.828E-5	5.54	1.640E-5	5.35	37		
[123, 123]	9.412E-7	6.10	1.712E-7	5.98	40		
[249, 249]	1.106E-8	6.12	2.119E-9	6.05	50		
[505, 505]	1.489E-10	6.07	2.926E-11	6.04	69		
$[N_x, N_y]$		AMIB8 a	nd $k = 20$				
$[N_x, N_y]$	L_{∞}	AMIB8 ai	nd $k = 20$ L_2				
$[N_x, N_y]$	L_{∞} Error	AMIB8 an Order	nd $k = 20$ L_2 Error	Order			
$[N_x, N_y]$ [23, 23]	L_{∞} Error 1.033	AMIB8 an Order –	nd $k = 20$ L_2 Error 0.120	Order –	34		
$[N_x, N_y]$ [23, 23] [55, 55]	L_{∞} Error 1.033 2.589E-3	AMIB8 an Order – 6.67	nd $k = 20$ L_2 Error 0.120 3.681E-4	Order 6.44	$\begin{array}{c} 34 \\ 42 \end{array}$		
$[N_x, N_y]$ [23, 23] [55, 55] [121, 121]	L_{∞} Error 1.033 2.589E-3 3.111E-6	AMIB8 an Order - 6.67 8.60	nd $k = 20$ L_2 Error 0.120 3.681E-4 2.575E-7	Order - 6.44 9.29	$34 \\ 42 \\ 48$		
$[N_x, N_y]$ $[23, 23]$ $[55, 55]$ $[121, 121]$ $[247, 247]$	$\begin{array}{c} L_{\infty} \\ \hline \\ Error \\ 1.033 \\ 2.589E-3 \\ 3.111E-6 \\ 1.724E-8 \end{array}$	AMIB8 an Order — 6.67 8.60 7.07	nd $k = 20$ L_2 Error 0.120 3.681E-4 2.575E-7 1.808E-9	Order - 6.44 9.29 6.74	$34 \\ 42 \\ 48 \\ 56$		

Efficiency in 2D

- FISHPACK (Swarztrauber, Sweet)
- AMIB: Performance is not optimized
- FLOPS ORDER On the same FISHPACK order=1.92 AMIB2 order=2.10 AMIB4 order=2.02 mesh, AMIB2 and 10^{1} AMIB4 are more CPU time(s) 10⁻¹ expensive than **FISHPACK** 10⁻¹ • All: $O(n^2 \log n)$ 10⁻²

65

129

257 Degree of freedom(n) 513

Comparison with FISHPACK: cost-efficiency

Plot error against CPU time

 For a high precision, AMIB4 is more efficient that FISHPACK

• Max error = 10^{-10} , FISHPACK is 10,000 times slower

AMIB in 3D

- Dirichlet boundaries
- Tensor product type algorithm
- Can be easily generalized to multi-dimensions

$[N_x, N_y, N_z]$	AMIB4						
	L_{∞}		L_2		iter no.	CPU times(s)	
	Error	Order	Error	Order			
[11, 11, 11]	0.870	_	0.127	_	37	4.722E-2	
[27, 27, 27]	3.337E-2	3.81	3.347E-3	3.80	49	0.392	
[59, 59, 59]	1.426E-3	4.13	1.216E-4	4.13	52	3.191	
[123, 123, 123]	7.436E-5	4.10	5.760E-6	4.10	55	28.792	
$\left[251, 251, 251 ight]$	4.270E-6	4.06	3.132E-7	4.06	55	296.97	

3. Elliptic interface problems in 2D

- Extend domain for FFT inversion
- MIB4 to handle interfaces and boundaries

AMIB4 VS MIB4

- Fourth order
- AMIB is faster

Table 5: Example 3b $-\beta^+ = 1, \beta^- = 10$; Ellipse interface; Robin boundary condition.

[n,n]	AMIB4						
	L_{∞}		L_2		iter no.	CPU time (s)	
	Error	Order	Error	Order			
[60, 60]	1.647 E-3	—	1.019E-3	—	39	3.967 E-2	
[124, 124]	1.132 E-4	3.69	6.923E-5	3.70	62	0.171	
[252, 252]	5.973E-6	4.15	3.559E-6	4.19	98	0.915	
[508, 508]	4.264 E-7	3.77	2.612E-7	3.73	141	5.387	
[n,n]			MIB4				
	L_{∞}		L_2		iter no.	CPU time (s)	
	Error	Order	Error	Order			
[60, 60]	1.190 E-3	—	7.315 E-4	_	509	0.115	
[124, 124]	1.232 E-4	3.12	7.559 E-5	3.13	1286	0.803	
[252, 252]	5.093 E-6	4.49	3.000E-6	4.55	3366	8.47	
[508, 508]	4.096E-7	3.60	2.506E-7	3.54	7569	79.53	

Gradient recovery

 4th order in solution and gradient

Table 7: Example 5 $-\beta^+ = 1, \beta^- = 20$; Five-leaf shaped interface.

[n,n]	AMIB4					
	L_{∞}		L_2	L_2		CPU time (s)
	Error	Order	Error	Order		
[60, 60]	1.078E-3	_	5.211E-4	—	43	4.442E-2
[124, 124]	5.885E-5	4.14	2.721E-5	4.13	70	0.223
[252, 252]	2.973E-6	4.06	1.229E-6	4.04	84	0.841
[508, 508]	9.272 E-8	4.08	3.497 E-8	4.08	100	3.744
[1020, 1020]	9.460 E-9	2.76	2.263 E-9	2.83	116	19.47
		Grae	dient			
	L_{∞})	L_2			
	Error	Order	Error	Order		
[60, 60]	4.824E-3	_	1.328E-3	_		
[124, 124]	2.300 E-4	4.19	6.851E-5	4.08		
[252, 252]	3.221E-5	2.77	3.933E-6	4.03		
[508, 508]	8.286E-7	5.22	1.214E-7	4.96		
[1020, 1020]	$3.586\mathrm{E}$ -7	1.20	9.969E-9	3.59		

CPU time and efficiency for interface problem

• MIB $0(n^3)$ • FFT-AMIB $0(n^2)$ or $0(n^2 \log n)$

FLOPS ORDER FLOPS ORDER 120 AMIB order=2.13 AMIB order=2.13 0 -O-MIB order=3.08 MIB order=3.35 30 10 10 5 CPU time(s) CPU time(s) 0.1 0.1 0.01 124 252 508 124 252 508 1020 1020 n

4. Summary

- Develop Augmented Matched Interface and Boundary
- (AMIB) method for solving elliptic PDEs
- High order of accuracy
 - $4^{th} 8^{th}$ order accuracy for any boundary conditions
 - 4th order accuracy for curve interfaces
- High efficiency of the FFT
 - $O(n^2 \log n)$ in 2D
 - $O(n^3 \log n)$ in 3D