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ABSTRACT
We consider the modeling of (polarized) seismic wave propagation on a rectangular
domain via the discretization and solution of the inhomogeneous Helmholtz equation
in 3D, by exploiting a parallel multifrontal sparse direct solver equipped with Hier-
archically Semi-Separable (HSS) structure to reduce the computational complexity
and storage. In particular, we are concerned with solving this equation on a large
domain, for a large number of different forcing terms in the context of seismic prob-
lems in general, and modeling in particular. We resort to a parsimonious mixed grid
finite differences scheme for discretizing the Helmholtz operator and Perfect Matched
Layer boundaries, resulting in a non-Hermitian matrix. We make use of a nested dis-
section based domain decomposition, and introduce an approximate direct solver by
developing a parallel HSS matrix compression, factorization, and solution approach.
We cast our massive parallelization in the framework of the multifrontal method.
The assembly tree is partitioned into local trees and a global tree. The local trees
are eliminated independently in each processor, while the global tree is eliminated
through massive communication. The solver for the inhomogeneous equation is a
parallel hybrid between multifrontal and HSS structure. The computational com-
plexity associated with the factorization is almost linear in the size, n say, of the
matrix, viz. between O(n log n) and O(n4/3 log n), while the storage is almost linear as
well, between O(n) and O(n log n). We exploit the use of a regular (Cartesian) mesh
common in many seismic applications.

Key words: Helmholtz, HSS structure, massively parallel, modeling, multifrontal,
rectangular domain.

INTRODUCTION

We consider the discretization and approximate solution of
the inhomogeneous Helmholtz equation in 3D. In particular,
we are concerned with solving this equation on a large do-
main, for a large number of different forcing terms in the con-
text of modeling seismic wave propagation with applications
in so-called (local optimization based) full waveform inver-
sion (FWI) in mind. The direct method of choice for solving
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this problem is the multifrontal factorization algorithm. The
central idea of the multifrontal algorithm is to reorganize the
sparse factorization into a series of dense local factorizations.
The algorithm is used together with the method of nested
dissection to obtain a nested hierarchical structure and gen-
erate the LU factorization from the bottom up to minimize
fill-ins.

In this paper, we follow the approach developed by Xia;
Xia et al. (2010) of integrating the multifrontal method with
structured matrices. The main implication is that the fill-in
blocks of the factorization are highly compressible using the
framework of hierarchically semiseparable (HSS) matrices.
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We resort to a parsimonious mixed grid finite differences
scheme for discretizing the Helmholtz operator, which yields
a compact stencil, and Perfect Matched Layer (PML) bound-
aries. We note that the resulting matrix is non-Hermitian,
indefinite, and relatively poorly conditioned. In a previous
paper we introduced and numerically analyzed this approach
in 2D in the context of RTM-based inverse scattering (Wang,
de Hoop & Xia 2010). We include attenuation and ‘acoustic’
(VTI and HTI) anisotropy.

We present a (discrete) problem-specific massively paral-
lel structured multifrontal solver in the setting of 3D reg-
ular Cartesian grids. In view of the chosen finite-difference
stencil, nested dissection ordering of the grid can be con-
ducted fast in O(log n) operations, where n is the number
of grid points or variables. The separators are fixed layers of
planes or lines. However, we can also extend the algorithm
to separators of variable thickness. This extension enables
higher accuracy and accommodates TTI (Tilted Transverse
Isotropy) at the cost of increased (roughly a factor of 4 in
2D, 8 in 3D) communication. In the multifrontal factoriza-
tion, dense intermediate matrices (called frontal and update
matrices) are approximated by HSS matrices and are fac-
torized with an ULV scheme. Related HSS algorithms are
used (Chandrasekaran, Gu and Pals 2006; Xia et al. 2010;
Chandrasekaran et al. 2006; Xia et al. 2009, 2010; Wang
et al. 2010).

We obtain estimates for the associated computational com-
plexity to be in the range from O(n log n) to O(n4/3 log n)
flops, in a fully structured implementation. The solution
cost is between O(n) and O(n log n). In our current ver-
sion, we implemented limited levels of compression in the
HSS approximations of the dense intermediate matrices. The
algorithm is highly parallelizable. We present a massively
parallel implementation of the multifrontal algorithm to-
gether with HSS structures. The method has nice scalabil-
ity and data locality, as illustrated by the numerical ex-
periments. We compare the performance with the one of
MUMPS on a common computational platform. We tested
the performance of our algorithm for mid-range frequencies
on models approaching the size of SEAM on the TeraGrid
clusters.

In view of the sheer size of the matrix in the equation gener-
ated by discretizing the Helmholtz operator in 3D, most devel-
opments to date have been restricted to iterative solvers (Er-
langga, Oosterlee and Vuik 2006; Riyanti et al. 2006; Plessix
2007; Riyanti et al. 2007). In general, iterative solvers lack the
efficiency to deal with many forcing terms, and suffer from de-

creasing convergence rates with increasing frequency, though
sophisticated preconditioners have been developed to address
this issue in principle. Direct factorization methods have the
natural advantage that the matrix factorization needs be car-
ried out only once (per frequency), the factors being used
in solving fastly the equation for multiple right-hand-sides
(Operto et al. 2007, 2009).

In many problems following the discretization of linear par-
tial differential equations from (geo)physics, the dense inter-
mediate matrices in the direct solution also have the low-
rank property. See e.g., Bebendorf and Hackbusch (2003)
and Bebendorf (2005). Also, the solver is not restricted to
a particular numerical method such as finite differences. We
summarize how the approach developed in this paper directly
applies to certain finite-element (Galerkin) discretizations of
the Helmholtz equation. These form a natural setting for in-
cluding discontinuities, for example.

The multi-frequency formulation of the seismic inverse
problem aids in developing multi-scale regularization meth-
ods to mitigate its nonlinear nature. The Helmholtz-equation
approach to FWI is computationally efficient for the low- to
mid-frequency range, and can be viewed as complimentary
to wave-packets based approaches which are efficient for the
finer scales.

HELMHOLTZ OPERATOR
DISCRETIZATION IN 3D

We consider the Helmholtz equation in three dimensions,
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u(x, ω) = f (x, ω), x ∈ R

3,

(1)

in which ρ is the density of mass, c is the compressional
wavespeed, ω is the temporal frequency, f is the seismic forcing
term, and u is the wavefield. We denote the Laplace operator
part of the Helmholtz operator by � = �(x, ∂x); c−2(x)ω2 can
be viewed as a potential. To model a seismic survey, (1) needs
to be solved for many right-hand sides, which motivates the
approach developed in this paper.
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Simple acoustic anisotropy

We generalize the standard Helmholtz equation to an
anisotropic form (Operto et al. 2009)
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Here, Cxx, . . . , Czxy are coefficients which can be dependent
on x. The principal symbol of this Helmholtz operator can
reproduce dispersion relaton for qP polarized elastic waves.
For example, in the case of a medium with vertically transverse
isotropy (VTI),

Czz = 1, Cxx = Cyy = 1 + 2ε,

Cxy = Cyx = Cyz = Czy = Czx = Cxz = 0,

Cxyz = Czxy = ε − δ,

while c is replaced by the qP wave velocity along the symmetry
axis. In the case of a medium with horizontally transverse
isotropy (HTI), we permute the z and x components or the
z and y components. Here, ε = ε(x) and δ = δ(x) stand for
Thomsen’s parameters.

We introduce a perfectly matched layer (PML) (Turkel and
Yefet 1998) contained in the computational domain, [0, Lx] ×
[0, Ly] × [0, Lz] say: Let 0 < Lx1 < Lx, then the damping
function Sx is defined as

Sx = Sx(x, ω)

=
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similar definitions hold for Sy = Sy(y, ω) and Sz = Sz(z,
ω). Here, σ 0 is an appropriately chosen constant. The PML,
or complex scaling, is incorporated by adjusting the partial
derivatives: ∂

∂x is replaced by 1
Sx

∂

∂x and similarly for the partial
derivatives with respect to y and z. For example, the term
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We note that � becomes frequency dependent, that is, now
� = �(x, ∂x, ω).

Attenuation

Upon incorporating a PML, the Helmholtz operator is no
longer self adjoint. It is, hence, natural to also consider atten-
uation, resulting in a complex-valued wavespeed. A common
model used in seismic processing is given by
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a non-causal approximation (with frequency-independent Qr)
to the models by Kolsky and Futterman; ωr is a reference
frequency. Here,

Q ≈ Qr + 1
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is frequency dependent. Essentially, such a model is obtained
from the (causal) models by Futterman (1962) as |ω/ωr| be-
comes large, upon identifying
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For comparison, a causal frequency-independent Q model was
given by Kjartansson (1979),

1
ĉ(x, ω)

= a(x) |ω|−β

[
cot

(
πβ

2

)
+ isgn(ω)

]
, β ∈ (0, 1),

with Q ≈ cot (π β). Naturally β can be x dependent. For an
overview of models, see Ursin and Toverud (2002).

Parsimonious mixed grid finite difference scheme

We follow the work of Operto et al. (2007) discussing a 27-
point compact parsimonious mixed grid finite difference sten-
cil. The corresponding scheme has been proven to be of at
least 4th order (Hustedt, Operto and Virieux 2004); in prac-
tice, this implies that a sampling rate of 5 grid points per
wavelength yields sufficiently accurate results. The mixed grid
stencil incorporates coordinate rotations, and hence numerical
anisotropy is, to the given order, minimized. The conversion
from subscripts to linear index is chosen to be,

u(k−1)Nx Ny+( j−1)Nx+i (ω) = u(xi , yj , zk, ω),

xi = (i − 1) hx, yj = ( j − 1) hy, zk = (k − 1) hz,

i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz,

with (Nx − 1) hx = Lx, (Ny − 1) hy = Ly, (Nz − 1) hz = Lz, Nx,
Ny, Nz ≈ N, which applies to f in a similar fashion, and cast
the discretized Helmholtz equation in corresponding matrix

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 857–873



860 S. Wang, M.V. de Hoop and J. Xia

form:

A(ω) u(ω) = f(ω). (5)

Naturally, the matrix A(ω) is of size ∼ N3 × N3, n = N3,
and shares the same nonzero pattern for different values of ω.
The matrix is non-definite, non-Hermitian, and poorly condi-
tioned. Our approach addresses the complications associated
with these properties.

MULTIFRONTAL MET H OD WI T H N E STED
DISSECTION

For each ω, system (5) needs to be solved for many righ-
hand sides, while for different ω the matrix A(ω) has the same
nonzero pattern, say, block tri-diagonal. Hence, a direct solver
is the natural method of choice. However, direct solvers are
generally expensive due to catastrophic fill-in. For example, a
straightforward factorization of A(ω) in 3D costs O(n7/3) flops
with O(n5/3) storage, where n is the size of A(ω). In addition,
one can not control the solution accuracy of an exact direct
solver, even though we only need a mild solution accuracy
about three or four digits for the Helmholtz problem.

Here, we discuss an approximate direct Helmholtz solver
based on certain sparse matrix techniques and structured ma-
trix methods, which enable us to approximately adapt the
solution accuracy to a predefined tolerance via exploiting the
low rankness, that is to say, we can control the solution ac-
curacy. More details are given in Section 4.3. We first reorder
the matrix with nested dissection, then we factorize the matrix
with the multifrontal method where the intermediate dense
matrices are approximated by structured matrices. This sec-
tion is devoted to these sparse matrix techniques; in the next
section we discuss the employment of structured matrices.

Matrix reordering with 3D nested dissection

To reduce fill-in, the matrix is to be reordered. Each unknown
variable corresponds to a mesh point, so do each row and each
column of A(ω). The reordering of A(ω) can be done in terms
of the ordering of the mesh points. One of the most important
reordering methods is nested dissection (George 1973; Liu
1992). With such reordering, the matrix A(ω) in 3D can be
factorized in O(n2) flops with O(n4/3) storage.

Nested dissection recursively divides the mesh correspond-
ing to A(ω) into subdomains with separators (Teng 1997). A
separator is defined as a set of mesh points the removal of
which divides the mesh into two disjoint subregions.

At the top level or level 0, a separator divides the original
mesh into three parts: two subdomains and the separator itself.
The grid points associated with the separator are ordered after
those associated with the subdomains. The separator and the
reordered matrix are shown in Fig. 1.

Each subdomain is then recursively ordered following the
same pattern. This is illustrated in Fig. 2. Lower level separa-
tors are ordered before upper level ones. After reordering of
A(ω), the matrix pattern is illustrated in Fig. 3 (left–middle).
Moreover, we note that each separator in 3D mesh is a 2D
plane. In the process of lower level partition, this plane also
manifests a substructure of 2D nested dissection. For example,
in Fig. (2), if we focus on the z direction separator, we note
this separator has 2D substructure when y and x direction
partitions take place. Therefore, we incorporate a 2D nested
dissection reordering within each separator for 3D problems.
The other reason that we adopt such a 2D nested dissec-
tion for each separator is the numerical rank will be lowered
(Chandrasekaran, Dewilde and Somasunderam 2010), which
we will discuss in detail in Section 4. Nested dissection at these
two levels, an outer level and an inner level, forms the overall

Figure 1 A top-level separator divides the mesh into subregions and is then ordered after the subregions.
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Figure 2 Two more levels of separators and partitions in 3D nested dissection.

Figure 3 The nested dissection reordering of the global matrix A(ω), where (c) shows both the inner- and outer-layer nested dissection ordering.

ordering. The corresponding matrix pattern is shown in Fig.
3 (right). (It is shown in Hoffman, Martin and Rose (1973))
that for 2D problems, nested dissection reordering provides
the optimal complexity for LU factorizations among all the
ordering techniques.)

After nested dissection, the factorization of the reordered
matrix can be conducted following the traversal of a binary
tree. Each node of this tree represents an (outer-level) separa-

tor. See Fig. 4. (Later by a separator, we mean an outer-level
separator unless otherwise specified.)

Factorization with the multifrontal method

The factorization is arranged with the multifrontal method
(Duff and Reid 1983; Liu 1992), which reorganizes the overall
factorization into partial updates and factorizations of smaller

Figure 4 Reordered A(ω) as in Fig. 3(c) and the tree structure for the elimination.
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dense matrices according to a tree structure called elimina-

tion tree or assembly tree (Liu 1992; Gilbert 1993; Liu 1990;
Eisenstat and Liu 2005). The method has nice data locality
and is suitable for parallelization. Here, after the nested dis-
section ordering, we can treat the separator tree (Fig. 4) as the
assembly tree.

Let i index a separator, and Ni be the set of upper level
neighbor separators of i. Here, the neighbors are connect to i

due to the fact the elimation of lower level separators mutually
connects the neighbors of these lower level separators. We use
Ai,j to denote the matrix entries of A(ω) that have row and
column indices given by the grid points in separators i and j,
respectively.

Then, if i is a leaf (bottom level nodes) in the assembly tree,
we define a matrix

Fi =
⎛
⎝ Ai,i Ai,Ni

ANi ,i 0

⎞
⎠ .

The elimination of separator i corresponds to the partial fac-
torization

Fi =
⎛
⎝ Li,i 0

ANi ,iU
−1
i,i I

⎞
⎠

⎛
⎝Ui,i L−1

i,i Ai,Ni

0 Ui

⎞
⎠ , (6)

where Ui = −(ANi ,iU
−1
i,i )(L−1

i,i Ai,Ni ) is the Schur complement.
If i is a non-leaf node, we assume that its child nodes c1 and

c2 have been eliminated so that the update matrices Uc1 and
Uc2 are obtained. Then we form a matrix as

Fi =
⎛
⎝ Ai,i Ai,Ni

ANi ,i 0

⎞
⎠ ↔	 Uc1↔	 Uc2 ,

where the symbol ↔	 denotes an assembly operation called
extend-add (Liu 1992) which reorders and adds matrix entries
according to the grid points that the entries correspond to.
Partitioning Fi conformably and carrying out a partial LU

factorization, yields

Fi =
⎛
⎝Fi,1,1 Fi,1,2

Fi,2,1 Fi,2,2

⎞
⎠ =

⎛
⎝ Li,i 0

Fi,2,1U−1
i,i I

⎞
⎠

⎛
⎝Ui,i L−1

i,i Fi,1,2

0 Ui

⎞
⎠ ,

where the Schur complement or the update matrix is given by

Ui = Fi,2,2 − (
Fi,2,1U−1

i,i

) (
L−1

i,i Fi,1,2
)
.

This is the process of eliminating separator i. The process
then repeats until the root separator is eliminated. Here, the
matrices Fi and Ui for a (leaf or non-leaf) node i are called a
frontal matrix and an update matrix, respectively (Liu 1992).
The update matrix Ui represents the contribution from node i

to its parent.
The overall factors are given by the matrices Li,i ,Ui,i ,

ANi ,iU
−1
i,i , L−1

i,i Ai,Ni as in equation (6) for all separators i; see
Fig. 5. Unlike the classical LU factorization, such a factoriza-
tion method is a left-looking method (Bai et al. 2000), where
there is no global Schur complement computation.

The solution with substitution consists of two stages, a for-
ward stage and a backward one:

Ly = b, Ux = y.

The forward and backward substitutions correspond to the
bottom-up and top-down traversals of the assembly tree, re-
spectively. For example, in the forward stage, associated with

Figure 5 A frontal matrix in the elimination, and the corresponding block column in the triangular factor.
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each node of the assembly tree, we solve a system of the form⎛
⎝ Li,i 0

LNi ,i I

⎞
⎠

⎛
⎝ yi

b̃Ni

⎞
⎠ =

⎛
⎝ b̃i

bNi

⎞
⎠ .

Thus,

yi = L−1
i,i b̃i , b̃Ni = bNi − LNi ,i yi ,

where b̃i and b̃Ni represent pieces of the updated right-hand
side during the substitution, and b̃Ni is used in later solution
steps associated with the nodes in Ni .

Pivoting is also included in the frontal matrix Fi factor-
ization stages. As for the global matrix A(ω), we observed
no global pivoting is needed based on the nested dissec-
tion strategy we adopted for Helmholtz problems. However,
we admit that global pivoting can be conducted the simi-
lar way as sparse direct solver packages like MUMPS or
SuperLU.

Speedup thanks to the regularity of 3D mesh geometry

The mesh in our problem is regular, which means that the
mesh can be represented in a Cartesian fashion; the outer-
and inner-level separators are planes and lines, respectively.
In this case, nested dissection can be efficiently implemented.
Indeed, we can straightforwardedly pinpoint the locations of
separators according to the regularity of the mesh geome-
try. For instance, let us initiate the partitioning of the do-
main from z direction (see Fig. 1); the first level separator
can be fully represented by a fixed value of z, yielding that
the two disjoint subdomains can be uniquely represented by
two end vertices on their diagonals respectively. Then we
move on to the second level of nested dissection along y di-
rection (see Fig. 2). The resulting four subdomains can also
be uniquely represented by two end vertices on their diago-
nals, respectively. We follow the same principle up to a pre-
scribed level, yielding that the separators living on each level
are uniquely represented. Additionally, the subdomains liv-
ing on the bottom level (leaf nodes of the entire assembly
tree) are uniquely determined by two end vertices of their
diagonals.

We note that the number of nodes on each level of the as-
sembly tree is always a certain power of 2, due to the fact
that two subdomains are generated out of one separator ac-
cording to the regularity of the mesh. This guarantees that the
assembly tree formed out of the 3D regular mesh is always
a complete binary tree. The nested dissection process can be
summarized as the following:

subroutine nd3d(mesh(1:Nx, 1:Ny, 1:Nz))
find the axis a(=x, y, or z) according to max (Nx, Ny, Nz),

and let the other two axes be b and c

choose the plane with cordinate N1 = ⌊Na+1
2

⌋
in the a

direction to be the (outer) separator
call nd2d(mesh(1:Nb, 1:Nc))
call nd3d(mesh(1:N1 − 1, 1:Nb, 1:Nc))
call nd3d(mesh(N1 + 1:Na, 1:Nb, 1:Nc))
end subroutine

subroutine nd2d(mesh(1:Nx, 1:Ny))
find the axis a(= x or y) according to max (Nx, Ny), and

let the other axis be b

choose the line with cordinate N1 = ⌊ Na+1
2

⌋
in the a

direction to be the (inner) separator
call nd2d(mesh(1:N1 − 1, 1:Nb))
call nd2d(mesh(N1 + 1:Na, 1:Nb))
end subroutine

The total complexity for the regular mesh nested dissection
described above is at most O(log2 n), since there are O(log n)
outer levels of partition and at most O(log n) coordinates to be
visited at each level. In comparison, the nested dissection cost
for a general mesh is at least O(n) (Lipton and Tarjan 1979;
Teng 1997). We gain a significant speedup O(n)/O(log2 n) at
the stage of nested dissection by exploiting this mesh regular-
ity, which will be further demonstrated in Section 6.

After the nested dissection, we conduct the traversal of the
assembly tree to carry out the factorization with the multi-
frontal method. The conventional assembly tree is not neces-
sarily a complete binary tree, which is why the load balance
is highly impacted by the configuration of the assembly tree.
However, in our problem, we are guaranteed that the as-
sembly tree is always a complete binary tree. Thus the entire
parallel task scheduling is partitioned into local factorization
and global factorization with a two-two communication pro-
totype. The load balance is perfect. We gain another speedup
at the factorization stage by exploiting the completeness of
the assembly tree. In Section 5 we present the details.

F R O N T A L A N D U P D A T E M A T R I C E S :
APPROXIMATION BY STRUCTURED
M A T R I C E S

The efficiency of the multifrontal method can be further im-
proved by using structured matrix methods. It has been ob-
served by researchers that, during the direct factorization
of sparse discretized matrices from various partial differen-
tial equations problems, certain off-diagonal blocks of the
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intermediate dense matrices have small numerical ranks
(Bebendorf and Hackbusch 2003; Bebendorf 2005; Chan-
drasekaran et al. 2010). Such a low-rank property is also ob-
served in the direct solution of Helmholtz problems (Engquist
and Ying; Wang et al. 2010). In the multifrontal method for
Helmholtz equations in 2D, the off-diagonal numerical ranks
of the frontal and update matrices are discussed in Wang et al.

(2010).
We leave the discussion of the low-rank property for

Helmholtz problems in 3D to Subsection 4.2. We first discuss
the way to take advantage of the low-rank property. That is,
we approximate the dense intermediate frontal matrices Fi

and update matrices Ui in the multifrontal method by struc-
tured matrices. Here, we review the basic ideas following the
discussions in (Xia et al. 2009, 2010).

HSS structured approximations and HSS operations

We can approximate a dense matrix F whose off-diagonal
blocks have small numerical ranks by rank-structured ma-
trices such as H-matrices (Hackbusch 1999; Hackbusch and
Börm 2002; Hackbusch and Khoromskij 2000), H2-matrices
(Börm et al. 2003; Börm and Hackbusch; Hackbusch and
Sauter 2000), semiseparable matrices (Chandrasekaran et al.

2006, 2005) and quasiseparable matrices (Eidelman and
Gohberg 1989). Here, we use hierarchically semiseparable
(HSS) structures (Chandrasekaran et al. 2006; Xia et al. 2010;
Chandrasekaran et al. 2006; Xia et al. 2009), where the off-
diagonal blocks are hierarchically represented by compressed
forms. The block partition corresponds to a binary tree struc-
ture, as shown in Fig. 6.

The HSS structure is an effective way to study the low-rank
property. Many efficient and stable HSS algorithms have been
proposed. In this paper, we are particularly interested in two
important HSS procedures: parallel HSS structure generation
and parallel ULV-type HSS factorization (Xia et al. 2010).

The first procedure is to approximate a dense matrix F by
an HSS form, where the off-diagonal blocks of F have small
numerical ranks. This procedure uses a fundamental operation
called compression. That is, we compute a compact form B

≈ QS for an off-diagonal block B with methods such as trun-
cated SVD and rank-revealing QR factorizations (Xia et al.

2010). To construct an HSS representation, we hierarchically
compress the off-diagonal blocks. This is done in parallel by
hierarchically compressing all block rows at all levels, and
then all block columns.

The next procedure is to compute an ULV-type factoriza-
tion of the HSS matrix (Xia et al. 2010). Using the HSS form,
we efficiently introduce zeros into the off-diagonal blocks and
partially eliminate the diagonal blocks. The remaining blocks
are then merged and eliminated recursively.

If the order of F is K, then the HSS construction and
ULV factorization cost O(r K2) and O(r K) flops, respec-
tively, where r is the maximum numerical rank of all related
off-diaogonal blocks. Moreover, according to (Xia), the nu-
merical ranks of the off-diagonal blocks at different levels
can be allowed to increase as a function r(Ki), where Ki is
the row dimension of the off-diagonal block rows. For ex-
ample, if r (Ki ) = O(log Ki ), the HSS construction and fac-
torization costs are still O(K2) and O(K), respectively. If
r (Ki ) = O(K1/2

i ), then the costs are O(K2 log K) and O(K3/2)
respectively.

Structured multifrontal solution of 3D Helmholtz problems

Here, we summarize our implementation of the structured
multifrontal method where the intermediate dense Schur com-
plements are approximated by HSS forms (Xia et al. 2009). At
certain lower levels of the assembly tree, we use standard dense
LU factorizations for the frontal matrices. After a switch-
ing level, structured factorizations are used. There are three
stages. The first stage is to approximate a frontal matrix Fi

by an HSS matrix, using the HSS construction algorithm. The

Figure 6 Pictorial representations of an HSS matrix in terms of two levels of generators.

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 857–873



A 3D structured parallel Helmholtz solver 865

second stage is to partially factorize Fi . Let

Fi =
⎛
⎝ Fi,1,1 Fi,1,2

Fi,2,1 Fi,2,1

⎞
⎠ ,

where the partition is conformable to equation (6), and Fi,1,1

corresponds to Li,i Ui,i in the exact factorization. Here, we re-
place equation (6) by an ULV factorization which fully elim-
inates Fi,1,1, but not Fi,2,1. Then Fi,1,2 and Fi,2,1 will also be
updated to data-sparse representations, which will be used to
efficiently compute the Schur complement or update matrix
Ui . In the third stage, the extend-add operation can remain
dense and is thus the same as in the exact factorization. This
can be improved by keeping Ui in a data-sparse form, since Ui

can be understood as a sparse matrix plus low-rank updates.
In general, we can partition Fi into arbitrary number of di-

agonal and off-diagonal blocks, which implies arbitrary level
of HSS structure. In this current work, we implemented an
HSS structured form where Fi has two levels of partition,
that is, Fi,1,1 has been partitioned into two diagonal blocks
together with off-diagonal blocks.

Complexity and accuracy

During the factorization of discretized partial differential
equations, such as elliptic and Helmholtz problems (Chan-
drasekaran et al. 2010; Engquist and Ying), the intermediate
dense Schur complements have small numerical ranks, and
the structured multifrontal solver can be very efficient. How-
ever, the maximum off-diagonal numerical rank may also be
as large as O(N) for 3D problems, where the mesh is as-
sumed to be N × N × N. This is true for elliptic equations
(Chandrasekaran et al. 2010). We expect a similar result to
hold also for Helmholtz equations, although a theoretical jus-
tification is not yet available. If this holds, we can still use
the multifrontal method where the dense frontal and update
matrices are approximated by HSS matirces. Then it can be
shown that the total cost of such a structured multifrontal
method is between O(n log n) and O(n4/3 log n), depending on
the implementation (Xia), where n = N3. Here, the nearly
optimal (factorization) complexity is achieved if the bottom
level standard LU factorization cost is equal to the upper
level structured factorizations. The cost of the solution with
substitution is between O(n) and O(n log n). The memory re-
quirement is about O(n log n). We notice that the solution cost
is roughly linear in n, which is especially important for our
problem where many right-hand sides present.

The performance of the structured factorization is observed
to be relatively insensitive to the frequency, as discussed in
(Wang et al. 2010). One reason is that we allow the numerical
rank to vary in a large range while achieving the similar order
of complexity. In comparison, for iterative methods, it usually
requires effective preconditioners to enable fast convergence,
which is often difficult. The convergence often depends on the
condition number, which becomes large especially for relative
high frequency Helmholtz problems (Plessix 2007).

The accuracy of the structured solver depends on the com-
pression used in HSS construction. In conventional HSS op-
erations (Chandrasekaran et al. 2006; Xia et al. 2010), the
solution accuracy (forward error) is roughly of the same or-
der as the compression accuracy in the HSS construction,
even though a theoretical justification of the dependence of
the solution accuracy on the compression accuracy for the
Helmholtz problem is not available (The errors for both accu-
racies are measured in the spectral norm). This is also observed
to hold for the sparse structured multifrontal solution, where
the solution accuracy is close to the tolerance in the HSS con-
struction for the frontal matrices. For instance, factorizing a
3D mesh with n = 5123 on 256 computing nodes with 32
GB per node, compression dictated by memory limitations
yields an accuracy of 3 to 4 digits in the matrix solutions.
Such an accuracy is in concert with requirements in seismic
applications.

ASPECTS OF THE MASS IVELY PARALLEL
IMPLEMENTATION

In this section, we discuss the parallel implementation of the
structured multifrontal method introduced in Sections 3 and
4 in the context of solving the Helmholtz equation.

During the process of 3D domain decomposition of the reg-
ular mesh, the assembly tree, which governs the entire mul-
tifrontal factorization and solution processes, is formed top-
down (Fig. 7). Each node on the assembly tree represents a
certain region of the entire 3D mesh. The key observation here
is the regularity of the 3D mesh guarantees that the assembly
tree is a complete binary tree, which implies the number of
nodes on each level of the assembly tree is a certain power of 2,
and hence guarantees the load balance of the parallelization,
provided that the number of processors Nprocs is also a cer-
tain power of 2. Therefore, we have the following definition:
the parallel level lp is defined as the level on which the number
of nodes is equal to the number of processors (Nprocs) in the
assembly tree: lp = 
log2(Nprocs)� + 1.
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Figure 7 Illustration of the 3D massively parallel multifrontal method. The red dashed line indicates the level (lp) that parallelization comes into
play. The entire assembly tree, shown in Fig. (4) (right), is partitioned into two parts. The first part is the local tree stored in each individual
processor, indicated by those separate dashed boxes below the red dashed line. These local trees are eliminated first locally, resulting in a dense
update matrix eventually. The second part is the global tree stored in all processors, indicated by a big dashed box above the red dashed line.
Two-two communication prototypes only happen at this stage. In the second part, we adopt the 2D-block-cyclic strategy in Scalapack to create
sub-process grids on each node of the global tree.

The introduction of the parallel level, lp, yields that the as-
sembly tree can be partitioned into several local trees which
are stored in each processor separately, and a global tree which
is stored on all processors jointly. Figure 7 illustrates an ex-
ample of an assembly tree, and how the entire assembly tree
is partitioned into a global tree and local trees. It illustrates
how we implement the multifrontal method in the context
of massive parallelization. Below the parallel level, each pro-
cessor eliminates a local subtree in parallel, ending up with
a local update matrix which will participate in the later on
extend-add operation. Up to this stage, no communications
occur between processors.

Above the parallel level, the frontal matrix will be stored
and factorized over multiple processors. We observe that the
communication possesses a unique feature, two-two commu-

nication prototype, which means that each node on the global
tree only communicates with its sibling node to form and fac-
torize its parent frontal matrix, thanks to the completeness
of the assembly tree, thus the global tree. This also yields
that at each node of the global tree, only those processors
associated with its descendants down to the parallel level lp
will participate in its factorization process. Additionally, the
number of processors which participate in the factorization
of each node in the global tree is also guaranteed to be a cer-
tain power of two. This two-two communication prototype
indicates that we can construct sub-communicators (or sub-

contexts in Scalapack (www.netlib.org/scalapack)) out of the
entire communicator, say, MPI_COMM_WORLD, at each node of
the global tree. For example, the frontal and update matri-

ces associated with node 15 will be stored in processor 0 and
1 associated with node 7 and 14 respectively. Communica-
tions only happen between processors 0 and 1. However, the
frontal matrix associated with node 31 will be stored in four
processors, 0, 1, 2, and 3. We note that the root node involves
all the processors in the final stage of the factorization. There-
fore, in summary, at the stage of global tree factorization, we

Figure 8 Parallel task scheduling assembly tree adopted by MUMPS.
Figure courtesy of (Agullo et al. 2008). P0, P1, P2 means the pro-
cessor 0, 1 and 2. As you can see, the assembly tree inside MUMPS
is not guaranteed to be a complete binary tree. MUMPS only takes
advantage of 2D-block-cyclic data distribution at the root node of
the assembly tree, and use master-slave prototype for the remainder
nodes.
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Table 1 The benchmark comparison tests
with MUMPS on a 100 × 100 × 100 mesh,
on the same computing platform: 64 cores
on coates.rcac.purdue.edu. Tanalysis is
the wall time for nested dissection; Tfact is
the wall time for factorization after nested
dissection; Tsol is the wall time for the so-
lution for one RHS after factorization

Tanalysis(s) Tfact(s) Tsol(s)

MUMPS 19.05 704.17 9.46
Hsolver 0.002 100.45 0.25

traverse the global tree bottom-up level-wise instead of node-
wise. No processor is idle, and hence the perfect load balance
is achieved thanks to the completeness of the assembly tree,
and thus thanks to the regularity of the mesh geometry.

We utilize the coding libraries from MKL (Math Ker-
nel Library), which contains BLAS (Basic Linear Algebra
Subprograms) (www.netlib.org/blas), PBLAS (Parallel Basic
Linear Algebra Subprograms) (www.netlib.org/scalapack),
BLACS (Basic Linear Algebra Communication Subprograms)
(www.netlib.org/blacs), Lapack (Linear Algebra Package)
(www.netlib.org/lapack), and Scalapack (Scalarized Lapack)
(www.netlib.org/scalapack).

In the local tree eliminations on each processor we can take
advantage of BLAS and Lapack, because there is no commu-
nication at this stage. After the frontal matrix in Figure 5
is formed via the extend-add operation, we use the subroutine

CGETRF to factorize the block Fi,1,1. Afterwards, the blocks
Fi,1,2 and Fi,2,1 are updated via calling the subroutine CTRTRS.
Then, we use BLAS3 subroutine CGEMM to update the Schur
complement block Fi,2,2. There is one final update matrix
stored on each processor after the local tree is completely
eliminated.

In the global tree elimination, we take advantage of BLACS,
PBLAS and Scalapack, because of the inherent massive com-
munications at this stage. To be specific, we use the BLACS

2D-block-cyclic data distribution features, which have been
proved to attain optimized load balancing and minimized
overhead. In BLACS, any matrix is assumed to be laid out
on a 2D process grid, which is associated with a context. This
context creates a sub-communicator out of MPI_COMM_WORLD.
In the multifrontal method, the parent frontal matrix is gen-
erated out of two update matrices of its two children. Thus
only two contexts associated with its two children partici-
pate in forming the parent frontal matrix. Each node on the
global tree has a context associated with it (see Fig. 7). We
use BLACS_GET and BLACS_GRIDMAP to generate such contexts
on each node. Because the parent context is the union of two
children’s contexts, the update matrices stored on each child’s
context should be re-distributed before the extend-add oper-
ation. We use a particular Scalapack subroutine, PCGEMR2D,
to carry out such a parallel extend-add operation. We use the
parallel subroutines PCGETRF, PCTRTRS and PCGEMM to par-
tially factorize the frontal matrix and generate the update
matrix on each context. We note that contexts on the same
level of the global tree are conducted in parallel.

Table 2 The comparison of CPU wall time between MUMPS and Hsolver on a 80 ×
80 × 80 mesh, for an increasing number of processors

Nprocs 1 2 4 8 16 32 64

MUMPS(s) 261.65 361.94 391.84 505.98 471.56 415.88 375.88
Hsolver(s) 960.77 491.76 275.93 156.22 93.03 53.09 45.43

Figure 9 Left: the parallel speedup curve;
right: the parallel efficiency curve. The data
is from Table 2.
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Table 3 The factorization complexity, solution complexity and stor-
age comparison between the uncompressed and the compressed ver-
sions of the Hsolver. The preset tolerance for Hsolver with compres-
sion is 10−4

N 323 643 1283 2563

flops fact (×1010) 1.43 91.13 5955.77 386370.81
flops fact compr (×1010) 1.13 53.98 2185.47 76862.98
flops sol (×108) 0.30 4.86 78.17 1292.93
flops sol compr (×108) 0.23 3.15 38.20 407.32
storage (×108) 0.23 3.79 63.05 1025.59
storage compr (×108) 0.19 2.66 32.48 378.28

In comparison, MUMPS does not take advantage of the reg-
ularity of the mesh, because its input is the matrix A(ω) instead
of mesh geometry. It does take advantage of 2D-block-cyclic
data distribution only at the root node of the assembly tree.
However, for the remainder of the nodes, it adopts the master-
slave prototype for the task scheduling. Figure 8 (Agullo et al.

2008) illustrates that a general purpose sparse direct solver
such as MUMPS might have to handle elimination trees that
are not completely binary, depending on the sparsity pattern
and reordering strategy selected for a general sparse matrix.
Even if a nested dissection reordering is applied in advance
to a sparse matrix arising from a 3D 27-point stencil, the

Figure 10 Part of the SEAM velocity model on a 256 × 256 × 256 mesh and its corresponding 7.5 Hz time-harmonic acoustic wavefields with
attenuation effects. The mesh step size is hx = hy = hz = 25 m. The physical domain is 0-6.4 km × 0-6.4 km × 0-6.4 km. The source location
is at xs = (3.15, 3.15, 3.15) km. Upper left: partial SEAM velocity model; upper right: 7.5Hz time-harmonic wavefield with quality factor Q =
∞; lower left: 7.5Hz time-harmonic wavefield with quality factor Q = 10; lower right: 7.5Hz time-harmonic wavefield with quality factor Q =
5. The computation is conducted on 16 nodes (128 cores) on coates.rcac.purdue.edu.
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elimination tree might not be as well-balanced as the one re-
sulting from a ‘hand-made’ geometrical nested dissection of a
rectangular mesh.

PERFORMANC E T EST S A N D EXA MPLES

Performance

We start with a set of benchmark tests comparing the per-
formance of our solver with the one of MUMPS. The fol-
lowing experiments are all conducted on the same platform
(coates.rcac.purdue.edu); we use only 8 nodes, each one
with a dual 2.5 GHZ quad-core AMD 2380 and 32 GB mem-
ory. To make comparisons fair, we input the same nested
dissection reordering arising from our Helmholtz solver to
MUMPS.

We compute the 3D solution for N = 100, n = 106. The
CPU wall time is listed in Table 1. Tanalysis is the wall time
for nested dissection which is also referred to as the analysis
stage; Tfact is the wall time for factorization following the
nested dissection; Tsol is the wall time for the solution for one
RHS after factorization. From the results we conclude that our
Helmholtz solver, which we will refer to as Hsolver, is at least
one order of magnitude faster than MUMPS at the analysis,
factorization and solution stages. We observe that there is a
significant difference in Tanalysis; this can be attributed to the
fact that MUMPS still conducts the analysis stage internally
although the same nested dissection reordering is input to both
MUMPS and Hsolver. The factorization and solution stages
are hence strongly impacted by the analysis stage.

Secondly, we fix a 3D N = 80 mesh, and let the number of
processors increase from 1 to 64. CPU wall times are recorded
in Table 2. We plot the speedup curve in Fig. 9 (left), and the
efficiency curve in Fig. 9 (right). We note that both the parallel
speedup and the efficiency of Hsolver is better than that of
MUMPS.

We can gain about a factor 5 speedup by blocking together
a certain number of right-hand-sides at the parallel solution
stage, using BLAS3 (rather than BLAS2).

Thirdly, we show the comparison of the factorization com-
plexity, solution complexity and storage between the com-
pressed and uncompressed versions of Hsolver in Table 3.
The preset tolerance for Hsolver with compression is 10−4.
We note that the statistics reflect the theoretical complexities.

SEAM

In this subsection, we show some numerical examples using
the 3D SEAM (SEG Advanced Modeling) velocity model.

The first example is the modeling with attenuations.
Figure 10 displays part of the SEAM P-wave velocity model
on a 256 × 256 × 256 mesh and its corresponding 7.5Hz
time-harmonic acoustic wavefield with attenuation effects.
The mesh step size is hx = hy = hz = 25m, whence the physical
domain is 0-6.4 km × 0-6.4 km × 0-6.4 km. The source loca-
tion is at xs = (3.15, 3.15, 3.15) km. The number of unknowns
is over 16 million. We use 16 nodes (8 cores per node, 4GB
per core) to carry out this computation. The CPU wall time
for the factorization is 1362 seconds, and the CPU time for
solution for one RHS is 7.6 seconds. Figure 10 (upper right)
displays the partial SEAM velocity model. Figure 10 (upper
right) displays the 7.5 Hz time-harmonic wavefield with qual-
ity factor Q = ∞. Figure 10 lower left displays the 7.5 Hz
time-harmonic wavefield with quality factor Q = 10 (com-
puted as if Q were spatially varying). Figure 10 (lower right)
displays the 7.5 Hz time-harmonic wavefield with quality fac-
tor Q = 5.

Figure 11 Part of the SEAM velocity model on a 401 × 401 × 201
mesh. Mesh step size is hx = hy = 40 m, hz = 20 m. The physical
domain is 8-24 km × 8-24 km × 1-5 km. Upper: viewing angle 1;
lower: viewing angle 2.
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Figure 12 20 Hz time-harmonic acoustic wavefields computed using
the Hsolver. The source location is at xs = (20, 12, 1.8) km. The
velocity model is from Fig. (11). The computation is conducted on 64
nodes (8 cores, 32 GB per node) on ConocoPhillips internal cluster.
Upper: viewing angle 1; lower: viewing angle 2.

In the second example, Fig. 11 displays part of the SEAM
P-wave velocity model discretized on a 401 × 401 × 201
mesh. The number of unknowns is more than 32 million.
The mesh step size is hx = hy = 40 m, hz = 20 m, whence
the physical domain is 8-24 km × 8-24 km × 1-5 km.
Figure 12 displays the 20Hz time-harmonic acoustic wave-
field computed using Hsolver. The source location is at xs =
(20, 12, 1.8) km. The velocity model is from Fig. 11. The com-
putation is conducted on 64 nodes (8 cores, 32 GB per node).
The CPU wall time for factorization is 7638 seconds, and the
CPU wall time for solution for one RHS is 16 seconds.

In the last example, Fig. 13 displays another even larger
part of the SEAM P-wave velocity model, covering a 601 ×
601 × 301 mesh; the number of unknowns is more than 108
million. The mesh step size is hx = hy = 40 m, hz = 25 m,
whence the physical domain is 4-29 km × 4-29 km × 2.5-
10 km. Figure 14 displays the 5 Hz time-harmonic acoustic

Figure 13 Part of the SEAM velocity model on a 601 × 601 × 301
mesh. Mesh step size is hx = hy = 40m, hz = 25m. The physical
domain is 4-29 km × 4-29 km × 2.5-10 km. Upper: viewing angle 1;
lower: viewing angle 2.

wavefield computed using H-solver. The source location is at
xs = (20.0, 8.0, 4.0) km. Figure 15 displays the 15Hz time-
harmonic acoustic wavefield computed using Hsolver. The
source location is also at xs = (20.0, 8.0, 4.0) km. The velocity
model is from Fig. 13. We use 512 nodes with 4 cores per node
on a TeraGrid cluster kraken.nics.tennessee.edu, to carry
out this computation. The memory of each node on Kraken is
16 GB. The CPU wall time for factorization is 8163 seconds
and the CPU time for the solution for one RHS is 39 seconds.

D I S C U S S I O N

We briefly mention that the approach and algorithm devel-
oped here in the context of finite-difference approximations
also applies to certain finite-element discretizations of the
Helmholtz equation. We choose a regular tetrahedral trian-
gulation. Following the (continuous) Galerkin method, we
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Figure 14 5Hz time-harmonic acoustic wavefields computed using
the Hsolver. The source location is at xs = (20.0, 8.0, 4.0) km.
The velocity model is from Fig. (13). The computation is con-
ducted on 512 nodes (4 cores, 16GB per node) on TeraGrid cluster
kraken.nics.tennessee.edu. Upper: viewing angle 1; lower: view-
ing angle 2.

discretize the Helmholtz equation on such a mesh with piece-
wise linear, continuous finite element (nodal) basis functions,
{ϕα(x)} say. Each ϕα(x) attains the value 1 at vertex α and
0 on the other vertices. The stiffness matrix, M (ω), is then
given by

(M(ω))αβ =
∫

[0,Lx]×[0,Ly]×[0,Lz]

[
1

ρ(x)
∂ϕα

∂x
∂ϕβ

∂x
+ 1

ρ(x)
∂ϕα

∂y
∂ϕβ

∂y

+ 1
ρ(x)

∂ϕα

∂z
∂ϕβ

∂z
− ω2

ρ(x)c2(x)
ϕαϕβ

]
dx, (7)

while the source is: (g(ω))α = ∫
[0,Lx]×[0,Ly]×[0,Lz] f (x) ϕαdx. The

pattern of the stiffness matrix M (ω) in the finite element
approach is then the same as the pattern of the matrix A(ω).

Figure 16 illustrates the strategy that we adopt to carry out
the domain decomposition of the finite element mesh based
on the principles of nested dissection. This strategy is closely

Figure 15 15Hz time-harmonic acoustic wavefields computed us-
ing the Hsolver. The source location is at xs = (20.0, 8.0, 4.0)
km. The velocity model is from Fig. (13). The computation is con-
ducted on 512 nodes (4 cores, 16GB per node) on TeraGrid cluster
kraken.nics.tennessee.edu. Upper: viewing angle 1; lower: view-
ing angle 2.

related to the one we use in Section 3. To simplify the illustra-
tion, we show the 2D case. A nodal basis function is indicated
by the black box on the upper right of Fig. 16. The form of a
nodal basis function in 3D is shown in Fig. 17. Similar to the
finite-difference scenario, the separators in the finite element
mesh are defined relative to those nodal basis functions which
divide the remaining nodal basis functions into two subgroups
which do not have any overlap region with one another. For
example, in Fig. 16 mesh, the first level separator is formed
out of those nodal basis functions whose central grid point
coincide with those grid points in the first level separator of
finite difference scenario. Figure 16 use alternating colors to
illustrate the overlapping between nodal basis functions. Dif-
ferent levels of separators are also displayed in Fig. 16 using
different color stripes.
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Figure 16 The nested dissection based domain decomposition of a 2D regular finite-element mesh. The upper right black box indicates the
support of a piece-wise linear nodal basis function, which has value 1 at the center grid point and value 0 at corner points. The counterpart of
the 3D nodal basis function is illustrated in Fig. (17). The solid lines surrounding with stripes indicate different levels of separators, on which
the nodal basis functions are displayed alternately.

Figure 17 The nodal basis function in the 3D finite element mesh. It
has the value 1 at the center grid point 000, and value 0 at vertices
illustrated in the figure.

The parallel multifrontal strategy of this paper applies to
factorizing M(ω).
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