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S U M M A R Y
We present a massively parallel structured multifrontal solver for the equations describing
time-harmonic elastic waves in 3-D anisotropic media. We use a multicomponent second-order
finite-difference method. We extend the corresponding stencil to enhance the accuracy of the
discretization without increasing the order. This accuracy is aligned with the tolerance level
used for the Hierarchically SemiSeparable (HSS) low rank matrix compression underlying our
solver. The interplay between the finite accuracy discretization and the finite accuracy matrix
solver yields the key strategy which leads to the architecture of our algorithm. We analyse the
relevant matrix structures, (numerically) estimate the rank of the dense matrices prior to the
HSS compression and study the effect of anisotropy, and deduce the complexity and storage
requirements of our algorithm.

Key words: Numerical solutions; Seismic anisotropy; Computational seismology; Wave
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1 I N T RO D U C T I O N

We consider the modelling of time-harmonic elastic waves in anisotropic media. We use a multicomponent finite-difference method. In this
paper, we are concerned with solving the resulting algebraic equations for a large number of different right-hand sides, that is, surface or
subsurface sources, on a large domain in the context of modelling seismic wave propagation with applications in reverse time migration
(RTM) based inverse scattering and local optimization based full waveform inversion (FWI) in mind. The key result is the development of a
massively parallel structured direct solver accommodating anisotropy in the low- to mid-frequency range.

In smoothly varying media, we can diagonalize the system of equations describing elastic waves using pseudodifferential operators—
assuming it is of principal type—thus decoupling the polarizations (e.g. see Stolk & de Hoop 2002). We can then consider time-harmonic
solutions of scalar equations. This involves the application of techniques from microlocal analysis. In general, the polarized wave equations
are scalar pseudodifferential equations of second order, the discretizations of which require particular techniques; wavelet bases provide a
way to carry this out in principle (Alpert et al. 1993). Here, we are not concerned with such discretization techniques and instead solve the
original coupled system of equations, with limited smoothness conditions. More importantly, we do not impose the restriction to systems
of ‘real principal type’. However, if the system were of principal type, we can use the mentioned diagonalizing operators to decouple the
polarizations in the solution of the system. We will show an example of the effectiveness of such a procedure.

We use a second-order finite difference scheme for the discretization of the system of equations, together with an optimization technique
which involves adding more points to the basic stencil, to minimize the numerical dispersion. In principle, such an optimization procedure
can be carried out at each spatial point following the heterogeneity and changing anisotropy in the medium. Our dispersion analysis and
numerical examples demonstrate that with only five gridpoints per shear wavelength, we can achieve at least four digits of accuracy. This
accuracy is aligned with the tolerance level used for the Hierarchically SemiSeparable (HSS) low rank matrix compression underlying our
solver. The interplay between the finite accuracy discretization and the finite accuracy matrix solver yields the key strategy which leads to the
architecture of our algorithm.

The direct method of choice for solving the mentioned problem is the multifrontal factorization algorithm (Liu 1992). The central idea of
the multifrontal algorithm is to reorganize the sparse factorization of the discretized matrix operator into a series of dense local factorizations;
this algorithm is also used in the package of MUMPS (MUltifrontal Massively Parallel Solver, Agullo et al. 2008). The algorithm is used
together with the method of nested dissection (George 1973) to obtain a nested hierarchical structure and generate a LU factorization from
the bottom up to minimize fill ins. In nested dissection, separators are introduced to recursively divide the mesh into two disjoint subdomains.
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Each separator consists of a small set of mesh points. The nested partitioning leads to a sequence of separators at different levels, which forms
a binary tree. This tree is used in the multifrontal method to manage the factorization from the bottom up, level by level.

The development, here, for systems of equations is a generalization of the work of Wang et al. (2010, 2011a, 2012) concerning scalar
equations including nested dissection with separators of variable thickness. We follow the approach developed by Xia et al. (2009, 2010) of
integrating the multifrontal method with structured matrices. The fill-in blocks of the factorization appear to be highly compressible using
the framework of HSS matrices. Compression is a critical component to reduce memory requirements and enables the solution of problems
defined on large subsurface domains; the accuracy of the solution is controlled and can be limited in the applications considered. We analyse
the relevant matrix structures, (numerically) estimate the rank of the dense matrices prior to the HSS compression and study the effect of
anisotropy, and deduce the complexity and storage requirements of our algorithm; we then compare these with the Helmholtz equation for
polarized waves in isotropic media.

The solver developed, here, opens up the way to speed up significantly adjoint state computations in seismic applications for the purpose
of FWI with a large number of events (Tromp et al. 2008). A strategy for time-harmonic FWI making use of a multifrontal solver for scalar
waves was developed by Operto et al. (2007). Our current algorithm has been developed on a Cartesian grid, but the modifications to spherical
sections is straightforward (Tromp et al. 2008; Fichtner et al. 2009).

We compare the accuracy of our algorithm with time-domain Discontinous Galerkin (DG) method. We mention related and alternative
developments. For isotropic media, (Pratt 1990) developed a finite-difference method for modelling time-harmonic elastic waves. (Gauzellino
et al. 2001) designed a non-conforming finite-element discretization emphasizing viscoelastic rheology, (see also Jr. Douglas et al. 1994). In
fact, our solver can be adapted to a finite element method straightforwardly. (Airaksinen et al. 2009) developed an iterative solver based on
an algebraic multigrid method and FEM in the isotropic case with a damping preconditioner. For a time-domain counterpart, we mention the
work of Bansal & Sen (2008). For the high-frequency scattering of elastic waves, we refer to the work of El Kacimi & Laghrouche (2011)
based on PUFEM involving wavelet based ILU preconditioners.

The outline of the paper is as follows. In the next section, we summarize the relevant equations, the finite-difference stencil used, the
PMLs, and then introduce the system of algebraic equations. In Section 3, we discuss the modifications of our structured multifrontal solver
from scalar equations to the elastic system. In particular, we give the matrix structure under nested dissection and a complexity analysis,
and provide estimates on memory requirements. In Section 4, we give numerical estimates of the rank of the dense matrix prior to HSS
compression. We also present the performance of our solver for a model problem. In Section 5, we present various numerical experiments:
(i) multifrequency shear wave splitting and a comparison with a time-domain discontinuous Galerkin method, (ii) the formation of caustics
in qSV -wave constituents , (iii) the presence of conical points and a comparison with a spectral element method, (iv) the focusing and
defocusing of displacement in a strongly heterogeneous VTI medium and (v) the polarization decomposition of the solution. We end with
some conclusions.

2 P RO PA G AT I O N O F T I M E - H A R M O N I C E L A S T I C WAV E S

2.1 The system of partial differential equations

We write x = (x1, x2, x3). Here 1, 2 and 3 denote the x, y and z spatial directions in 3-D, respectively. We consider the displacement formulation
of the system describing time-harmonic elastic waves, with full anisotropy

−∂σi j

∂x j
− ρω2ui = fi , i, j = 1, 2, 3; (1)

f = ( f1, f2, f3) is the forcing term, u = (u1, u2, u3) is the displacement vector, ρ is the density which depends on x, and σ is the stress
tensor.The constitutive relation between the stress and the strain is given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ23

σ31

σ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x1

∂u2

∂x2

∂u3

∂x3

∂u2

∂x3
+ ∂u3

∂x2

∂u3
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∂x3
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∂x2
+ ∂u2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)
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where C = [
Ci j

]
, i = 1, 2, ... , 6, j = 1, 2, ... , 6 is the stiffness tensor flattened on a matrix; ∗ indicates the symmetry of C. If we consider

the orthorhombic anisotropy, 21 stiffness moduli reduce to nine independent ones. Then we have

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ23

σ31

σ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

∗ C22 C23 0 0 0

∗ ∗ C33 0 0 0

∗ ∗ ∗ C44 0 0

∗ ∗ ∗ ∗ C55 0

∗ ∗ ∗ ∗ ∗ C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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∂x2

∂u3

∂x3

∂u2

∂x3
+ ∂u3

∂x2

∂u3

∂x1
+ ∂u1

∂x3

∂u1

∂x2
+ ∂u2

∂x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where

C33 = ρV 2
p , C22 = C33(1 + 2ε(1)), C11 = C33(1 + 2ε(2)),

C55 = ρV 2
s , C66 = C55(1 + 2γ (1)), C44 = C66

1 + 2γ (2)
,

C23 = (C33 − C44)

√
1 + 2δ(1)

1 − C44/C33
− C44,

C13 = (C33 − C55)

√
1 + 2δ(2)

1 − C55/C33
− C55,

C12 = (C11 − C66)

√
1 + 2δ(3)

1 − C66/C11
− C66.

Here Vp represents the ‘vertical’ P-wave velocity, and V s is the ‘vertical’ S-wave velocity and ε(1), ε(2), δ(1), δ(2), δ(3), γ (1) and γ (2) are the
extended Thomsen’s parameters for orthorhombic media introduced by Tsvankin (1997). We note that if ε = ε(1) = ε(2), δ = δ(1) = δ(2) =
δ(3) and γ = γ (1) = γ (2), the orthorhombic anisotropy expressed by eq. (3) reduces to Transverse Isotropy (TI) anisotropy; ε, δ and γ are
conventional Thomsen’s parameters introduced by Thomsen (1986).

After substituting eq. (2) into eq. (1), we obtain the following coupled system of equations,[
A(x, ∂x, ω) − ρω2I

]
u(x, ω) = f(x, ω) (4)

or⎛⎜⎜⎜⎝
A11 − ρω2 A12 A13

A21 A22 − ρω2 A23

A31 A32 A33 − ρω2

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

u1

u2

u3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
f1

f2

f3

⎞⎟⎟⎠ , (5)

in which each element Aij(i = 1, 2, 3, j = 1, 2, 3) of A(x, ∂x, ω) is a second-order partial differential operator. For example,
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∂
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,

which reduces to

A11 = − ∂

∂x1

(
C11

∂

∂x1

)
− ∂

∂x2

(
C66

∂

∂x2

)
− ∂

∂x3

(
C55

∂

∂x3

)
in the orthorhombic case.

2.2 The system of algebraic equations

As in the work of Operto et al. (2007), we use a 27-point finite difference stencil, the structure of which is illustrated in Fig. 1, together
with the mass lumping technique and convolutional PML boundary conditions, to discretize eq. (5) in orthorhombic media. The resulting
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Figure 1. Groupings of points (eq. 6) in the 27-point finite difference stencil; solid balls indicate points that are included in the component stencil and circles
indicate those that are not included; (a): A(c); (b): A(x); (c): A(y); (d): A(z); (e): A(1); (f): A(2); (g): A(3); (h): A(4).

discretization of A(x, ∂x, ω) is denoted as Â(x, ω). The motivation of using a 27-point stencil is to improve the shape of the slowness surface
associated with the finite difference approximation with additional degrees of freedom within the orthorhombic symmetry. This leads to the
following grouping of gridpoints

Â = ws1A(c) + ws2

3

(
A(x) + A(y) + A(z)

) + ws3

4

(
A(1) + A(2) + A(3) + A(4)

)
,
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ws1 + ws2 + ws3 = 1, (6)

where we optimize for ws1, ws2 and ws3; A(c), A(x), A(y), A(z), A(1), A(2), A(3) and A(4) are different groupings of gridpoints based on the
orthorhombic symmetry, illustrated in Fig. 1. In Appendix A, we give an example of the complete evaluation of one entry Â11(x, ω) for
orthorhombic media.

To evaluate the diagonal term ρω2u, we define the mass lumping operator M,

Mu = wm1 [ρu]1 + wm2

6
[ρu]2 + wm3

12
[ρu]3 + wm4

8
[ρu]4 ,

wm1 + wm2 + wm3 + wm4 = 1,

(7)

where

[ρu]1 = ρ000u000,

[ρu]2 = ρ−100u−100 + ρ100u100 + ρ0−10u0−10 + ρ010u010 + ρ00−1u00−1 + ρ001u001,

[ρu]3 = ρ−1−10u−1−10 + ρ1−10u1−10 + ρ−110u−110 + ρ110u110 + ρ0−1−1u0−1−1 + ρ01−1u01−1

+ρ0−11u0−11 + ρ011u011 + ρ−10−1u−10−1 + ρ10−1u10−1 + ρ−101u−101 + ρ101u101,

[ρu]4 = ρ−1−1−1u−1−1−1 + ρ111u111 + ρ−111u−111 + ρ1−11u1−11

+ρ11−1u11−1 + ρ−1−11u−1−11 + ρ1−1−1u1−1−1 + ρ−11−1u−11−1.

Here, the subscripts of ρ and u represent different points in the 27-point stencil illustrated in Fig. 1. wm1, wm2, wm3 and wm4 are weights to
be determined. We summarize the discrete system of eq. (5) into the following equation[
Â(x, ω) − ω2M(x)

]
u(., ω) = f(x, ω). (8)

The conversion from subscripts to a linear index is chosen to be (D = 3)

u(k−1)N1 N23+( j−1)N13+(i−1)3+d = ud (x1,i , x2, j , x3,k, ω),

d = 1, . . . , 3, i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3;

in which N1, N2 and N3 denote the number of gridpoints in x1, x2 and x3 directions, respectively. In analogy, upon sampling, the body force
takes the form

f(k−1)N1 N23+( j−1)N13+(i−1)3+d = fd (x1,i , x2, j , x3,k, ω),

d = 1, . . . , 3, i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3.

We end up with the a linear system of equations,

A(ω) u(ω) = f(ω), (9)

where, by abuse of notation, the implied matrix A(ω) contains the contributions both from Â and −ω2M. We note that A(ω) is of size
(3N1N2N3) × (3N1N2N3), and shares the same non-zero pattern for different ω. The matrix is pattern symmetric, non-Hermitian, indefinite
and ill-conditioned. We set n = 3N1N2N3. The seismic sources f(ω) we consider are exploding point sources and body forces. We use a sharp
Gaussian function as a regularized point source.

2.3 Numerical dispersion analysis

We present a classical numerical dispersion analysis of our finite difference discretization, and show that with only five gridpoints per shear
wavelength, we can achieve reasonable accuracy. We follow the work of Holberg (1987), van Stralen et al. (1998), Štekl & Pratt (1998) and
Operto et al. (2007). We consider a Fourier component, u = u0 exp (−ik · x), where k is a wave vector and u0 is a polarization vector. The
phase velocity is given by Vph = ω/|k|. In polar coordinates, we write

k · x = 2π

G
(r cos θ cos ϕ + s cos θ sin ϕ + t sin θ) , (10)

where (r, s, t) are the spatial coordinates and G signifies the number of gridpoints per wavelength. We cast our dispersion analysis in the
framework of 3-D orthorhombic media

det

[
1

|k|2 exp(ik · x)M−1Â exp(−ik · x) − V 2
phI

]
= 0. (11)
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We write B = 1
|k|2 exp(ik · x)M−1Â exp(−ik · x), with elements

B11 = C11 Exx + C66 Eyy + C55 Ezz

ρ J
(

2π

G

)2
,

B22 = C66 Exx + C22 Eyy + C44 Ezz

ρ J
(

2π

G

)2
,

B33 = C55 Exx + C44 Eyy + C33 Ezz

ρ J
(

2π

G

)2
,

B12 = B21 = (C12 + C66) Exy

ρ J
(

2π

G

)2
,

B23 = B32 = (C23 + C44) Eyz

ρ J
(

2π

G

)2
,

B13 = B31 = (C13 + C55) Ezx

ρ J
(

2π

G

)2
,

where

Exx = 2(1 − cos a)

[
ws1 + 4 + cos b + cos c

6
ws2 + 1 + cos b cos c

2
ws3

]
,

Eyy = 2(1 − cos b)

[
ws1 + 4 + cos c + cos a

6
ws2 + 1 + cos c cos a

2
ws3

]
,

Ezz = 2(1 − cos c)

[
ws1 + 4 + cos a + cos b

6
ws2 + 1 + cos a cos b

2
ws3

]
,

Exy = sin a sin b

[
ws1 + 1 + 2 cos c

3
ws2 + (2 − cos a cos b cos c)ws3

]
,

Eyz = sin b sin c

[
ws1 + 1 + 2 cos a

3
ws2 + (2 − cos a cos b cos c)ws3

]
,

Ezx = sin c sin a

[
ws1 + 1 + 2 cos b

3
ws2 + (2 − cos a cos b cos c)ws3

]
and

a = 2π

G
cos θ cos ϕ, b = 2π

G
cos θ sin ϕ, c = 2π

G
sin θ,

α = cos a + cos b + cos c,

β = cos a cos b + cos b cos c + cos c cos a,

η = cos a cos b cos c,

J = wm1 + wm2

3
α + wm3

3
β + wm4η.

We compare the solutions with the solutions of

det

[
A(x, k, ω)

ρ|k|2 − Ṽ 2
phI

]
= 0, (12)

where Ṽph denotes exact phase velocities, and(
ρ−1|k|−2A(x, k, ω)

)
11

= C11

ρ
(cos θ cos ϕ)2 + C66

ρ
(cos θ sin ϕ)2 + C55

ρ
(sin θ )2,

(
ρ−1|k|−2A(x, k, ω)

)
22

= C66

ρ
(cos θ cos ϕ)2 + C22

ρ
(cos θ sin ϕ)2 + C44

ρ
(sin θ )2,

(
ρ−1|k|−2A(x, k, ω)

)
33

= C55

ρ
(cos θ cos ϕ)2 + C44

ρ
(cos θ sin ϕ)2 + C33

ρ
(sin θ )2,

(
ρ−1|k|−2A(x, k, ω)

)
12

= (
ρ−1|k|−2A(x, k, ω)

)
21

= C12 + C66

ρ
cos2 θ sin ϕ cos ϕ,

(
ρ−1|k|−2A(x, k, ω)

)
23

= (
ρ−1|k|−2A(x, k, ω)

)
32

= C23 + C44

ρ
sin θ cos θ sin ϕ,

(
ρ−1|k|−2A(x, k, ω)

)
13

= (
ρ−1|k|−2A(x, k, ω)

)
31

= C13 + C55

ρ
sin θ cos θ cos ϕ.
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Figure 2. Phase velocities for the orthorhombic model: V p = 4000 m s−1, V s = 2000 m s−1, ρ = 1.0, ε(1) = 0.2, ε(2) = 0.45, δ(1) = −0.1, δ(2) = 0.2,
δ(3) = −0.15, γ (1) = 0.28, γ (2) = 0.15; row one: theoretical phase velocities; row two: numerical phase velocities for G = 5 using the mixed finite difference
scheme with mass lumping; row three: numerical phase velocities for G = 5 using the classical second order centred finite difference scheme without mass
lumping; column one: phase velocities for qP; column two: phase velocities for qS1; column three: phase velocities for qS2.

As an example, we compute phase velocities in an orthorhombic model described in Fig. 2, with respect to the full range of 1/G = [0.01,
0.3], θ = [0, π ] and φ = [0, π ]. We cast the evaluation of weights into a global optimization framework proposed by Sen & Stoffa (1995),
based on a fast simulation annealing algorithm. The weights are found to be ws1 = 0.2, ws2 = 0.6, ws3 = 0.2; wm1 = 0.5, wm2 = 0.45, wm3 =
0.05, wm4 = 0.0. In row one, we solve eq. (12) and obtain three theoretical phase velocities for qP, qS1 and qS2 modes. Then we solve the
eq. (11) with G = 5. Row two and three display results for classical second-order centred finite difference without mass lumping and the
mixed grid finite difference with mass lumping, respectively. The three columns display phase velocities for qP, qS1 and qS2, respectively.
We present normalized phase velocities Vph/Ṽph with respect to 1/G in Fig. 3, for angles indicated by solid dots in Fig. 2. Row one and two
display results for the second-order centred finite difference and the optimized finite difference approximation, respectively. Column one to
three display the phase velocities for qP, qS1 and qS2, respectively. We observe that five gridpoint per shear wavelength allow us to conduct
modelling with at least three-digit accuracy.

3 N E S T E D D I S S E C T I O N A N D T H E M U LT I F RO N TA L M E T H O D F O R T H E E L A S T I C
S Y S T E M O F E Q UAT I O N S

In this section, we give a brief overview of the structured multifrontal solver together with the nested dissection based domain decomposition
techniques introduced by Wang et al. (2011a) and Wang et al. (2012), for modelling time-harmonic waves in (anisotropic) acoustic media.
Then we study in detail similarities and differences between the acoustic and the elastic modelling, via the same structured multifrontal
factorization approach. Eventually we present comparisons of both computational complexity and storage between the acoustic and elastic
modelling, for the same problem size.
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Figure 3. Dispersion curves for the orthorhombic model and angles indicated by dots in Fig. 2; row one: the classical second-order centred finite difference
scheme without mass lumping; row two: the mixed finite difference scheme with mass lumping; column one: qP dispersion curves; column two: qS1 dispersion
curves; column three: qS2 dispersion curves.

Figure 4. The illustration of the multifrontal method summarized in eq. (13): (a) the multifrontal factorization stage associated with the node i; (b) the
formation of the frontal matrix Fi .

3.1 Overview of the structured multifrontal solver

To solve the acoustic analogue matrix system of equation (cf. 9), (Wang et al. 2011a) introduced a massively parallel structured multifrontal
solver together with the nested dissection based domain decomposition, imbedding a scalable HSS matrix solver. They showed that, in 3-D,
the computational complexity associated with the factorization is between O(n log n) and O(n4/3 log n), and storage is between O(n) and
O(n log n), reminding that n denotes the size of the matrix A(ω).

They first conduct the nested dissection reordering (see George 1973) of A(ω) by dividing upper level domains into lower level
subdomains and separators recursively, imposing that the mesh points associated with subdomains are reordered prior to ones associated with
separators, and lower level domains are reordered prior to the upper level ones. This yields a post-ordering tree structure named assembly
tree. The nested dissection reordering, which essentially can be viewed as hierarchical domain decompositions, has been proven to be the
optimal reordering strategy that minimizes the fill-in of the factorization. Furthermore, to account for the anisotropy and variable order of
accuracy, (Wang et al. 2012) extended the nested dissection to incorporate separators of variable thickness.

Secondly, after the nested dissection reordering, (Wang et al. 2011a) carry out local partial LU factorizations upon the reordered matrix,
via forming frontal matrices Fi and computing update matrices Ui locally on each node i of the assembly tree, by taking advantage of the
multifrontal method introduced by Liu (1992). We summarize the mathematics of the multifrontal method in the concise way below

Fi =
(

Fi,11 Fi,12

Fi,21 Fi,22

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Ai,11 Ai,12

Ai,21 0

)
, if i is a leaf node,(

Ai,11 Ai,12

Ai,21 0

)
+

(
Uc1 Uc2

)
, if i is a non-leaf node,

Ui = Fi,22 − Fi,21 F−1
i,11 Fi,12,

(13)
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Figure 5. The pattern of the matrix A(ω) discretized on a 3-D 4 × 4 × 4 mesh. (a) The acoustic matrix without nested dissection; (b) the elastic matrix without
nested dissection; (c) the acoustic matrix with one-level nested dissection; (d) the elastic matrix with one-level nested dissection; (e) the acoustic matrix with
two-level nested dissection and (f) the elastic matrix with two-level nested dissection.

where Ai denotes the portion of the global matrix A(ω) associated with the node i on the assembly tree; c1 and c2 are two children of the node
i if i is a non-leaf, satisfying c1 < c2 < i. The extend-add operation is denoted by . Fig. 4 illustrates the multifrontal process associated with
the node i on the assembly tree.

Thirdly, by exploiting low rank properties of off-diagonal blocks of frontal matrices Fi , (Wang et al. 2011b) proposed a series of parallel
HSS compression, ULV factorization and solution techniques. They show that with the aid of HSS implementations, the cost of factorization
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Figure 6. Rank patterns of frontal matrices Fi of order M that arises from the factorization of the sparse matrices discretized on N × N × N meshes.

Figure 7. HSS construction costs (flops) for the largest frontal matrix Fi of order M that arises from the factorization of the sparse matrices discretized on
N × N × N meshes, where N = 25, 50, 100, 150, with the corresponding M = 1875, 7500, 30000, 67500.

of each frontal matrix is reduced from O(n3
i ) to O(ri n2

i ), as well as the storage is reduced from O(n2
i ) to O(ri ni ), where ni denotes the size of

each frontal matrix Fi , and ri denotes the maximum numerical rank of all off-diagonal blocks associated with each Fi .

3.2 Similarities and differences: acoustic versus elastic

We point out that a big difference between the acoustic modelling and the elastic modelling for the same problem size N1 × N2 × N3 lies
in that the number of unknowns for the elastic system is 3N1N2N3, which is exactly three times as large as the number of unknowns for the
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Table 1. The benchmark comparison between MUMPS and the
hybrid MF-HSS solver, solving for a 10 Hz time-harmonic wavefield
on a 201 × 201 × 151 mesh. Nested dissection wall time TND,
matrix factorization wall time T fact, one shot solution wall time
T sol, and the memory consumption are recorded.

TND(s) T fact(s) T sol(s) Memory (GB)

MUMPS 48.63 31108 133.45 3947

hybrid MF-HSS 0.12 2947 3.67 2316

Figure 8. (a) The slowness surfaces of the qP, qSV and qSH polarization for the homogeneous elastic VTI model. The parameters of the model are: ‘vertical’
P-wave velocity V p = 4000 m s−1, ‘vertical’ S-wave velocity V s = 2000 m s−1, density ρ = 1.0, Thomsen’s parameters ε = 0.25, δ = 0.0, γ = 0.15; (b) The
slowness surfaces of the qP, qS1 and qS2 polarizations for the homogeneous elastic orthorhombic model. The parameters of the model are: ‘vertical’ P-wave
velocity V p = 4000 m s−1, ‘vertical’ S-wave velocity V s = 2000 m s−1, density ρ = 1.0, Thomsen’s parameters ε(1) = 0.2, ε(2) = 0.45, δ(1) = −0.1, δ(2) =
0.2, δ(3) = −0.15, γ (1) = 0.28, γ (2) = 0.15.

acoustic system. This is obviously due to the fact that there are three components associated with each mesh point for the elastic system rather
than only one component that is for the acoustic system. This implies that the size of the elastic matrix A(ω) is three times as large as the size
of the acoustic matrix.

On the other hand, we assume that the thickness of the separators for both the acoustic and elastic systems is t, which yields that the
number of mesh points for the finite difference stencil associated with the acoustic system is (2t + 1)3, while the one for the elastic system
finite difference stencil is 3(2t + 1)3. For example, for the acoustic system (Wang et al. 2011a) utilize a 27-point stencil (t = 1), which
corresponds with an 81-point stencil in the elastic case.

Because both the acoustic system and the elastic system share the same problem size N1 × N2 × N3 and the same thickness of separator
t, thus they share exactly the same nested dissection strategy, which, in other words, means that positions and sizes associated with subdomains
and separators are exactly the same for both acoustic and elastic system. The only difference between two systems is that after nested dissection
reordering, the size ni of each frontal matrix Fi associated with the elastic system is exactly three times as large as each ni associated with the
acoustic system. Fig. 5 illustrates matrix patterns for both acoustic and elastic systems discretized on the same 4 × 4 × 4 mesh, for various
levels of nested dissection reordering. We note the similarity of matrix patterns, and the size difference of each matrix block by a factor of
three.

Without resorting to the HSS compression and factorization techniques, we can straightforwardly conclude that the computational
complexity for the elastic matrix factorization is 33 times larger than the one associated with the acoustic system, and the storage for the
elastic system is 32 times larger than the one for the acoustic system. This is due to the well known fact that the cost of exact LU factorization
of each dense frontal matrix Fi is O(n3

i ), and the storage is O(n2
i ). By virtue of HSS low rank compression techniques, the complexity and

storage are of the order O(ri n2
i ) and O(ri ni ), respectively. This brings the complexity ratio from 33 to 32, and the storage ratio from 32 to 3,

which comprises the main result of this paper.

4 P E R F O R M A N C E

Here, we briefly discuss the complexity of the solver. The solver performs well if the off-diagonal blocks of the frontal matrices Fi in (13)
have small numerical ranks. In general, such a requirement is not satisfied for 3-D (elastic) problems. However, in Xia (2012a,b), it is shown
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Figure 9. A comparison between our frequency domain finite difference multicomponent modelling and a multicomponent time domain Discontinuous
Galerkin method based modelling. (a) v1 = ∂ tu1 component computed by the frequency domain code; (b) v3 = ∂ tu3 component computed by the frequency
domain code; (c) v1 difference from the time domain results displayed with a 10 × clipping; (d) v3 difference from the time domain results displayed with a
10 × clipping; (e) a trace comparison of v1 on the indicated dashed line of (a); (f) a trace comparison of v3 on the indicated dashed line of (b); (g) the zoom-in
comparison of the window indicated by the dashed line in (e); (h) the zoom-in comparison of the window indicated by the dashed line in (f).
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Figure 10. Multicomponent time harmonic wavefield generated by a vertical point body force in the homogeneous elastic VTI model depicted in Fig. 8. The
point body force is located at (5.25, 3.5, 2.625) km. (a) u1 displayed on the planes of x1 = 6.125 km, x2 = 3.5 km and x3 = 3.5 km; (b) u2 displayed on the
planes of x1 = 5.25 km, x2 = 4.375 km and x3 = 3.5 km; (c) u3 displayed on the planes of x1 = 5.25 km, x2 = 3.5 km and x3 = 3.5 km.

that if the off-diagonal numerical ranks satisfy certain patterns, then these structured solvers can still work well, and the complexity is similar
to the case where the ranks are bounded.

For mesh dimensions N = 25, 50, 100, 150, we demonstrate the off-diagonal numerical ranks of the largest frontal matrix Fi that is of
order, say M . Fi is hierarchically partitioned into multiple levels following the definition of HSS matrices (Xia et al. 2010). The largest level
is where there are most subblocks. The maximum numerical rank rl at each level l of the partition is recorded, and plotted in Fig. 6. Although
a precise justification is not yet available, these ranks are observed to closely follow the following pattern

rl = O
(√

Ml

)
,
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Figure 11. Multicomponent time harmonic wavefield generated by an explosive point source in the homogeneous orthorhombic model with parameters
depicted in Fig. 8 and additional parameters: ε(1) = 0.2, ε(2) = 0.45, δ(1) = −0.1, δ(2) = 0.2, δ(3) = −0.15, γ (1) = 0.28, γ (2) = 0.15. The explosive point
source is located at (5.25, 3.5, 2.625) km. (a) u1 displayed on the planes of x1 = 6.125 km, x2 = 3.5 km and x3 = 3.5 km; (b) u2 displayed on the planes of x1 =
5.25 km, x2 = 4.375 km and x3 = 3.5 km; (c) u3 displayed on the planes of x1 = 5.25 km, x2 = 3.5 km and x3 = 3.5 km; (d) The wavefront in the symmetry
plane x2 = 3.5 km; (e) The wavefront in the symmetry plane x1 = 5.25 km.

where Ml is the maximum row size of the blocks at level l of the partition. With this pattern, it is shown in Xia (2012a,b) that an HSS
approximation to Fi can be constructed in ξ 0 flops and factorized in ξ 1 flops, where

ξ0 = O (
M2 log M

)
, ξ1 = O (

M3/2
)
.

Moreover, the solution cost is

ξ2 = O (M log M) .
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Figure 12. The inhomogeneous elastic VTI model discretized on a 201 × 201 × 151 mesh with stepsizes h1 = h2 = h3 = 0.022 km. All models are displayed
on the planes of x1 = 3.3 km, x2 = 2.2 km and x3 = 1.65 km. (a) ‘vertical’ P-wave velocity V p; (b) ‘vertical’ S-wave velocity V s; (c) density ρ.

In contract, the exact factorization and solution costs are ξ̃1 = O (
M3

)
and ξ̃2 = O (

M2
)
, respectively. Notice that when N doubles, M

becomes four times larger. Then ξ 0, ξ 1 and ξ 2 increase by factors of 16, 8 and 4, respectively, while ξ̃1 and ξ̃2 increase by factors of 64 and 16,
respectively. This is illustrated in Fig. 7. The overall sparse structured factorization cost is then O(n4/3log n), and the solution cost is O(nlog n),
which is nearly linear in n (Xia 2012b).

5 N U M E R I C A L E X P E R I M E N T S

We present various numerical experiments illustrating the behaviour of time-harmonic elastic waves in 3-D anisotropic media. Both homo-
geneous and inhomogeneous 3-D models are discretized on a 201 × 201 × 151 mesh, with different step sizes. We set the HSS compression
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Figure 13. The inhomogeneous elastic VTI model discretized on a 201 × 201 × 151 mesh with stepsizes h1 = h2 = h3 = 0.022 km. All models are displayed
on the planes of x1 = 3.3 km, x2 = 2.2 km and x3 = 1.65 km. (a) Thomsen’s parameter ε; (b) Thomsen’s parameter δ; (c) Thomsen’s parameter γ .

threshold to be 1.0e − 4, which results in a four digit accuracy of our computed time-harmonic wavefields. All 3-D computations are 10Hz
time harmonic wavefields, and are conducted on a National Energy Research Scientific Computing Center (NERSC) supercomputer named
Hopper.nersc.gov, utilizing 128 nodes with 16 cores and 32 GB of memory per node. The CPU wall time is 2947 s, and the total memory
consumption is 2316 GB.

5.1 Benchmark comparison with MUMPS

Prior to showing numerical results of multicomponent time harmonic wavefields, we conduct benchmark comparison tests on both compu-
tational complexity and memory consumption, between our hybrid MF-HSS solver and a general standard matrix solver MUMPS (Agullo
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Figure 14. Multicomponent time harmonic wavefield generated by a vertical point body force in the inhomogeneous VTI model depicted in Figs 12 and 13.
The body force is located at (3.3, 2.2, 1.65) km. (a) u1 displayed on the planes of x1 = 3.85 km, x2 = 2.2 km and x3 = 2.2 km; (b) u2 displayed on the planes of
x1 = 3.3 km, x2 = 2.75 km and x3 = 2.2 km; (c) u3 displayed on the planes of x1 = 3.3 km, x2 = 2.2 km and x3 = 1.65 km.

et al. 2008), on exactly the same platform of 128 nodes of Hopper.nersc.gov. We compute 10 Hz time harmonic wavefields on the same 201 ×
201 × 151 mesh, using both solvers. In Table 1, we record the wall time for the nested dissection TND, the wall time for the matrix factorization
T fact, the wall time for the resolution to one right hand side associated with one seismic shot T sol, and the total memory consumption. We
note that the computational time associated with our hybrid MF-HSS solver is at least one order of magnitude faster than the one associated
with the general MUMPS solver, for all three stages of nested dissection, matrix factorization and solution. In particular, bearing in mind
that T sol associates with one seismic shot resolution, it is straightforward to notice the efficiency of the MF-HSS solver, given a large number
of seismic shots in practice. We also point out that memory consumed by the MF-HSS solver is around one half of that consumed by the
MUMPS solver.
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Figure 15. The divergence ∇ · u and the curl ∇ × u of the time-harmonic wavefield generated by a vertical point body force in the inhomogeneous elastic
isotropic model depicted in Fig. 12. The point body force is located at (3.3, 2.2, 1.65) km. (a) ∇ · u displayed on the planes of x1 = 3.3 km, x2 = 2.2 km and
x3 = 2.2 km; (b) (∇ × u)1 displayed on the planes of x1 = 3.85 km, x2 = 2.2 km and x3 = 1.65 km; (c) (∇ × u)2 displayed on the planes of x1 = 3.3 km, x2 =
2.75 km and x3 = 1.65 km.

5.2 Homogenous media

Our reference model is depicted by the left slowness surface in Fig. 8. Here, we consider a homogeneous medium and different point sources.
The system of equations is discretized on a 201 × 201 × 151 mesh with step sizes h1 = h2 = h3 = 0.035 km, which implies that the model
size is [0, 7] km × [0, 7] km × [0, 5.25] km.

First, we show in Fig. 9(a) multifrequency computation and a comparison with a time-domain Discontinuous Galerkin (DG) method in
2-D. We made use of a 10Hz Ricker wavelet as our source signature. We computed and stored time harmonic wavefields for altogether 300
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frequencies ranging from 0 to 30 Hz, followed by an inverse fast Fourier transform (IFFT) back to the time domain to draw comparisons. We
observe that the four digit accuracy is sufficient to capture the change of phase in the reverse branch of the triplication. Next, we illustrate the
time-harmonic displacement in 3-D, in Fig. 10, for a vertical point body force. We note the interference between the different polarizations.
Our computation has been carried out with a sampling rate of five points per shear wavelength. In the u3 component, in the x2x3 plane, we
observe the excitation of qP waves in a cone aligned with the x3 direction and of qSV waves in a cone aligned with the x2 direction, while the
presence of a caustic is clear. In the u2 component, in the x2x3 plane, we observe the qP waves in all directions. Essentially, we observe the
imprint of the radiation pattern of the source.

We then consider an orthorhombic model depicted by the right slowness surface in Fig. 8. Our computation has been carried out with
a sampling rate of five points per shear wavelength. We illustrate the time-harmonic displacement generated by an explosive point source in
Figs 11 (a)–(c). We note the presence of conical points, for example, in the u1 component in the x2x3 plane. In Figs 11 (d)–(e), we show the
wavefronts in the x2 = 3.5 km and x1 = 5.25 km (symmetry) planes for comparison. The wavefronts both show the formation of caustics and
lids associated with the conical points; the locations of such points is illustrated in the qS1 − qS2 slowness surfaces presented in Fig. 8. The
wavefronts aid in clarifying the interference of wave constituents in the Figs 11 (a)–(c).

5.3 Inhomogeneous medium

We consider a heterogeneous VTI model, derived from the SEAM3D model, and discretized on a 201 × 201 × 151 mesh with step sizes
h1 = h2 = h3 = 0.022 km that yields the model size [0, 4.4] km × [0, 4.4] km × [0, 3.3] km. It is illustrated in Figs 12–13. We show the
time-harmonic displacement generated by a vertical point body force in Fig. 14. This example confirms and illustrates the performance of
our algorithm in a salt tectonic geological environment with strong heterogeneities.

Finally, we generate the time-harmonic displacement generated by a vertical point body force in an isotropic heterogeneous model by
using the parameters in Fig. 12. We decompose the solution into P and S polarizations; the results are shown in Fig. 15. The model is smooth
and, indeed, the separation is clean.

6 C O N C LU S I O N

We presented a finite-difference modelling algorithm for time-harmonic seismic waves in anisotropic media using locally optimized finite
difference stencils. We developed a massively parallel direct structured solver for the relevant system of equations. The system of equations
need not be of real principal type. We carried out computational experiments both for TI and orthorhombic media. For fixed frequency, in 3-D,
the complexity associated with the elastic system is nine times larger than the one for the acoustic system, and the storage requirement for the
elastic modelling is three times larger than the one associated with the acoustic modelling. The solver will play a key role in wave-equation
tomography and FWI, and is very well suited for adjoint state computations with a large number of sources (events) potentially on planetary
scale.
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Štekl, I. & Pratt, G., 1998. Accurate viscoelastic modeling by frequency-
domain finite differences using rotated operators, Geophysics, 63,
1779–1794.

Stolk, C. & de Hoop, M., 2002. Microlocal analysis of seismic inverse
scattering in anisotropic elastic media, Commun. Pure appl. Math., 55,
261–301.

van Stralen, M., de Hoop, M. & Blok, H., 1998. Generalized bremmer series
with rational approximation for the scattering of waves in inhomogeneous
media, J. acoust. Soc. Am., 104, 1943–1963.

Thomsen, L., 1986. Weak elastic anisotropy, Geophysics, 51, 1954–1966.
Tromp, J., Komatitsch, D. & Liu, Q., 2008. Spectral-element and adjoint

methods in seismology, Commun. Comput. Phys., 3, 1–32.
Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for or-

thorhombic media, Geophysics, 62, 1292–1309.

Wang, S., De Hoop, M. & Xia, J., 2010. Seismic inverse scattering via
Helmholtz operator factorization and optimization, J. Comput. Phys., 229,
8445–8462.

Wang, S., de Hoop, M. & Xia, J., 2011. On 3D modeling of seismic wave
propagation via a structured parallel multifrontal direct Helmholtz solver,
Geophys. Prospect., 59, 857–873.

Wang, S., Li, X., Xia, J., Situ, Y. & de Hoop, M., 2011. Efficient scalable al-
gorithms for hierarchically semiseparable matrices, SIAM J. Sci. Comput.,
in press.

Wang, S., Xia, J., de Hoop, M. & Li, X., 2012. Massively parallel structured
direct solver for equations describing time-harmonic qp-polarized waves
in TTI media, Geophysics, 77, 69–82.

Xia, J., 2012a. On the complexity of some hierarchical structured matrices,
SIAM J. Matrix Anal. Appl., 33, 388–410.

Xia, J., 2012b. Efficient structured multifrontal factorization for gen-
eral large sparse matrices, SIAM J. Sci. Comput. Available at:
http://www.math.purdue.edu/∼xiaj/work/mfhss.pdf.

Xia, J., Chandrasekaran, S., Gu, M. & Li, X., 2009. Superfast multifrontal
method for large structured linear systems of equations, SIAM J. Matrix
Anal. Appl., 31, 1382–1411.

Xia, J., Chandrasekaran, S., Gu, M. & Li, X., 2010. Fast algorithms for
hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 17,
953–976.

A P P E N D I X : T H E E VA LUAT I O N O F A 11 I N O RT H O R H O M B I C M E D I A

In this section, we present the evaluation of one entry Â11(x, ω) out of Â(x, ω) in eq. (6), for orthorhombic media. For the sake of brevity, we
denote the u1 component as v, and normalize A11 by the multiplication of h2 where h is the mesh step size. We recall that

A11(x, ∂x, ω) = − ∂

∂x1

(
C11

∂

∂x1

)
− ∂

∂x2

(
C66

∂

∂x2

)
− ∂

∂x3

(
C55

∂

∂x3

)
.

Similar to eq. (6), we have

A11 = ws1 A(c)
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3
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;

here,
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(v001 − v0−10)
]

+1

4

[
(C66)0 1

2
1
2

(v010 − v001) − (C66)0− 1
2 − 1

2
(v00−1 − v0−10)

]
+ 1

4

[
(C55)0− 1

2
1
2

(v000 − v0−11) + (C55)0 1
2 − 1

2
(v000 − v01−1)

]
+1

4

[
(C55)0− 1

2 − 1
2

(v000 − v0−1−1) + (C55)0 1
2

1
2

(v000 − v011)
]

− 1

4

[
(C55)0 1

2 − 1
2

(v010 − v00−1) − (C55)0− 1
2

1
2

(v001 − v0−10)
]

−1

4

[
(C55)0 1

2
1
2

(v010 − v001) − (C55)0− 1
2 − 1

2
(v00−1 − v0−10)

]
;
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similar expressions are obtained for A(y)
11 and A(z)

11 . Moreover,

A(1)
11 = 1

4

[
(C11)− 1

2
1
2

1
2

(v000 − v−111) + (C11) 1
2 − 1

2 − 1
2

(v000 − v1−1−1)
]

+ 1

4

[
(C11) 1

2
1
2 − 1

2
(v000 − v11−1) + (C11)− 1

2 − 1
2

1
2

(v000 − v−1−11)
]

−1

4

[
(C11)− 1

2
1
2

1
2

(v010 − v−101) − (C11) 1
2 − 1

2 − 1
2

(v10−1 − v0−10)
]

− 1

4

[
(C11) 1

2
1
2 − 1

2
(v010 − v10−1) − (C11)− 1

2 − 1
2

1
2

(v−101 − v0−10)
]

+1

4

[
(C66) 1

2
1
2

1
2

(v000 − v111) + (C66)− 1
2 − 1

2 − 1
2

(v000 − v−1−1−1)
]

+ 1

4

[
(C66) 1

2
1
2 − 1

2
(v000 − v11−1) + (C66)− 1

2 − 1
2

1
2

(v000 − v−1−11)
]

+1

4

[
(C66) 1

2
1
2 − 1

2
(v110 − v00−1) − (C66)− 1

2 − 1
2

1
2

(v001 − v−1−10)
]

+ 1

4

[
(C66) 1

2
1
2

1
2

(v110 − v001) − (C66)− 1
2 − 1

2 − 1
2

(v00−1 − v−1−10)
]

+1

4

[
(C55) 1

2
1
2

1
2

(v000 − v111) + (C55)− 1
2 − 1

2 − 1
2

(v000 − v−1−1−1)
]

+ 1

4

[
(C55)− 1

2
1
2

1
2

(v000 − v−111) + (C55) 1
2 − 1

2 − 1
2

(v000 − v1−1−1)
]

+1

4

[
(C55) 1

2
1
2

1
2

(v011 − v100) − (C55)− 1
2 − 1

2 − 1
2

(v−100 − v0−1−1)
]

+ 1

4

[
(C55)− 1

2
1
2

1
2

(v011 − v−100) − (C55) 1
2 − 1

2 − 1
2

(v100 − v0−1−1)
]
,

and similar expressions are obtained for A(2)
11 , A(3)

11 and A(4)
11 . Here the subscript 1

2 denotes the interpolation of the stiffness tensor, following
the notation in Operto et al. (2007).

Conversely, we find the weighting for each gridpoint,

v000 :
(
ws1 + ws2

3

) [
(C11)− 1

2 00 + (C11) 1
2 00 + (C66)0− 1

2 0 + (C66)0 1
2 0 + (C55)00− 1

2
+ (C55)00 1

2

]
+ws2

12

[
(C66)0− 1

2 − 1
2

+ (C66)0 1
2 − 1

2
+ (C66)0− 1

2
1
2

+ (C66)0 1
2

1
2

(C55)0− 1
2 − 1

2
+ (C55)0 1

2 − 1
2

+ (C55)0− 1
2

1
2

+ (C55)0 1
2

1
2

+ (C11)− 1
2 0− 1

2
+ (C11) 1

2 0− 1
2

+ (C11)− 1
2 0 1

2
+ (C11) 1

2 0 1
2

+ (C55)− 1
2 0− 1

2
+ (C55) 1

2 0− 1
2

+ (C55)− 1
2 0 1

2
+ (C55) 1

2 0 1
2

+ (C11)− 1
2 − 1

2 0 + (C11) 1
2 − 1

2 0 + (C11)− 1
2

1
2 0 + (C11) 1

2
1
2 0 + (C66)− 1

2 − 1
2 0 + (C66) 1

2 − 1
2 0 + (C66)− 1

2
1
2 0 + (C66) 1

2
1
2 0

]
+ws3

16

[
(C11)− 1

2 − 1
2 − 1

2
+ (C11) 1

2 − 1
2 − 1

2
+ (C11)− 1

2
1
2 − 1

2
+ (C11) 1

2
1
2 − 1

2
+ (C11)− 1

2 − 1
2

1
2

+ (C11) 1
2 − 1

2
1
2

+ (C11)− 1
2

1
2

1
2

+ (C11) 1
2

1
2

1
2

+ (C66)− 1
2 − 1

2 − 1
2

+ (C66) 1
2 − 1

2 − 1
2

+ (C66)− 1
2

1
2 − 1

2
+ (C66) 1

2
1
2 − 1

2
+ (C66)− 1

2 − 1
2

1
2

+ (C66) 1
2 − 1

2
1
2

+ (C66)− 1
2

1
2

1
2

+ (C66) 1
2

1
2

1
2

+ (C55)− 1
2 − 1

2 − 1
2

+ (C55) 1
2 − 1

2 − 1
2

+ (C55)− 1
2

1
2 − 1

2
+ (C55) 1

2
1
2 − 1

2
+ (C55)− 1

2 − 1
2

1
2

+ (C55) 1
2 − 1

2
1
2

+ (C55)− 1
2

1
2

1
2

+ (C55) 1
2

1
2

1
2

]
,

and

v100 : −
(
ws1 + ws2

3

)
(C11) 1

2 00

−ws2

12

[
2 (C11) 1

2 − 1
2 0 + 2 (C11) 1

2
1
2 0 − (C66) 1

2 − 1
2 0 − (C66) 1

2
1
2 0 − (C55) 1

2 − 1
2 0 − (C55) 1

2
1
2 0

]
−ws3

16

[
(C55) 1

2 − 1
2 − 1

2
+ (C55) 1

2
1
2 − 1

2
+ (C55) 1

2 − 1
2

1
2

+ (C55) 1
2

1
2

1
2

+ (C66) 1
2 − 1

2 − 1
2

+ (C66) 1
2

1
2 − 1

2
+ (C66) 1

2 − 1
2

1
2

+ (C66) 1
2

1
2

1
2

]
,

while similar results are obtained for v−100, v0 −10, v010, v00 −1 and v001. Moreover,

v110 : −ws2

12

[
(C11) 1

2
1
2 0 + (C66) 1

2
1
2 0

]
−ws3

16

[
(C11) 1

2
1
2 − 1

2
+ (C11) 1

2
1
2

1
2

+ (C66) 1
2

1
2 − 1

2
+ (C66) 1

2
1
2

1
2

]
,

while similar results are obtained for v−1 −10, v1 −10, v−110, v−10 −1, v10 −1, v−101, v101, v0 −1 −1, v01 −1, v0 −11 and v011. Finally,

v111 : −ws3

8

[
(C11) 1

2
1
2

1
2

+ (C66) 1
2

1
2

1
2

+ (C55) 1
2

1
2

1
2

]
,

while similar results are obtained for v−1 −1 −1, v1 −1 −1, v−11 −1, v11 −1, v−1 −11, v1 −11 and v−111.
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