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Abstract This paper is concerned with multidimensional exponential fitting mod-
ified Runge-Kutta-Nyström (MEFMRKN) methods for the system of oscillatory
second-order differential equations q ′′(t) + Mq(t) = f (q(t)), where M is a d × d

symmetric and positive semi-definite matrix and f (q) is the negative gradient of
a potential scalar U(q). We formulate MEFMRKN methods and show clearly
the relationship between MEFMRKN methods and multidimensional extended
Runge-Kutta-Nyström (ERKN) methods proposed by Wu et al. (Comput. Phys.
Comm. 181:1955–1962, 2010). Taking into account the fact that the oscillatory
system is a separable Hamiltonian system with Hamiltonian H(p,q) = 1

2pT p +
1
2qT Mq + U(q), we derive the symplecticity conditions for the MEFMRKN meth-
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ods. Two explicit symplectic MEFMRKN methods are proposed. Numerical exper-
iments accompanied demonstrate that our explicit symplectic MEFMRKN methods
are more efficient than some well-known numerical methods appeared in the scien-
tific literature.

Keywords Exponential fitting · MEFMRKN methods · Symplecticity conditions ·
ERKN integrators · Oscillatory systems

Mathematics Subject Classification (2000) 65L05 · 65L06 · 65M20

1 Introduction

In the past decade, the study of perturbed oscillators by many researches has been
mostly focusing on the one-dimensional case y′′(t) + w2y(t) = f (y(t)), or the mul-
tidimensional one where the frequency matrix M = w2I is a diagonal matrix. In the
more recent years, the research attention has been turned to the system of oscillatory
second-order differential equations of the form{

q ′′(t) + Mq(t) = f
(
q(t)

)
, t ∈ [0, T ],

q(0) = q0, q ′(0) = q ′
0,

(1)

where M is a d ×d symmetric and positive semi-definite matrix implicitly containing
the frequencies of the problem, q : R → R

d is the solution of the system and f (q)

is the negative gradient of a real-valued function U(q) whose second derivatives are
continuous. Problems in the form (1) usually arise in applied mathematics and in
physics, astronomy, molecular dynamics, engineering etc. Effective integrators mak-
ing use of the special structure of M in (1) have been proposed in recent years. For
the related work to this topic, we refer the reader to [4, 8, 15, 16, 25–28]. Based on
the variation-of-constants formula, some methods for (1) have been proposed and we
refer to [9, 11, 15] for some examples. In a more recent paper, Wu et al. [27] formu-
lated a standard form of multidimensional extended Runge-Kutta-Nyström (ERKN)
integrators free from matrix decomposition for the general system (1) based on the
variation-of-constants formula. On the other hand, it is believed that exponential fit-
ting is also a useful way to construct efficient numerical methods. It is well-known
that an approach to constructing an exponential fitting method is to determine the
coefficients of the method so that it integrates exactly a set of linearly independent
functions which are chosen based on the nature of the solutions of the differential
equations to be solved. Much research work has been performed on the problems
explicitly containing single-frequency, and some exponential and trigonometrical fit-
ting methods have been proposed. See, e.g., [1, 2, 7, 21, 23, 24, 29] and the references
therein. In [23], Tocino and Vio-Aguiar consider the exponential fitting procedure and
symplecticity conditions of modified Runge-Kutta-Nyström (RKN) scheme for

y′′(t) + ω2y(t) = f
(
y(t)

)
,
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where f (y) = ∂U
∂y

(y) is the gradient of a potential scalar. Some other exponential
fitting-type methods for multidimensional problems of the form (1) are proposed in
[9, 10, 15, 20].

This paper investigates multidimensional exponential fitting modified Runge-
Kutta-Nyström (MEFMRKN) methods for the system of oscillatory second order
differential equations (1), which adapt to the oscillatory feature of the true flows in
both the internal stages and the updates, and make good use of the special structure
of (1) brought by Mq . On the other hand, we note that the symplecticity for an oscil-
latory Hamiltonian system is also very important and much work has been done on
this topic. Pioneering work on symplectic integration is due to Vogelaere [5], Ruth
[18] and Feng [6]. The symplectic conditions for Runge-Kutta methods are obtained
by Sanz-Serna [19] and the symplecticity conditions for RKN methods are derived
by Suris [22]. See [3, 14, 17] for more work on this topic. Motivated by these valu-
able researches, we derive the symplecticity conditions for MEFMRKN methods and
present our explicit symplectic MEFMRKN methods.

The rest of this paper is organized as follows. In Sect. 2, for (1) we formulate the
MEFMRKN methods and show the relationship between MEFMRKN and ERKN
integrators. The analysis of symplecticity conditions for MEFMRKN methods is pre-
sented in Sect. 3. We propose two explicit symplectic MEFMRKN methods in Sect. 4.
Numerical experiments are given in Sect. 5. Section 6 is devoted to conclusions.

2 MEFMRKN methods

Following [23], we consider multidimensional modified RKN methods for the oscil-
latory system (1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = Ciqn + Di

(
hq ′

n

) + h2
s∑

j=1

aijf (Qj ), i = 1,2, . . . , s,

qn+1 = Cqn + D
(
hq ′

n

) + h2
s∑

i=1

b̄if (Qi),

(
hq ′

n+1

) = Fqn + E
(
hq ′

n

) + h2
s∑

i=1

bif (Qi),

(2)

where C, D, Ci, Di, E, F, bi , b̄i , i = 1,2, . . . , s and aij , i, j = 1,2, . . . , s are
matrix-valued functions of V = h2M .

Since M is a d × d symmetric and positive semi-definite matrix in (1), M can be
expressed as

M = P T Ω2P = N2,

where P is an orthogonal matrix, Ω is a positive semi-definite diagonal matrix, and
N = P T ΩP . With the usual approach to constructing exponential fitting methods
(see [24] for example), we will derive the methods with variable coefficients that
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are able to integrate exactly the system of second order homogeneous differential
equations

q ′′ + N2q = 0d×1

whose solutions belong to the subspace generated by the set of vector-valued func-
tions

{
exp(itN)ek, exp(−itN)ek, k = 1,2, . . . , d

}
,

or equivalently, by the basis of vector-valued functions

F̃ = {
sin(tN)ek, cos(tN)ek, k = 1,2, . . . , d

}
.

Here ek , k = 1,2, . . . , d are the unit coordinate vectors. Define the following linear
vector-valued operators:

Li

[
q(t), h,Ci,Di, (aij )

]
:= q(t + cih) − Ciq(t) − hDiq

′(t)

− h2
s∑

j=1

aij

[
q ′′(t + cjh) + Mq(t + cjh)

]
, i = 1,2, . . . , s,

L
[
q(t), h,C,D, b̄

]
:= q(t + h) − Cq(t) − hDq ′(t)

− h2
s∑

i=1

b̄i

[
q ′′(t + cih) + Mq(t + cih)

]
,

D L
[
q(t), h,E,F,b

]
:= q ′(t + h) − Eq ′(t) − 1

h
Fq(t)

− h

s∑
i=1

bi

[
q ′′(t + cih) + Mq(t + cih)

]
,

(3)

where ci, i = 1,2, . . . , s are real constants in [0,1], and may be equal. For the set of
vector-valued functions F̃ , with exponential fitting techniques (requiring the above
operators to integrate exactly the functions F̃ at t = 0), the linear operators (3) reduce
to

(
sin(cihN) − hDiN

)
ek = 0d×1,

(
cos(cihN) − Ci

)
ek = 0d×1,(

sin(hN) − hDN
)
ek = 0d×1,

(
cos(hN) − C

)
ek = 0d×1,(

cos(hN)N − EN
)
ek = 0d×1,

(
− sin(hN)N − 1

h
F

)
ek = 0d×1.

(4)
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Since the formula (4) holds true for k = 1,2, . . . , d , we have

sin(cihN) = hDiN, cos(cihN) = Ci,

sin(hN) = hDN, cos(hN) = C,

cos(hN)N = EN, − sin(hN)N = 1

h
F.

(5)

Hence

Di = sin(cihN)(hN)−1, Ci = cos(cihN), i = 1,2, . . . , s,

D = sin(hN)(hN)−1, C = cos(hN),

E = cos(hN), F = −hN sin(hN).

(6)

Observe that sin(cihN)(hN)−1 and sin(hN)(hN)−1 are well defined also for singu-
lar N .

By the definitions of

φl(V ) :=
∞∑

k=0

(−1)kV k

(2k + l)! , l = 0,1, . . . , (7)

we obtain

Di = ciφ1
(
c2
i V

)
, Ci = φ0

(
c2
i V

)
, i = 1,2, . . . , s,

D = φ1(V ), C = φ0(V ),

E = φ0(V ), F = −V φ1(V ),

(8)

where V = h2M .
Therefore, the multidimensional modified RKN methods (2) are formulated as

follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0
(
c2
i V

)
qn + ciφ1

(
c2
i V

)(
hq ′

n

) + h2
s∑

j=1

aij f (Qj ), i = 1,2, . . . , s,

qn+1 = φ0(V )qn + φ1(V )
(
hq ′

n

) + h2
s∑

i=1

b̄if (Qi),

(
hq ′

n+1

) = −V φ1(V )qn + φ0(V )
(
hq ′

n

) + h2
s∑

i=1

bif (Qi),

(9)

where bi, b̄i and aij , i, j = 1,2, . . . , s are matrix-valued functions of V = h2M .
The schemes (9) can be denoted by the Butcher tableau as
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c1 a11 . . . a1s
...

...
. . .

...
cs as1 · · · ass

b̄1 · · · b̄s

b1 · · · bs

The methods (9) integrate exactly the basis F̃ = {sin(tN)ek, cos(tN)ek, k =
1,2, . . . , d} for both the updates and the internal stages, so they are methods fitted
to F̃ . Namely, we achieve the multidimensional exponential fitting modified RKN or
MEFMRKN schemes for the multidimensional oscillatory system (1).

Remark 1 We should note the fact that the coefficients of the MEFMRKN methods
(9) only involve the matrix functions of V = h2M . That is, the MEFMRKN meth-
ods do not depend on the matrix decomposition. As for the issue of avoiding matrix
decompositions, we refer to [9, 10, 15, 20]. It should be pointed out that the matrix
decomposition in actual computation may bring extra error for the accuracy of the de-
composition depends on the condition numbers with respect to eigenvalues of matrix
M . Moreover, with the variable substitution z(t) = Pq(t), the system (1) becomes
the transformed system{

z′′(t) + Ω2z(t) = Pf
(
P T z(t)

)
, t ∈ [0, T ],

z(0) = z0 = Pq0, z′(0) = z′
0 = Pq ′

0,
(10)

with f (q) = −∇U(q). We note the fact that, now the right-hand function in (10) is
changed into

f̃ (z) = Pf
(
P T z(t)

)
,

which is more expensive than f (q(t)) to calculate point by point and step by step.
Therefore, our MEFMRKN methods avoid matrix decomposition are much more ef-
ficient and more practical.

Remark 2 It can be observed that the MEFMRKN methods (9) are consistent with
the multidimensional ERKN integrators given in Wu et al. [27], but with different
idea and derivation. The ERKN integrators are proposed based on the variation-of-
constants formula while the MEFMRKN methods are derived by applying the expo-
nential fitting techniques to the multidimensional modified RKN methods (2). More-
over we will present the symplecticity conditions for MEFMRKN methods and pro-
pose two new useful explicit symplectic MEFMRKN methods in the sequel Sections.
This work differs from previous research of ERKN integrators and is useful in the
field of exponential fitting methods.

3 Symplecticity conditions for MEFMRKN methods

In this section, we present and prove the symplecticity conditions for MEFMRKN
methods. We will show the role of symplecticity for oscillatory differential equations
(1) by some numerical experiments given in Sect. 5.
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It is easy to observe that the system of second order differential equations (1) is
equivalent to the following Hamiltonian system:⎧⎪⎨

⎪⎩
q ′ = p,

p′ = −∇U(q) − Mq,

q(0) = q0, p(0) = p0,

(11)

where q : R → R
d represents generalized positions, p : R → R

d represents general-
ized momenta, and U(q) is a real-valued function with continuous second derivatives.
The Hamiltonian of (11) is given by

H(p,q) = 1

2
pT p + 1

2
qT Mq + U(q). (12)

We will first derive the symplecticity conditions for the multidimensional modified
RKN methods (2) then from which we give the symplecticity conditions for the
MEFMRKN methods (9).

The next theorem gives the symplecticity conditions for the multidimensional
modified RKN methods (2).

Theorem 31 If the coefficients of an s-stage multidimensional modified RKN
method (2) satisfy the following conditions:

EC − FD = I,

Cbi − F b̄i = diCi, di ∈ R, i = 1,2, . . . , s,

Dbi − Eb̄i = diDi, i = 1,2, . . . , s,

b̄ibj + diaij = b̄j bi + djaji, i, j = 1,2, . . . , s,

(13)

then the method is symplectic. Here, di is a real number to be determined in order to
ensure the symplecticity conditions.

Proof First of all, we consider the special case, where M is a diagonal matrix with
nonnegative entries

M = diag(m11,m22, . . . ,mdd).

Accordingly, C, D, E, F, Ci and Di are all diagonal matrixes. Since bi , b̄i , and aij

are matrix-valued functions of V = h2M , they are also diagonal. Define fi = f (Qi).
Then the modified RKN method (2) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QJ
i = CJ

i qJ
n + hDJ

i q ′J
n + h2

s∑
j=1

aJ
ij f

J
j , i = 1,2, . . . , s,

qJ
n+1 = CJ qJ

n + hDJ q ′J
n + h2

s∑
i=1

b̄J
i f J

i ,

q ′J
n+1 = EJ q ′J

n + 1

h
FJ qJ

n + h

s∑
i=1

bJ
i f J

i ,

(14)
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where the superscript index J = 1,2, . . . , d denotes the J th component of a vector
or the J th diagonal component of a diagonal matrix. With the notation of external
products and from the Hamiltonian system (11), the symplecticity condition of the
method is

d∑
J=1

dqJ
n+1 ∧ dq ′J

n+1 =
d∑

J=1

dqJ
n ∧ dq ′J

n .

By (13) and (14), differentiating qJ
n+1 and q ′J

n+1, taking external products, and then
summing over all J yield

d∑
J=1

dqJ
n+1 ∧ dq ′J

n+1 =
d∑

J=1

dqJ
n ∧ dq ′J

n + h

d∑
J=1

s∑
i=1

didQJ
i ∧ df J

i

+ h2
d∑

J=1

s∑
i=1

[(
DJ bJ

i − EJ b̄J
i

) − diD
J
i

]
dq ′J

n ∧ df J
i

+ h3
d∑

J=1

s∑
i,j=1

[
b̄J
i bJ

j + dia
J
ij

]
df J

i ∧ df J
j . (15)

From (13) and f (q) = −∇U(q) where U has continuous second derivatives, we have

d∑
J=1

s∑
i=1

didQJ
i ∧ df J

i

=
s∑

i=1

d∑
J=1

didQJ
i ∧ df J

i =
s∑

i=1

di

d∑
J,I=1

dQJ
i ∧

(
∂f J

∂qI
(Qi)dQI

i

)

=
s∑

i=1

di

d∑
J,I=1

dQJ
i ∧

(
−∂2U(Qi)

∂qJ ∂qI

)
dQI

i

= −
s∑

i=1

di

d∑
J,I=1

(
∂2U(Qi)

∂qJ ∂qI

)
dQJ

i ∧ dQI
i = −

s∑
i=1

di0 = 0. (16)

According to (13), the last two terms of (15) are equal to 0. Therefore, we obtain

d∑
J=1

dqJ
n+1 ∧ dq ′J

n+1 =
d∑

J=1

dqJ
n ∧ dq ′J

n .

Keep in mind the fact that M is a d × d symmetric positive semi-definite matrix.
As pointed out in Remark 1, with the variable substitution z(t) = Pq(t), the sys-
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tem (1) is equivalent to a transformed system (10). Thus the symplectic methods for
a diagonal matrix with nonnegative entries can be applied to the transformed system.
Moreover, the methods are invariant by linear transformations, and therefore, we can
write the methods (applied to the transformed system (10)) in terms of q(t) via mul-
tiplying by P T and denoting Qi = P T Zi, qn = P T zn. This means that the methods
with symplecticity conditions (13) can be applied to systems with M symmetric and
positive semi-definite. In conclusion, for the system of oscillatory second-order dif-
ferential equations (1) with symmetric and positive semi-definite M , an s-stage multi-
dimensional modified RKN method (2) satisfying the conditions (13) is a symplectic
method. �

Using Theorem 31, we obtain the symplecticity condition of our MEFMRKN
methods (9) immediately.

Theorem 32 An MEFMRKN method (9) is symplectic if its coefficients satisfy

φ0(V )bi + V φ1(V )b̄i = diφ0
(
c2
i V

)
, di ∈ R, i = 1,2, . . . , s,

φ1(V )bi − φ0(V )b̄i = cidiφ1
(
c2
i V

)
, i = 1,2, . . . , s,

b̄ibj + diaij = b̄j bi + djaji, i, j = 1,2, . . . , s,

(17)

where V = h2M .

Proof Inserting (8) into (13) arrives at the results. �

4 Explicit symplectic MEFMRKN methods

An important fact is that symplectic Runge-Kutta schemes for the integration of gen-
eral Hamiltonian systems are implicit. Therefore, in practice, one has to solve the
implicit algebraic equations using some iterative approximation methods, in which
case the resulting integration scheme may be no longer symplectic. The advantage of
explicit symplectic integrators, when compared with fully implicit or partly implicit
methods, is that they do not require the solution of large and complicated systems of
nonlinear algebraic or transcendental equations when solving multidimensional prob-
lems. Consequently, here, we only consider explicit symplectic MEFMRKN meth-
ods.

In this section, using the symplecticity condition (17) in Theorem 32 and expo-
nential fitting, we propose two explicit symplectic MEFMRKN methods.

4.1 Two-stage explicit symplectic MEFMRKN methods

In this subsection, we consider two-stage explicit symplectic MEFMRKN meth-
ods. The scheme (9) of a two-stage explicit MEFMRKN method can be denoted by
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the Butcher tableau

c1 0d×d 0d×d

c2 a21 0d×d

b̄1 b̄2

b1 b2

From Theorem 32, the two-stage MEFMRKN method is symplectic if its coefficients
satisfy

φ0(V )b1 + V φ1(V )b̄1 = d1φ0
(
c2

1V
)
,

φ0(V )b2 + V φ1(V )b̄2 = d2φ0
(
c2

2V
)
,

φ0(V )b̄1 + c1d1φ1
(
c2

1V
) = b1φ1(V ),

φ0(V )b̄2 + c2d2φ1
(
c2

2V
) = b2φ1(V ),

b̄1b2 = b̄2b1 + d2a21.

(18)

Solving all the equations in (18) with c1, c2, d1, d2 as parameters gives

b1 = d1
(
φ0(V )φ0

(
c2

1V
) + c1V φ1(V )φ1

(
c2

1V
))

,

b2 = d2
(
φ0(V )φ0

(
c2

2V
) + c2V φ1(V )φ1

(
c2

2V
))

,

b̄1 = (
b1φ1(V ) − c1d1φ1

(
c2

1V
))(

φ0(V )
)−1

,

b̄2 = (
b2φ1(V ) − c2d2φ1

(
c2

2V
))(

φ0(V )
)−1

,

a21 = (b̄1b2 − b̄2b1)(d2)
−1.

(19)

Let

D L
[
q(t), h,E,F,b

]
= q ′(t + h) − Eq ′(t) − F

h
q(t) − h

2∑
i=1

bi

[
q ′′(t + cih) + N2q(t + cih)

]
with E = cos(hN), F = −hN sin(hN).

Requiring D L[q(t), h,E,F,b] to integrate exactly the vector-valued functions

{
t sin(Nt)ek, t cos(Nt)ek, k = 1,2, . . . , d

}
at t = 0 and h = 0, we have

d1 = 1 − 2c2

2(c1 − c2)
, d2 = 1 − 2c1

−2(c1 − c2)
. (20)
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Take into account the second order conditions of the ERKN integrators given in [27]:

b1 + b2 = φ1(V ) + O
(
h2),

b1c1 + b2c2 = φ2(V ) + O(h),

b̄1 + b̄2 = φ2(V ) + O(h).

Then we make the choice of c1 = 3−√
3

6 , c2 = 3+√
3

6 .
The choice of c1 and c2 together with (19) and (20) gives a two-stage explicit

symplectic MEFMRKN method with

b1 = 1

2
φ0

(
c2

2V
)
, b2 = 1

2
φ0

(
c2

1V
)
,

b̄1 = 1

2
c2φ1

(
c2

2V
)
, b̄2 = 1

2
c1φ1

(
c2

1V
)
, a21 = 1

2
√

3
φ1

(
V

3

)
.

(21)

Since the coefficients (19) are obtained from the symplecticity conditions (18), they
satisfy the symplecticity conditions and this two-stage method is symplectic. We de-
note the method stated above by SMEFMRKN2s2.

4.2 Three-stage explicit symplectic MEFMRKN methods

We turn to considering three-stage explicit symplectic MEFMRKN methods. The
scheme (9) of a three-stage explicit MEFMRKN method can be denoted by the
Butcher tableau

c1 0d×d 0d×d 0d×d

c2 a21 0d×d 0d×d

c3 a31 a32 0d×d

b̄1 b̄2 b̄3

b1 b2 b3

From (17), the symplecticity condition for the three-stage MEFMRKN method is

φ0(V )b1 + V φ1(V )b̄1 = d1φ0
(
c2

1V
)
, φ0(V )b2 + V φ1(V )b̄2 = d2φ0

(
c2

2V
)
,

φ0(V )b3 + V φ1(V )b̄3 = d3φ0
(
c2

3V
)
, φ0(V )b̄1 + c1d1φ1

(
c2

1V
) = b1φ1(V ),

φ0(V )b̄2 + c2d2φ1
(
c2

2V
) = b2φ1(V ), φ0(V )b̄3 + c3d3φ1

(
c2

3V
) = b3φ1(V ),

b̄1b2 = b̄2b1 + d2a21, b̄1b3 = b̄3b1 + d3a31,

b̄2b3 = b̄3b2 + d3a32.

(22)
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Choosing c1, c2, c3, d1, d2, d3 as parameters and solving all the equations in (22), we
get

b1 = d1
(
φ0(V )φ0

(
c2

1V
) + c1V φ1(V )φ1

(
c2

1V
))

,

b2 = d2
(
φ0(V )φ0

(
c2

2V
) + c2V φ1(V )φ1

(
c2

2V
))

,

b3 = d3
(
φ0(V )φ0

(
c2

3V
) + c3V φ1(V )φ1

(
c2

3V
))

,

b̄1 = (
b1φ1(V ) − c1d1φ1

(
c2

1V
))(

φ0(V )
)−1

, a21 = (b̄1b2 − b̄2b1)(d2)
−1,

b̄2 = (
b2φ1(V ) − c2d2φ1

(
c2

2V
))(

φ0(V )
)−1

, a31 = (b̄1b3 − b̄3b1)(d3)
−1,

b̄3 = (
b3φ1(V ) − c3d3φ1

(
c2

3V
))(

φ0(V )
)−1

, a32 = (b̄2b3 − b̄3b2)(d3)
−1.

(23)

Let

D L
[
q(t), h,E,F,b

]
= q ′(t + h) − Eq ′(t) − F

h
q(t) − h

3∑
i=1

bi

[
q ′′(t + cih) + N2q(t + cih)

]
,

with E = cos(hN), F = −hN sin(hN).

Requiring D L[q(t), h,E,F,b] to integrate exactly the vector-valued functions{
t sin(Nt)ek, t cos(Nt)ek, t

2 cos(Nt)ek, k = 1,2, . . . , d
}

at t = 0 and h = 0, we have

d1 = 2 − 3c3 + c2(−3 + 6c3)

6(c1 − c2)(c1 − c3)
,

d2 = −2 + 3c3 + c1(3 − 6c3)

6(c1 − c2)(c2 − c3)
,

d3 = 2 − 3c2 + c1(−3 + 6c2)

6(c1 − c3)(c2 − c3)
.

(24)

By the third order conditions of the ERKN integrators given in [27], we have

b1 + b2 + b3 = φ1(V ) + O
(
h3),

b1c1 + b2c2 + b3c3 = φ2(V ) + O
(
h2),

b1c
2
1 + b2(V )c2

2 + b3(V )c2
3 = 2φ3(V ) + O(h),

b2a21(0) + b3
(
a31(0) + a32(0)

) = φ3(V ) + O(h),

b̄1 + b̄2 + b̄3 = φ2(V ) + O
(
h2),

b̄1c1 + b̄2c2 + b̄3c3 = φ3(V ) + O(h),
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where aij (0) denotes the constant matrix of aij (V ) when V → 0d×d . Then we obtain

c1 = 1

5
, c2 = 15 − √

85

30
, c3 = 4

5
. (25)

These parameters determined by (25) together with (23) and (24) lead to an explicit
symplectic MEFMRKN method with

b1 = 15 + √
85

12
φ0

(
16

25
V

)
,

b2 = −3

2
φ0

(
(15 + √

85)2

900
V

)
,

b3 = 15 − √
85

12
φ0

(
1

25
V

)
,

b̄1 = 4(15 + √
85)

60
φ1

(
16

25
V

)
,

b̄2 = −15 + √
85

20
φ1

(
(15 + √

85)2

900
V

)
, (26)

b̄3 = −−15 + √
85

60
φ1

(
1

25
V

)
,

a21 = − (15 + √
85)(−9 + √

85)

360
φ1

(
(−9 + √

85)2

900
V

)
,

a31 = 3(15 + √
85)

60
φ1

(
9

25
V

)
,

a32 = −9 + √
85

20
φ1

(
(9 + √

85)2

900
V

)
.

Moreover, it can be verified that the coefficients of this method satisfy the symplec-
ticity conditions and then this method is symplectic. We denote the method described
above as SMEFMRKN3s3.

Remark 3 It is observed that (φ0(V ))−1 and di in (19) and (23) might cause numer-
ical instability. However, by choosing the values of ci and di and simplifying the
coefficients as in (21) and (26), we avoid the possibility of numerical instability.

5 Numerical experiments

In this section, we use two kinds of problems to show the efficiency and robustness
of our new methods compared with some existing methods.
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5.1 The problems containing explicitly single-frequency

In order to compare our symplectic exponential fitting methods with existing expo-
nential and trigonometrical fitting methods proposed for problems explicitly contain-
ing single-frequency, we consider two problems containing single-frequency in this
subsection. The methods we select for comparison are:

– SV: The classical Störmer-Verlet formula;
– SEFRKN2s: The two-stage symplectic exponential fitting modified RKN method

given in [24];
– E: The symmetric Gautschi’s method of order two given in [11];
– EFRKN3s: The three-stage exponential fitting modified RKN method given in [7];
– SRKN3s4: The three-stage symplectic RKN method of order four given in [13];
– SMEFMRKN2s2: The two-stage symplectic MEFMRKN method of order two de-

rived in this paper;
– SMEFMRKN3s3: The three-stage symplectic MEFMRKN method of order three

derived in this paper.

For each experiment, we display the efficiency curves (accuracy versus the computa-
tional cost measured by the number of function evaluations required by each method)
and the energy conservation for different methods.

Problem 1 Consider the two-body problem

q ′′
1 = − q1

(q2
1 + q2

2 )3/2
, q1(0) = 1 − e, q ′

1(0) = 0,

q ′′
2 = − q2

(q2
1 + q2

2 )3/2
, q2(0) = 0, q ′

2(0) =
√

1 + e

1 − e
,

where e ∈ [0,1) is the (constant) eccentricity of the elliptic orbit. The Hamiltonian
function of the system is given by

H(p,q) = 1

2

(
p2

1 + p2
2

) − 1

(q2
1 + q2

2 )1/2
.

Following [24], the frequency is chosen as 1, namely, M = I2×2 in this case. In
our experiment we use e = 0.01 and the different step sizes h = 1

4i
, i = 3,4,5,6

for the methods SV, SEFRKN2s and E, h = 1
2i

, i = 3,4,5,6 for SMEFMRKN2s2
and h = 1

2i
, i = 2,3,4,5 for the three-stage methods on the interval [0,100].

The efficiency curves are presented in Fig. 1(i). Then we solve the problem with
step size h = 1

16 on the intervals [0,10i], i = 0,1,2,3. Compute the global errors of
Hamiltonian GEH = max |Hn − H0|. The energy conservation (the global errors of
Hamiltonian GEH versus the time) are shown in Fig. 1(ii).
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Fig. 1 Results for Problem 1: (i) The global error (GE) over the integration interval against the number of
function evaluations. (ii) The maximum global error of Hamiltonian GEH = max |Hn − H0| against tend

Problem 2 Consider the Hénon-Heiles Model (see Hairer et al. [12] )

q ′′
1 + q1 = −2q1q2, q1(0) =

√
11

96
, q ′

1(0) = 0,

q ′′
2 + q2 = −q2

1 + q2
2 , q2(0) = 0, q ′

2(0) = 1

4
,

where M = I2×2. The Hamiltonian function of the system is given by

H(p,q) = 1

2

(
p2

1 + p2
2

) + 1

2

(
q2

1 + q2
2

) + q2
1q2 − 1

3
q3

2 .

We first solve the problem on the interval [0,5000] with h = 1

4i
, i = 3,4,5,6 for

the methods SV, SEFRKN2s and E, h = 1
2i

, i = 3,4,5,6 for SMEFMRKN2s2 and
h = 1

2i
, i = 2,3,4,5 for the three-stage methods. The numerical results are presented

in Fig. 2(i). Then we integrate this problem with the step size h = 1
10 on the interval

[0,10i], i = 1,2,3,4. See Fig. 2(ii).

5.2 The systems (1) implicitly containing multiple frequencies of the problems

In this subsection, we pay attention to (1) with a symmetric and positive semi-definite
matrix M implicitly containing multiple frequencies of the problem. We should note
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Fig. 2 Results for Problem 2: (i) The global error (GE) over the integration interval against the number of
function evaluations. (ii) The maximum global error of Hamiltonian GEH = max |Hn − H0| against tend

the fact that the existing exponential and trigonometrical fitting methods for the prob-
lems containing single-frequency are not applicable to the multidimensional prob-
lems (1). Whereas our MEFMRKN methods (9) are formulated adapting to the mul-
tidimensional problem (1), therefore our MEFMRKN methods are more practical. In
this subsection we use three multidimensional problems to compare our MEFMRKN
methods with the existing methods. The methods we select for comparison are some
of those shown in Sect. 5.1, but now the methods SEFRKN2s and EFRKN3s are put
aside in the following numerical experiments.

Problem 3 Consider a nonlinear wave equation

⎧⎪⎪⎨
⎪⎪⎩

∂2u

∂t2
− ∂2u

∂x2
= −1

5
u3 − 1

10
u2, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, u(x,0) = sin(πx)

2
, ut (x,0) = 0.

By using second-order symmetric differences, this problem is converted into a system
in time

⎧⎪⎪⎨
⎪⎪⎩

∂2ui

∂t2
− ui+1 − 2ui + ui−1

Δx2
= −1

5
u3

i − 1

10
u2

i , 0 < t ≤ tend ,

ui(0) = sin(πxi)

2
, u′′

i (0) = 0, i = 1, . . . ,N − 1,
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where Δx = 1/N is the spatial mesh step and xi = iΔx. This semi-discrete oscilla-
tory system has the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2U

∂t2
+ MU = F(t,U), 0 < t ≤ tend .

U(0) =
(

sin(πx1)

2
, . . . ,

sin(πxN−1)

2

)T

, U ′(0) = 0,

(27)

where U(t) = (u1(t), . . . , uN−1(t))
T with ui(t) ≈ u(xi, t), i = 1, . . . ,N − 1, and

M = 1

Δx2

⎛
⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎠ ,

F (t,U) = F(t,U)

=
(

−1

5
u3

1 − 1

10
u2

1, . . . ,−
1

5
u3

N−1 − 1

10
u2

N−1

)T

.

(28)

The Hamiltonian of (27) is given by

H
(
U ′,U

) = 1

2
U ′T U ′ + 1

2
UT MU + G(U),

where

G(U) = 1

20
u4

1 + 1

30
u3

1 + · · · + 1

20
u4

N−1 + 1

30
u3

N−1.

The system is integrated on the interval t ∈ [0,30] with N = 20 and integration step
sizes h = 1

50i
, i = 1,2,3,4 for the methods SV and E and h = 1

25i
, i = 1,2,3,4

for the other methods. The efficiency curves are presented in Fig. 3. Then we
integrate this problem with step size h = 1

50 on the interval [0, tend ], tend = 40 × 3i

with i = 1,2,3,4. Table 1 presents the energy conservation for different methods. In
addition, Fig. 4 gives the time evolution of the wave at x = 0.5 for methods SMEFM-
RKN2s2 and SMEFMRKN3s3 with h = 1

25 on the interval [0,10].

Problem 4 Consider the sine-Gordon equation with periodic boundary conditions
(see Franco [8])

⎧⎨
⎩

∂2u

∂t2
= ∂2u

∂x2
− sinu, −1 < x < 1, t > 0,

u(−1, t) = u(1, t).



790 X. Wu et al.

Fig. 3 Results for Problem 3:
The global error (GE) over the
integration interval against the
number of function evaluations

Fig. 4 Results for Problem 3: The time evolution of the wave at x = 0.5 for methods SMEFMRKN2s2
(i) and SMEFMRKN3s3 (ii)

Table 1 Results for Problem 3: The maximum global error of Hamiltonian GEH = max |Hn − H0| for
different tend

Methods tend = 120 tend = 360 tend = 1080 tend = 3240

SV 0.0123 0.0123 0.0123 0.0123

E 0.1452e–003 0.1452e–003 0.1452e–003 0.1452e–003

SRKN3s4 0.1528e–004 0.1528e–004 0.1528e–004 0.1528e–004

SMEFMRKN2s2 0.7285e–007 0.7285e–007 0.7285e–007 0.7285e–007

SMEFMRKN3s3 0.4822e–007 0.4822e–007 0.4823e–007 0.4825e–007

We carry out a semi-discretization on the spatial variable by using second-order sym-
metric differences and obtain the following system

∂2U

∂t2
+ MU = F(t,U), 0 < t ≤ tend , (29)
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where U(t) = (u1(t), . . . , uN(t))T with ui(t) ≈ u(xi, t), xi = −1 + iΔx, i =
1, . . . ,N , Δx = 2/N , and

M = 1

Δx2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ,

F (t,U) = − sin(U) = −(sinu1, . . . , sinuN)T .

The Hamiltonian of (29) is given by

H
(
U ′,U

) = 1

2
U ′T U ′ + 1

2
UT MU − (

cos(u1) + · · · + cos(uN)
)
.

Following the paper [8], we take the initial conditions as

U(0) = (π)Ni=1, Ut (0) = √
N

(
0.01 + sin

(
2πi

N

))N

i=1
with N = 64.

The problem is integrated in the interval [0,10] with step sizes h = 0.1
8i

, i = 1,2,3,4
for the methods SV and E and h = 0.1

4i
, i = 1,2,3,4 for the other methods. Figure 5(i)

shows the error in the positions at tend = 10 versus the computational effort. We
integrate this problem with step size h = 1

50 in the interval [0, tend ], tend = 10 ×
5i , i = 0,1,2,3. See Fig. 5(ii).

Problem 5 We consider a Fermi-Pasta-Ulam Problem (this problem is considered by
Hairer et al. in [11, 12]).

The Hamiltonian is

H(y,x) = 1

2

2m∑
i=1

y2
i + ω2

2

m∑
i=1

x2
m+i + 1

4

[
(x1 − xm+1)

4

+
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm − x2m)4

]
,

where xi represents a scaled displacement of the ith stiff spring, xm+i is a scaled
expansion (or compression) of the ith stiff spring, and yi, ym+i are their velocities
(or momenta).

The corresponding Hamiltonian system is{
x′ = Hy(y, x),

y′ = −Hx(y, x),
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Fig. 5 Results for Problem 4: (i) The global error (GE) over the integration interval against the number of
function evaluations. (ii) The maximum global error of Hamiltonian GEH = max |Hn − H0| against tend

which is equivalent to x′′ = −Hx(y, x). This leads to

x′′(t) + Mx(t) = −∇U(x), t ∈ [0, tend ],
where

M =
(

0m×m 0m×m

0m×m ω2Im×m

)
,

U(x) = 1

4

[
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm − x2m)4

]
.

Following Hairer et al. [12], we choose m = 3, ω = 50,

x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y4(0) = 1,

and choose zero for the remaining initial values.
Figure 6 displays the efficiency curves on the interval t ∈ [0,25] with the in-

tegration step sizes h = 0.1
8i

, i = 1,2,3,4 for the methods SV and E and h =
0.1
4i

, i = 1,2,3,4 for the other methods. Then we integrate this problem with step
size h = 0.0025 on the interval [0, tend ] and tend = 25 × 2i with i = 0,1, . . . ,4. The
global errors of Hamiltonian are shown in Table 2.

In this section, we show our MEFMRKN methods are applicable to both single-
frequency problems and multi-frequency problems (1) with positive semi–definite
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Fig. 6 Results for Problem 5:
The global error (GE) over the
integration interval against the
number of function evaluations

Table 2 Results for Problem 5: The maximum global error of Hamiltonian GEH = max |Hn − H0| for
different tend

Methods tend = 25 tend = 50 tend = 100 tend = 200 tend = 400

SV 0.0020 0.0020 0.0020 0.0020 0.0020

E 0.2532e–003 0.2532e–003 0.2532e–003 0.2641e–003 0.2974e–003

SRKN3s4 0.9480e–005 0.9480e–005 0.9480e–005 0.9480e–005 0.9480e–005

SMEFMRKN2s2 0.1399e–005 0.1469e–005 0.1469e–005 0.1469e–005 0.1469e–005

SMEFMRKN3s3 0.4370e–007 0.4370e–007 0.4370e–007 0.4370e–007 0.4370e–007

matrix containing implicitly the frequencies. In other words, our MEFMRKN meth-
ods are widely applicable and much more practical. Furthermore, the results of the
numerical experiments confirm that our methods generally have better accuracy for
the same numbers of the function evaluations. Meanwhile it can be observed that for
the Hamiltonian systems, when tend increases, the global errors GEH of our meth-
ods nearly do not increase and are smaller than those of other methods. Namely, our
methods preserve better the Hamiltonian essentially.

6 Conclusions

In the present paper, MEFMRKN methods for the system of oscillatory second-order
equations (1) are presented and studied. The relationship between MEFMRKN meth-
ods and multidimensional ERKN methods is also discussed. Because the oscillatory
system (1) with f (q) = −∇U(q) is simply a separable Hamiltonian system (11)
with Hamiltonian H(p,q) = 1

2pT p + 1
2qT Mq + U(q), we derive the symplecticity

conditions for the MEFMRKN methods. Using the exponential fitting and the sym-
plecticity conditions for the MEFMRKN methods, we propose two useful explicit
symplectic MEFMRKN methods. Numerical experiments in this paper demonstrate
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that our explicit symplectic MEFMRKN methods are more effective than some well-
known methods in the scientific literature in both energy conservation and computa-
tional efficiency.

Lastly, we point out that the discussions in this paper can be extended easily to
separable Hamiltonian system with Hamiltonian H(p,q) = 1

2pT M0p + 1
2qT Mq +

U(q), where M0 and M are both symmetric and positive semi-definite matrixes with
the condition M0M = MM0. This system is equivalent to oscillatory second-order
equation q ′′ + M0Mq = −M0∇U(q), which coincides with the form (1).

Acknowledgements The authors sincerely thank Professor Axel Ruhe and the two anonymous review-
ers for their valuable suggestions, which help improve this paper significantly.
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