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FAST SPARSE SELECTED INVERSION∗

JIANLIN XIA† , YUANZHE XI† , STEPHEN CAULEY‡ , AND

VENKATARAMANAN BALAKRISHNAN§

Abstract. We propose a fast structured selected inversion method for extracting the diago-
nal blocks of the inverse of a sparse symmetric matrix A, using the multifrontal method and rank
structures. When A arises from the discretization of some PDEs and has a low-rank property (the
intermediate dense matrices in the factorization have small off-diagonal numerical ranks), structured
approximations of the diagonal blocks and certain off-diagonal blocks of A−1 (that are needed to find
the diagonal blocks of A−1) can be quickly computed. A structured multifrontal LDL factorization
is first computed for A with a forward traversal of an assembly tree, which yields a sequence of local
data-sparse factors. The factors are used in a backward traversal of the tree for the structured inver-
sion. The intermediate operations in the inversion are performed in hierarchically semiseparable or
low-rank forms. With the assumptions of data sparsity and appropriate rank conditions, the theoret-
ical structured inversion cost is proportional to the matrix size n times a low-degree polylogarithmic
function of n after structured factorizations. The memory counts are similar. In comparison, exist-
ing direct selected inversion methods cost O(n3/2) flops in two dimensions and O(n2) flops in three
dimensions for both the factorization and the inversion, with O(n4/3) memory in three dimensions.
Additional formulas for efficient structured operations are also derived. Numerical tests on two- and
three-dimensional discretized PDEs and more general sparse matrices are done to demonstrate the
performance.
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1. Introduction. Extracting selected entries (often the diagonal) of the inverse
of a sparse matrix, usually called selected inversion, is critical in many scientific
computing problems. Examples include preconditioning, uncertainty quantification
in risk analysis [3], electronic structure calculations within the density functional
theory framework [26], and simulations of nanotransistors and silicon nanowires [8].
The diagonal entries of the inverse are useful in providing significant insights into the
original problem or its solution.

The goal of this paper is to present an efficient structured method for computing
the diagonal of A−1 (as a column vector, denoted by diag(A−1)), as well as the
diagonal blocks of A−1 for a large n×n sparse symmetric matrix A. The method also
produces some off-diagonal blocks of A−1. For convenience, we usually just mention
diag(A−1).

In recent years, a lot of effort has been made in the extraction of diag(A−1). Since
A−1 is often fully dense, a brute-force formation of A−1 is generally impractical. On
the other hand, it is possible to find diag(A−1) without forming the entire inverse.

∗Received by the editors February 18, 2014; accepted for publication (in revised form) by
S. Le Borne July 7, 2015; published electronically September 1, 2015.

http://www.siam.org/journals/simax/36-3/95755.html
†Department of Mathematics and Department of Computer Science, Purdue University, West

Lafayette, IN 47907 (xiaj@math.purdue.edu, yxi@math.purdue.edu). The research of the first author
was supported in part by an NSF CAREER Award DMS-1255416 and an NSF grant DMS-1115572.

‡Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts
General Hospital, Harvard University, Charlestown, MA 02129 (stcauley@nmr.mgh.harvard.edu).

§School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
(ragu@ecn.purdue.edu).

1283

http://www.siam.org/journals/simax/36-3/95755.html
mailto:xiaj@math.purdue.edu
mailto:yxi@math.purdue.edu
mailto:stcauley@nmr.mgh.harvard.edu
mailto:ragu@ecn.purdue.edu


1284 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

If A is diagonally dominant or positive definite, A−1 may have many small entries.
Based on this property, a probing method is proposed in [33]. It exploits the pat-
tern of a sparsified A−1 together with some standard graph theories, and computes
diag(A−1) by solving a sequence of linear systems with a preconditioned Krylov sub-
space method. Later, several approaches were proposed for more general matrices.
The fast inverse with nested dissection method in [23, 24] and the selected inversion
method in [25] use domain decomposition and compute some hierarchical Schur com-
plements of the interior points for each subdomain. This is followed by the extraction
of the diagonal entries in a top-down pass. The method Selinv in [26, 27] uses a
supernode left-looking LDL factorization of A to improve the efficiency. The work in
[1] focuses on the computation of a subset of A−1 by accessing only part of the factors
where the LU or LDL factorization of A is held in out-of-core storage. All these
methods in [1, 23, 25, 26] are direct methods. For iterative methods, a Lanczos-type
algorithm is first used in [35]. Later, a divide-and-conquer (DC) method and a domain
decomposition (DD) method are presented in [34]. The DC method assumes that the
matrix can be recursively decomposed into a 2× 2 block-diagonal plus low-rank form,
where the decomposed problem is solved and corrected by the Sherman–Morrison–
Woodbury (SMW) formula at each recursion level. The DD method solves each local
subdomain problem and then modifies the result by a global Schur complement. Both
methods use iterative solvers and sparse approximation techniques to speed up the
computations.

Our scheme for the selected inversion is a direct method. As in [25, 26, 27],
the scheme includes two stages, a block LDL factorization stage and an inversion
stage. We incorporate various sparse and structured matrix techniques, especially
a structured multifrontal factorization and a structured selected inversion, to gain
significant efficiency and storage benefits, as outlined below.

(1) General sparse matrices and the multifrontal method. Our method is ap-
plicable to symmetric discretized matrices on both two-dimensional (2D) and three-
dimensional (3D) domains, as well as more general symmetric sparse matrices (as long
as certain rank structures exist, as explained in the next item). Just like in modern
sparse direct solvers, we apply the nested dissection ordering [14] to the mesh or ad-
jacency graph by calling some graph partitioning tools. Thus, our inversion method
does not rely on the special shape of the computational domain, and is more generally
applicable than those in [25, 34].

To enhance the data locality of the later inversion, we use the multifrontal method
[13] to compute a block LDL factorization of A. This method converts the overall
sparse factorization into a sequence of operations on some local dense matrices called
frontal matrices, following a nice tree structure called assembly tree. This makes it
convenient to manage and access data in the inversion.

(2) Fast structured factorization stage. To speed up the factorization (and the
later inversion), we further incorporate rank structured techniques. For problems such
as some discretized elliptic/elasticity equations and Helmholtz equations with low or
medium frequencies, the dense intermediate matrices in the sparse factorization often
have certain rank structures (see, e.g., [2, 11, 16, 17, 29, 31, 41]). For these cases,
the problem or the discretized matrix A is often said to have a low-rank property.
We perform the LDL factorization of A with the structured multifrontal methods in
[39, 40, 41], which further approximate the frontal matrices in the multifrontal method
by hierarchically semiseparable (HSS) forms [10, 42]. Such HSS forms take much less
storage than the original dense ones. The local dense operations are thus converted
into a series of fast structured ones. The complexity of the LDL factorization is
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O(n) times a low-degree polylogarithmic function of n in two dimensions, and O(n)
to O(n4/3) times a low-degree polylogarithmic function of n in three dimensions,
depending on certain rank conditions. Moreover, after the factorization, the factors
are in data-sparse forms and with storage roughly proportional to n, which makes the
later efficient inversion feasible.

Related to the later inversion, we also show a fast Schur complement computation
strategy in Theorem 3.4 using a concept similar to the reduced HSS matrix in [39].
The formula takes advantage of an HSS inverse computation that is needed in the
inversion stage, and significantly saves the Schur complement computation cost in the
factorization stage.

(3) Fast structured selected inversion stage. After the structured multifrontal
factorization, the factors are represented by a sequence of HSS or low-rank forms.
This yields a structured approximation Ã to A. The inversion procedure is performed
on these data-sparse factors instead of the original dense ones. In Theorem 3.8, we
show the rank structures in the diagonal blocks and selected off-diagonal blocks of
Ã−1. They are either HSS or low-rank forms. The major operations of the inversion
are then HSS inversions, multiplications of HSS and low-rank matrices, and low-rank
updates, which can all be quickly performed. This thus significantly improves the
efficiency and the storage over the standard direct selected inversion. In Theorem 3.5,
we also derive another formula to quickly apply the inverse of the leading part of an
HSS form to its off-diagonal part, as needed in the inversion.

(4) Nearly linear theoretical complexity for selected inversion. The complexity of
the inversion algorithm is analyzed with a complexity optimization strategy and a rank
relaxation idea in [39]. Unlike in [39, 41] where the factorization cost is optimized, here
we minimize the selected inversion cost. A switching level in the assembly tree is used
to shift from dense local inversions to HSS ones. The structured selected inversion has
almost linear complexity for the discretized matrices with the low-rank property in
both two and three dimensions. More specifically, if the off-diagonal numerical ranks
of the intermediate frontal matrices are bounded by r, then the selected inversion
cost is O(rn) in two dimensions and O(r3/2n) in three dimensions. If the off-diagonal
numerical ranks grow with n following the rank patterns in Tables 4–6, then the
theoretical selected inversion cost and the storage are proportional to n times low-
degree polylogarithmic functions of n. In contrast, the methods in [23, 25, 26, 27]
cost O(n3/2) in two dimensions and O(n2) in three dimensions, for both the LDL
factorization and the selected inversion, and need O(n4/3) storage in three dimensions.
Due to the data sparsity, our method has the potential to be extended to the fast
extraction of general off-diagonal entries of A−1.

Numerical tests in terms of discretized Helmholtz equations in both two and three
dimensions as well as various more general problems from a sparse matrix collection
are performed. Significant performance gain is observed for the structured selected
inversion over the standard direct one.

We would like to mention that an alternative way is to use H- or H2-matrices
[2, 6, 7, 17, 20, 22], especially for 2D and 3D discretized PDEs. That is, the discretized
operators can be first approximated by H- orH2-matrices and then a related inversion
procedure is applied. In fact, the methods in [17, 22] involving nested dissection and
the one in [20] involving weak admissibility conditions share some concepts similar to
ours. In particular, if H2-matrix techniques are applied to certain algebraic operators,
strict O(n) inversion complexity is possible. Here by using the multifrontal method,
we seek to take advantage of its data locality and related well-studied graph techniques
for sparse matrices.
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The remaining sections of the paper are organized as follows. Section 2 briefly
reviews the structured multifrontal factorization with HSS techniques. Section 3 de-
scribes the structured selected inversion algorithm in detail. We discuss the complex-
ity optimization in section 4. The numerical results are shown in section 5. Section 6
concludes the paper. In the presentation, we use the following notation:

• A|s×t represents a submatrix of A specified by the row index set s and the
column index set t, and A|s consists of selected rows of F specified by s;
• diag(D) denotes the diagonal entries of D as a column vector; on the other
hand, diag(D1, D2) denotes a block diagonal matrix with the diagonal blocks
D1 and D2;
• T represents a full postordered binary tree with its nodes denoted by i =
1, 2, . . . , root(T ), where root(T ) is the root;
• c1 and c2 denote the left and the right children of a nonleaf node i in T ,
respectively;
• sib(i) and par(i) denote the sibling and the parent of a node i, respectively;
• boldface symbols such as F and S are for the dense matrices inside the mul-
tifrontal factorization, and i is for a node of the assembly tree.

2. Structured multifrontal LDL factorization. We first briefly review the
structured multifrontal method in [39] and also a block LDL variation, which will be
used in the factorization stage before the selected inversion.

2.1. HSS matrix and algorithms. The structured multifrontal method incor-
porates HSS structures into the multifrontal method. An N ×N HSS matrix F with
a corresponding HSS tree T can be defined as follows [10, 38, 42]. Let each node i
of a full binary tree T be associated with a consecutive index set ti ⊂ I ≡ {1 : N},
which satisfies ti ∪ tsib(i) = tpar(i), ti ∩ tsib(i) = ∅, and troot(T ) = I. The index sets ti
associated with all the leaves i together form I.

An HSS matrix F is given by

F ≡ Droot(T ),

where Di is recursively defined for each nonleaf node i and its children c1 and c2 as

(2.1) Di = F |ti×ti =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
with

(2.2) Ui =

(
Uc1

Uc2

)(
Rc1

Rc2

)
, Vi =

(
Vc1

Vc2

)(
Wc1

Wc2

)
.

The size |ti| ofDi satisfies |ti| = |tc1 |+|tc2 |. Notice that this structure is essentially the
same as the matrix familyMk,τ used in [20] based on a weak admissibility condition.

Here, Di, Ui, Ri, etc., are called the (HSS) generators associated with node i. Due
to (2.2), we also call Ui, Vi associated with a nonleaf node i nested basis matrices. The
HSS rank of F is defined to be

r = max
i=1,2,...,root(T )−1

(
max(rank(F |ti×(I\ti)), rank(F |(I\ti)×ti))

)
,

where F |ti×(I\ti) and F |(I\ti)×ti are called the ith HSS block row and column, re-
spectively. An illustration can be found in Figure 2. If F is symmetric, then Ui = Vi,
Ri = Wi, Bc1 = BT

c2 .
To construct an HSS form, the HSS blocks are compressed hierarchically in a

bottom-up traversal of T [6, 42]. F is partitioned following the index sets ti. For each
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(i) Mesh (ii) Outer assembly tree and inner HSS trees

Fig. 1. Illustration of the nested dissection ordering [14] of a general mesh and a two-layer tree
structure [39, 41], where the outer tree in (ii) is the assembly tree T , and each inner tree is an HSS
tree T . Each leaf node of T corresponds to the interior points of a subdomain and each nonleaf node
corresponds to a separator or interface.

leaf i, a QR or rank-revealing QR factorization is computed: F |ti×(I\ti) = UiHi. For
a nonleaf node i, appropriate subblocks of Hc1 and Hc2 are merged and compressed

to yield
(Rc1

Rc2

)
. Similar operations are applied to the HSS block columns to obtain Vi

and Wi. After such compression, Bi can be conveniently identified. The overall HSS
construction from dense F costs O(rN2) flops. Later, this HSS construction can be
applied to the frontal matrices in the multifrontal method. To avoid such dense HSS
construction, randomized methods can be used [40].

If r is small, we can quickly perform various HSS operations. For example, ULV-
type algorithms [10, 42] can be used to factorize F in O(r2N) flops, and linear system
solution with the factors costs only O(rN) flops. Similarly, the multiplication and the
explicit inversion of HSS matrices [10, 16] can be done in O(r2N) flops. Even if the
HSS blocks at different hierarchical levels have ranks growing with the block sizes, the
factorization complexity may still be quite satisfactory, as long as the growth follows
certain patterns [4, 21, 38]; see section 4.

Recently, HSS techniques were embedded into sparse matrix computations and
helped the development of some fast direct solvers and efficient preconditioners [39,
40, 41]. The sparse factorization described in the next subsection is an example.

2.2. Structured multifrontal block LDL factorization. The multifrontal
method [13] can be used to compute a block LDL factorization of A:

(2.3) A = LΛLT .

To improve the efficiency, the fast structured sparse solver in [39] can be conveniently
modified to compute an approximate multifrontal block LDL factorization. That is,
structured approximations to L and Λ will be computed. This is briefly reviewed here
as a background for the later structured selected inversion.

The matrix A is first reordered with nested dissection to reduce fill-in [14]. The
variables or mesh points are grouped into separators, which are used to recursively
divide the mesh or adjacency graph into smaller pieces. As in [39], we use some graph
partitioning tools [15, 30] to partition the graph, so that our method is not restricted
to any particular domain shape or mesh structure. For illustration, an example is
shown in Figure 1(i).

The multifrontal method performs the sparse factorization via some local factor-
izations of a series of smaller dense frontal matrices. A postordered assembly tree T
is formed to organize the elimination of the separators. Each node of T corresponds



1288 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

to a separator in the mesh. (Later, we do not distinguish between a node of T and a
separator in the mesh.) Label the nodes/separators of T as i = 1,2, . . . , root(T ). See
the outer tree in Figure 1(ii). Let si be the index set of the mesh points in separator
i, and Ni be the set of neighbors [39] of a node i, defined as follows.

Definition 2.1. A neighbor j of node i is an ancestor node of i in the assembly
tree T satisfying

• either A|sj×si has nonzero entries,
• or a nonzero entry or fill-in is introduced into A|sj×si due to the elimination
of a descendant of i in the factorization, i.e., A|sj×si = 0 but L|sj×si has
nonzero entries.

For example, in Figure 1, N2 = {3,7,15}, N3 = {7,15}. Note that N3 includes
separator 15 because the elimination of separator 2 connects separators 3 and 15.

Before reviewing the structured multifrontal method, we emphasize the following:
• The global sparse factorization is governed by the multifrontal framework,
which follows the assembly tree T .
• HSS techniques are applied locally to the intermediate frontal matrices only.
That is, each (local) HSS tree T corresponds to an individual node/separator
in the (global) assembly tree T ; see Figure 1(ii).
• The two types of trees T and T are independent of each other. In T for an
HSS matrix, a parent node corresponds to an index set that includes the child
index sets. In T , a parent node and its children correspond to different mesh
point sets. That is, each node corresponds to an independent separator in
the mesh, regardless of the parent/child relationship.

The structured multifrontal scheme proceeds as follows. For each node i of T , let

(2.4) F0
i =

(
A|si×si (A|sNi

×si)
T

A|sNi
×si 0

)
,

where sNi
can be understood similarly to si. If i is a leaf of T , the associated frontal

matrix is simply Fi ≡ F0
i . If i is a nonleaf node with children c1 and c2, form a frontal

matrix Fi by an assembly operation called extend-add [13]:

(2.5) Fi = F0
i↔� Sc1↔� Sc2 ,

where Sc1 and Sc2 are called update matrices and are obtained from early steps similar
to (2.8) below, and the extend-add operator↔� means that the matrices are permuted
and extended to match the global indices in {si, sNi

}.
The structured multifrontal LDL factorization follows the framework in [39] (par-

tially structured) or [40, 41] (fully structured). Partition Fi as

(2.6) Fi ≡
(

Fi,i FT
Ni,i

FNi,i FNi,Ni

)
,

so that Fi,i corresponds to the index set si. Construct an HSS approximation to Fi

with generators Di, Ui, etc., so that Fi,i and FNi,Ni
correspond to two sibling nodes

k and k̄ of the HSS tree T , respectively; see Figure 2.
Next, compute a block LDL factorization

Fi =

(
I

LNi,i I

)(
Fi,i

Si

)(
I (LNi,i)

T

I

)
,

where

(2.7) LNi,i = FNi,iF
−1
i,i ,
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Fig. 2. Illustration of an HSS form and the corresponding HSS tree used for a frontal matrix Fi.

and Si is the update matrix of the form

(2.8) Si = FNi,Ni
− FNi,iF

−1
i,i FT

Ni,i.

After the HSS approximation of Fi, FNi,i (as one of its off-diagonal blocks) looks like

(2.9) FNi,i ≈ Uk̄B
T
k U

T
k .

We then have

(2.10) Si ≈ FNi,Ni
− Uk̄B

T
k (U

T
k F−1

i,i Uk)BkU
T
k̄ .

Remark 2.1. HSS approximation errors are extensively studied in [37]. For exam-
ple, if all the HSS blocks are compressed with a relative accuracy τ , then the relative
HSS approximation error in the Frobenius norm is O(

√
r logN)τ . In other words,

the error accumulation factor is O(
√
r logN). (This may possibly even be reduced to

O(logN) [5, Corollary 6.18].) If all the frontal matrices are approximated, we expect
a similar effect in the error accumulation, due to the similarity in the hierarchical
structures of the assembly tree and the HSS tree. That is, the overall accumulation
factor is likely a low-order power of O(

√
r logn). A more precise estimation will be

conducted in the future for all the factorization steps. Numerical tests indicate that
the overall approximation error is usually well controlled.

Since we are interested in the selected inversion, unlike the method in [39], an
HSS inverse F−1

i,i is computed here (see section 3.1). Theorem 3.4 below indicates
that the information in the inversion of Fi,i can be used to quickly form (2.10).

In practice, a switching level ls [39, 41] is also involved, so that standard dense
factorizations are used when a node of the assembly tree T is below level ls; this is to
optimize the complexity (see section 4).

Remark 2.2. The structured multifrontal LDL factorization we implement in-
volves a shortcut in [39] which does not affect the performance of the later inversion.
The shortcut is to use dense update matrices, so that dense frontal matrices are formed
first and then approximated by HSS forms. This has O(rN2) complexity for local HSS
compression, and makes the overall multifrontal factorization cost suboptimal, but is
much simpler to use. The reasons for this shortcut are clarified in [39].

• This multifrontal algorithm is designed to take quite general sparse matrices
as inputs, without specific information on the PDE or geometry. If the up-
date matrices are in HSS forms, they may potentially need to be permuted
arbitrarily in the assembly operation (2.5). Designing such a general scheme
would be unnecessarily sophisticated. However, when the update matrices
are kept dense, (2.5) is straightforward.
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• As shown in [39], for 2D and 3D problems satisfying certain rank patterns, the
difference in the complexity between this factorization (with the shortcut) and
a fully structured factorization (with all HSS local operations) is insignificant.
For both versions, the factorization complexity is up to O(n log2 n) in two
dimensions and up to O(n4/3 logn) in three dimensions.
• Most importantly, the resulting factors are still structured, just like in a fully
structured multifrontal method. (Therefore, this shortcut does not affect the
complexity of the later selected inversion, which is the focus of this work.)

3. Structured sparse selected inversion. We then describe our structured
selected inversion scheme for A based on its structured LDL factors. After the struc-
tured multifrontal factorization, suppose A is approximated by Ã. That is, the struc-
tured factors are the exact factors of Ã. Since no approximation is involved in the
inversion stage, we use notation such as Fi to denote its HSS approximation, and L
to denote the structured factor. (This highly simplifies the notation that is otherwise
very messy due to the multilevel approximations in the factorization stage.) Let

(3.1) C = Ã−1.

Thus, our selected inversion computes diag(C) which approximates diag(A−1). We
start with the discussion of an HSS inversion algorithm, as needed in the scheme. The
HSS inversion also benefits the computation of the update matrices Si.

3.1. HSS inversion and fast computation of the update matrices. An
HSS inversion algorithm is proposed in [16], and the idea is to recursively apply the
SMW formula after writing an HSS matrix as a block diagonal matrix plus a low-rank
update (see (2.1)). A slightly modified form of the SMW formula is used in [16] and
can be derived (based on the standard version) in a clearer way as follows. Assume all
the matrices in the following derivation are of appropriate sizes, and all the relevant
inverses exist, then

(D + UBV T )−1 = D−1 −D−1U(B−1 + V TD−1U)−1V TD−1

(3.2)

= D−1 −D−1U(B−1 + D̂−1)−1V TD−1 (D̂ = (V TD−1U)−1)

= D−1 −D−1UB(D̂ +B)−1D̂V TD−1

= D−1 −D−1U [((D̂ +B)− D̂)(D̂ +B)−1]D̂V TD−1

= (D−1 −D−1UD̂V TD−1) +D−1UD̂(D̂ +B)−1D̂V TD−1.

With this formula, a simplification of the HSS inversion algorithm in [16] for a
symmetric HSS matrix F is outlined below. The inputs of this algorithm are the HSS
generators Ui, Ri, Bi, Di of F , and the outputs are the HSS generators Ũi, R̃i, B̃i, D̃i

of F−1. In the following two subsections, D̄i, Ūi, Ḡi, D̂i, Ĝi are intermediate results
in the inversion, and Gi (for a nonleaf node i) is used only for the derivation and is
not actually computed.

3.1.1. Basic HSS inversion in terms of two levels. To motivate the HSS
inversion procedure, first consider a two-level symmetric HSS form

(3.3) D3 =

(
D1

D2

)
+

(
U1

U2

)(
B1

BT
1

)(
UT
1

UT
2

)
.
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According to (3.2),

(3.4) D−1
3 = diag(G1, G2) + diag(Ũ1, Ũ2)D̄

−1
3 diag(ŨT

1 , ŨT
2 ),

where

Gj = D−1
j −D−1

j UjD̂jU
T
j D−1

j , Ũj = D−1
j UjD̂j , j = 1, 2, with(3.5)

D̂j = (UT
j D−1

j Uj)
−1, j = 1, 2,(3.6)

D̄i =

(
D̂c1 Bc1

BT
c1 D̂c2

)
, i = 3 (c1 = 1, c2 = 2).(3.7)

3.1.2. General HSS inversion. To generalize to more levels, we consider a
postordered HSS tree consisting of three levels and 7 nodes, with node 7 as the root,
nodes 3, 6 (children of 7) at the next level, and nodes 1, 2 (children of 3) and 4, 5
(children of 6) at the leaf level. A corresponding symmetric HSS matrix looks like

D7 =

(
D3

D6

)
+

(
U3

U6

)(
B3

BT
3

)(
UT
3

UT
6

)
,

where D3, D6, U3, U6 are in nested forms just like (2.1)–(2.2) (with i = 3 or 6). Since
D3 and D6 are two-level HSS forms, the two-level HSS inversion above yields D−1

3 in
(3.4) and also D−1

6 . The Ũ generators associated with the leaves are obtained.
On the other hand, by treating D7 itself as a two-level HSS form, we can get

(3.8) D−1
7 = diag(G3, G6) + diag(Ũ3, Ũ6)D̄

−1
7 diag(ŨT

3 , ŨT
6 ),

where G3, G6, Ũ3, Ũ6 are defined just like in (3.5) with j = 3 or 6, and D̄7 is defined
just like in (3.7) with i = 7. Let

Ĝ7 = D̄−1
7 ≡

(
Ĝ7;1,1 Ĝ7;1,2

Ĝ7;2,1 Ĝ7;2,2

)
,

where Ĝ7 is partitioned as in (3.8). Then,

D−1
7 =

(
G3 + Ũ3Ĝ7;1,1Ũ

T
3 Ũ3Ĝ7;1,2Ũ

T
6

Ũ6Ĝ7;2,1Ũ
T
3 G6 + Ũ6Ĝ7;2,2Ũ

T
6

)
.

Thus, we can set

(3.9) B̃3 = Ĝ7;1,2, D̃3 = G3 + Ũ3Ĝ7;1,1Ũ
T
3 , Ũ3 = D−1

3 U3D̂3,

where D̂3 is defined just like in (3.6) with j = 3. (Here, we focus on node 3 and its
descendants. The study of node 6 and its descendants is similar.)

We then need to resolve the following issues:
1. D̄7 and Ũ3 involve D̂3, and the computation of D̂3 = (UT

3 D−1
3 U3)

−1 needs
D−1

3 and a nested basis matrix U3, which are not explicitly available;
2. Ũ3 should appear as a nested basis matrix, so we need to find R̃1 and R̃2;
3. D̃3 itself is a two-level HSS form, so we need to find D̃1, D̃2, B̃1.

For these purposes, we introduce the following simple lemma.
Lemma 3.1. The matrices in (3.5)–(3.7) satisfy

UT
j Ũj = I, UT

j GjUj = 0, j = 1, 2,

diag(UT
c1 , U

T
c2)D

−1
i diag(Uc1 , Uc2) = D̄−1

i , i = 3.
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Proof. From (3.5) and (3.6), we have

UT
j Ũj = UT

j (D−1
j UjD̂j) = D̂−1

j D̂j = I,

UT
j GjUj = UT

j (D−1
j −D−1

j UjD̂jU
T
j D−1

j )Uj

= UT
j D−1

j Uj − UT
j D−1

j UjD̂jU
T
j D−1

j Uj = D̂−1
j − D̂−1

j D̂jD̂
−1
j = 0.

From these two results and (3.4), for i = 3 we have

diag(UT
c1 , U

T
c2)D

−1
i diag(Uc1 , Uc2)

= diag(UT
c1 , U

T
c2)[diag(Gc1 , Gc2) + diag(Ũc1 , Ũc2)D̄

−1
i diag(ŨT

c1 , Ũ
T
c2)] diag(Uc1 , Uc2)

= diag(UT
c1Gc1Ũc1 , U

T
c2Gc2Uc2) + diag(UT

c1Ũc1 , U
T
c2Ũc2)D̄

−1
i diag(ŨT

c1Uc1 , Ũ
T
c2Uc2)

= diag(0, 0) + diag(I, I)D̄−1
i diag(I, I) = D̄−1

i .

Then we resolve the three issues above Lemma 3.1. First, we derive a convenient
way to find D̂3 = (UT

3 D−1
3 U3)

−1. This is based on the following lemma.
Lemma 3.2. D̄i in (3.7) satisfies

(3.10) UT
i D−1

i Ui = ŪT
i D̄−1

i Ūi with Ūi =

(
Rc1

Rc2

)
, i = 3.

Thus, D̂i = (ŪT
i D̄−1

i Ūi)
−1 (which does not involve the nested forms Di, Ui).

Proof. According to the nested form of Ui and Lemma 3.1,

UT
i D−1

i Ui =
(
RT

c1 RT
c2

)( UT
1

UT
2

)
D−1

i

(
U1

U2

)(
Rc1

Rc2

)
= ŪT

i D̄−1
i Ūi.

Second, we find R̃1 and R̃2 in the nested form of Ũ3:(
Ũ1

Ũ2

)(
R̃1

R̃2

)
= D−1

3 U3D̂3 (from (3.9)).

By Lemma 3.1, we can multiply diag(UT
1 , UT

2 ) on the left of both sides to get(
R̃1

R̃2

)
=

(
UT
1

UT
2

)
D−1

3 U3D̂3 =

(
UT
1

UT
2

)
D−1

3

(
U1

U2

)(
R1

R2

)
D̂3(3.11)

= D̄−1
3 Ū3D̂3 (from Lemma 3.1 and Ū3 in (3.10)).

This gives a formula for computing R̃1 and R̃2.
Third, we find D̃1, D̃2, B̃1. From (3.4), (3.9), and the nested form of Ũ3, we have

D̃3 = G3 + Ũ3Ĝ7;1,1Ũ
T
3 = (D−1

3 −D−1
3 U3D̂3U

T
3 D−1

3 ) + Ũ3Ĝ7;1,1Ũ
T
3

= D−1
3 − Ũ3D̂

−1
3 ŨT

3 + Ũ3Ĝ7;1,1Ũ
T
3 (from (3.9))

= (diag(G1, G2) + diag(Ũ1, Ũ2)D̄
−1
3 diag(ŨT

1 , ŨT
2 ))− Ũ3D̂

−1
3 ŨT

3 + Ũ3Ĝ7;1,1Ũ
T
3

= diag(G1, G2) + diag(Ũ1, Ũ2)

[
D̄−1

3 −
(

R̃1

R̃2

)
D̂−1

3

(
R̃T

1 R̃T
2

)
+

(
R̃1

R̃2

)
Ĝ7;1,1

(
R̃T

1 R̃T
2

)]
diag(ŨT

1 , ŨT
2 ).
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Define

Ḡ3 = D̄−1
3 −

(
R̃1

R̃2

)
D̂−1

3

(
R̃T

1 R̃T
2

)
(3.12)

= D̄−1
3 − D̄−1

3 Ū3D̂3D̂
−1
3 D̂3Ū

T
3 D̄−1

3 (from (3.11))

= D̄−1
3 − D̄−1

3 Ū3D̂3Ū
T
3 D̄−1

3 ,

Ĝ3 = Ḡ3 +

(
R̃1

R̃2

)
Ĝ7;1,1

(
R̃T

1 R̃T
2

)
≡
(

Ĝ3;1,1 Ĝ3;1,2

Ĝ3;2,1 Ĝ3;2,2

)
,(3.13)

where Ĝ3 is partitioned conformably. Then

D̃3 = diag(G1, G2) + diag(Ũ1, Ũ2)Ĝ3 diag(Ũ
T
1 , ŨT

2 )

=

(
G1 + Ũ1Ĝ3;1,1Ũ

T
1 Ũ1Ĝ3;1,2Ũ

T
2

Ũ2Ĝ3;2,1Ũ
T
1 G2 + Ũ2Ĝ3;2,2Ũ

T
2

)
.

Thus, we obtain the following generators:

(3.14) D̃1 = G1 + Ũ1Ĝ3;1,1Ũ
T
1 , D̃2 = G2 + Ũ2Ĝ3;2,2Ũ

T
2 , B̃1 = Ĝ3;1,2.

In general HSS inversion with more levels, the generators of F−1 can be similarly
found. (The derivation is similar to the process above. Lemma 3.3 below shows some
essential ideas by induction. Another way is based on a telescoping HSS representation
in [16]. We do not repeat the details since they do not affect the understanding of
our later discussions on selected inversion.) The procedure can be organized into two
traversals of the HSS tree T . In a bottom-up traversal, define hierarchically

D̄i = Di, Ūi = Ui, D̂i = (ŪT
i D̄−1

i Ūi)
−1 (i: leaf)

D̄i =

(
D̂c1 Bc1

BT
c1 D̂c2

)
, Ūi =

(
Rc1

Rc2

)
, D̂i = (ŪT

i D̄−1
i Ūi)

−1 (i: nonleaf).(3.15)

(The derivations above and Lemma 3.3 below indicate that, D̄i, Ūi can be understood
as generators of an intermediate reduced HSS matrix [16, 39].) Then compute

(3.16) Ũi = D̄−1
i ŪiD̂i (i: leaf) or

(
R̃c1

R̃c2

)
= D̄−1

i ŪiD̂i (i: nonleaf);

see, e.g., (3.5) and (3.11). Proceed with these steps for the nonleaf nodes i. When
the node i = root(T ) is reached, compute only D̄i as in (3.15).

In a top-down traversal of T , we find the D̃, B̃ generators of F−1. For i = root(T ),
let Ĝi ≡ D̄−1

i and partition Ĝi conformably following (3.15) as

(3.17) Ĝi =

(
Ĝi;1,1 Ĝi;1,2

Ĝi;2,1 Ĝi;2,2

)
.

Then let

(3.18) B̃c1 = Ĝi;1,2.

For a nonleaf node i < root(T ), let

Ḡi = D̄−1
i − D̄−1

i ŪiD̂iŪ
T
i D̄−1

i ,(3.19)

Ĝi = Ḡi +

(
R̃c1

R̃c2

)
Ĝpar(i);j,j

(
R̃T

c1 R̃T
c2

)
,



1294 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

where j = 1 or 2, depending on whether i is a left or a right child of par(i). (Ḡi can be
understood as a diagonal block of the inverse of a reduced HSS matrix [16]; see, e.g.,
(3.5) and (3.12). Ĝi is the sum of Ḡi and a low-rank contribution from the parent
level; see, e.g., (3.13).) Then partition Ĝi as in (3.17), and set B̃c1 as in (3.18).

Repeat these until all the nonleaf nodes are visited. Then for each leaf i, define
Ḡi as in (3.19) and let

(3.20) D̃i = Ḡi + ŨiĜpar(i);j,jŨ
T
i ,

where j = 1 or 2, depending on whether i is a left or a right child of par(i); see, e.g.,
(3.14). Then we have the HSS generators D̃i, Ũi, R̃i, B̃i of F

−1.

3.1.3. Fast computation of the update matrices. The HSS inversion is ap-
plied to Fi,i in (2.6) when we compute the diagonal blocks of C. In addition, the
information computed in the inversion of Fi,i can also help to speed up the computa-
tion of the update matrix Si in (2.10) in the structured multifrontal method, as well
as some additional computations in the selected inversion.

For this purpose, we first show that the results in Lemmas 3.1 and 3.2 can be
generalized.

Lemma 3.3. Let Gi = D−1
i −D−1

i UiD̂iU
T
i D−1

i for a node i �= root(T ), then

UT
i D−1

i Ui = ŪT
i D̄−1

i Ūi = D̂−1
i ,(3.21)

UT
i Ũi = I, UT

i GiUi = 0,

diag(UT
c1 , U

T
c2)D

−1
i diag(Uc1 , Uc2) = D̄−1

i (i: nonleaf).

Proof. We only need to prove (3.21). The reason is, once (3.21) holds, the other
formulas can be proved in the same way as in the proof of Lemma 3.1.

We show UT
i D−1

i Ui = ŪT
i D̄−1

i Ūi = D̂−1
i by induction. Let Ti denote the subtree

of T associated with node i and its descendants. The induction is done on the number
of levels l of Ti. The result holds for Ti with two levels, as in Lemma 3.1. Assume
the result holds for any subtree of T with up to l− 1 levels. We show it also holds for
Ti with l levels. Writing Di as a block diagonal plus a low-rank form (see, e.g., (3.3))
and applying the modified SMW formula (3.2) yield

D−1
i = diag(D−1

c1 , D−1
c2 )− diag(D−1

c1 Uc1 , D
−1
c2 Uc2)(3.22)

·
[
H−1−H−1

((
Bc1

BT
c1

)
+H−1

)−1

H−1

]
diag(UT

c1D
−1
c1 , UT

c2D
−1
c2 ),

where

(3.23) H = diag
(
UT
c1D

−1
c1 Uc1 , UT

c2D
−1
c2 Uc2

)
.

According to the nested form of Ui in (2.2), we have

UT
i D−1

i Ui =
(
RT

c1 RT
c2

)
H

(
Rc1

Rc2

)
−
(
RT

c1 RT
c2

)
HH−1H

(
Rc1

Rc2

)

+
(
RT

c1 RT
c2

)
HH−1

((
Bc1

BT
c1

)
+H−1

)−1

H−1H

(
Rc1

Rc2

)

=
(
RT

c1 RT
c2

)( (UT
c1D

−1
c1 Uc1)

−1 Bc1

BT
c1 (UT

c2D
−1
c2 Uc2)

−1

)−1(
Rc1

Rc2

)
.
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Fig. 3. A pictorial illustration of the formula in Theorem 3.4.

Since c1 and c2 are at level l − 1, by induction,

(3.24) UT
c1D

−1
c1 Uc1 = ŪT

c1D̄
−1
c1 Ūc1 = D̂−1

c1 , UT
c2D

−1
c2 Uc2 = ŪT

c2D̄
−1
c2 Ūc2 = D̂−1

c2 .

Thus, UT
i D−1

i Ui = ( RT
c1 RT

c2 )

(
D̂c1 Bc1

BT
c1

D̂c2

)−1 (
Rc1

Rc2

)
= ŪT

i D̄−1
i Ūi.

Equation (3.21) illustrates an idea of reduced matrices just like that in [39]. Thus,
to compute the update matrix Si in (2.10), we can avoid directly using the HSS form
of F−1

i,i ≡ D−1
k in UT

k D−1
k Uk. The following result is a direct corollary of Lemma 3.3.

Theorem 3.4. Suppose Di, Ui, etc., are the HSS generators of Fi,i in (2.6). Then

UT
k F−1

i,i Uk = ŪT
k D̄−1

k Ūk,

where the HSS tree of Fi,i has k nodes and D̄k is given in (3.15) with i = k in the
HSS inversion of Fi,i. Therefore, Si in (2.10) can be quickly computed as

FNi,Ni
− Uk̄B

T
k (Ū

T
k D̄−1

k Ūk)BkU
T
k̄ .

See Figure 3 for an illustration. This theorem indicates that D̄k plays a role
similar to the final reduced matrix defined in [39] (where Fi,i is factorized by ULV-
type algorithms [10]), yet here we take advantage of HSS inversion. If Fi,i has size
N and HSS rank r, this theorem can help to reduce the complexity of computing
UT
k F−1

i,i Uk from O(r2N) with HSS inversion to only O(r3) with a simple formula

ŪT
k D̄−1

k Ūk.

3.2. Basic ideas of the structured selected inversion. Similarly to the
existing direct selected inversion methods in [23, 25, 26, 27], the extraction of diag(C)
includes two stages, a forward one (block LDL factorization) and a backward one
(inversion). The basic ideas of our structured selected inversion can be illustrated
with a simple example.

Consider a sparse symmetric matrix A after applying nested dissection, as well
as its block LDL factorization:

A =

⎛
⎝ A11 A13

A22 A23

A31 A32 A33

⎞
⎠ =

⎛
⎝ I

I
L31 L32 I

⎞
⎠
⎛
⎝A11

A22

F3

⎞
⎠
⎛
⎜⎝ I LT

31

I LT
32

I

⎞
⎟⎠ ,

where A33 corresponds to the (top-level) separator, and

L31 = A31A
−1
11 , L32 = A32A

−1
22 , F3 = A33 − L31A11L

T
31 − L32A22L

T
32.

When A results from a problem with the low-rank property, F3 can be approx-
imated by an HSS form, and the above factorization is performed (recursively) in a
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structured way (as the structured multifrontal factorization in section 2). Then the
resulting factors are structured or data sparse.

In the inversion stage, we have

A−1 =

⎛
⎝ I −LT

31

I −LT
32

I

⎞
⎠
⎛
⎜⎝ A−1

11

A−1
22

F−1
3

⎞
⎟⎠
⎛
⎜⎝ I

I

−L31 −L32 I

⎞
⎟⎠

(3.25)

=

⎛
⎜⎜⎝
(

A−1
11

A−1
22

)
+

(
−LT

31

−LT
32

)
F−1

3

(
−L31 −L32

) (
−LT

31F
−1
3

−LT
32F

−1
3

)
(
−F−1

3 L31 −F−1
3 L32

)
F−1

3

⎞
⎟⎟⎠ .

Thus,

(3.26) diag
(
A−1

)
=

⎛
⎜⎝

diag(A−1
11 + LT

31F
−1
3 L31)

diag(A−1
22 + LT

32F
−1
3 L32)

diag(F−1
3 )

⎞
⎟⎠ ,

where −F−1
3 L31, −F−1

3 L32, and F−1
3 are submatrices of A−1 corresponding to the

nonzero blocks of L. This also means that the extraction of diag
(
A−1

)
needs the

computation of the off-diagonal blocks of A−1 that fall into the block nonzero pattern
of the L factor from the LDL factorization [32].

With the structured factorization, L and F3 are approximated by data-sparse
forms, all the operations in (3.26) can be performed via structured (HSS or low rank)
operations. For example, the HSS inversion in section 3.1 can be used to compute F−1

3 ,
and multiplications of HSS matrices and low-rank matrices are used for −F−1

3 L31 and
−F−1

3 L32. The idea can then be recursively applied.
Remark 3.1. Since C is generally a dense matrix, a full direct inversion for (3.26)

costs O(n3), which is prohibitive for large n and is impractical. In Table IV of [27],
some test examples are given. For small or modest n, the selected inversion is already
at least 13 times faster than the full inversion, and often hundreds of times faster.
For example, for the test matrix pwtk of size n = 217,918 in section 5, the selected
inversion is 353 times faster. In this work, we will further show that our structured
selected inversion is faster than the (nonstructured) selected inversion.

3.3. Structures within C and general structured selected inversion. In
the general selected inversion, the first stage is a structured multifrontal LDL fac-
torization as in section 2.2, and the second stage is a structured inversion. In the
factorization stage, we traverse the assembly tree T in its postorder, and the re-
sulting factors are in data-sparse forms (HSS or low rank). We then focus on the
inversion stage, where we traverse T in its reverse postorder. We use Ci,i to denote
the diagonal block C|si×si of C in (3.1) corresponding to node i of T , and use CNi,i

to denote the off-diagonal block C|sNi
×si of C with Ni in Definition 2.1. See (3.25)

for an example where, for i = 2, we have Ci,i corresponding to A−1
22 +LT

32F
−1
3 L32 and

CNi,i corresponding to −F−1
3 L32.

For the node k ≡ root (T ), the corresponding diagonal block of C is

Ck,k = F−1
k .
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Apply the HSS inversion procedure in section 3.1 to the HSS form of the final frontal
matrix Fk. The diagonal blocks of Ck,k are simply the D̃ generators of the resulting
HSS form of Ck,k as in (3.20).

For a node i of T with i < k, we show a structured computation of Ci,i. Let li be
the row index in A that the first row of A|si×si in (2.4) corresponds to. The derivation
of the representation of Ci,i follows directly from (3.25)–(3.26):

(3.27) Ci,i = F−1
i,i + (L|(li+1:n)×(li:li+1−1))

TC|(li+1:n)×(li+1:n)L|(li+1:n)×(li:li+1−1).

Since L|(li+1:n)×(li:li+1−1) has many zero blocks (following nested dissection), only the
entries of C|(li+1:n)×(li+1:n) within the block nonzero pattern of L|(li+1:n)×(li:li+1−1) are
needed to compute Ci,i [32]. Thus, following Definition 2.1 for Ni, we let

LT
Ni,i =

(
(L|sj1×si)

T (L|sj2×si)
T · · · (L|sjα×si)

T
)
,

where we suppose

(3.28) Ni ≡ {j1, j2, . . . , jα}.

We can similarly form a matrix CNi,Ni
from C|(li+1:n)×(li+1:n) so that the following

formulas are used for the actual construction of Ci,i in (3.27):

Ci,i = F−1
i,i + LT

Ni,iCNi,Ni
LNi,i = F−1

i,i − LT
Ni,iCNi,i with(3.29)

CNi,i = −CNi,Ni
LNi,i.(3.30)

The extraction of (the diagonal blocks of) Ci,i in (3.29) involves these steps:
• apply HSS inversion to the HSS form of Fi,i to extract (the diagonal generators
of) F−1

i,i ;
• compute CNi,i in (3.30) via the low-rank structure of LNi,i and the rank
structure of CNi,Ni

that has already been computed;
• compute LT

Ni,i
CNi,i in (3.29) via the low-rank structures of LNi,i and CNi,i.

The first step is shown in section 3.1. We thus focus on the latter two steps.
First, consider LNi,i. Recall that FNi,i is in a low-rank form (2.9). Thus, LNi,i is also
in a low-rank form (noticing the notation assumption above (3.1)):

(3.31) LNi,i = FNi,iF
−1
i,i = Uk̄B

T
k (U

T
k F−1

i,i ).

We need to compute UT
k F−1

i,i , where Uk is a nested basis matrix. Here, instead of

using HSS solutions or HSS matrix-vector multiplications, we can compute UT
k F−1

i,i

with a more compact form based on an idea similar to Theorem 3.4.
Theorem 3.5. With the notation in Lemma 3.3 and Theorem 3.4, we have

UT
k F−1

i,i = ŪkD̄
−1
k diag(ŨT

k1
, ŨT

k2
),

where k1 and k2 are the left and right children of k, respectively.
Proof. Similarly to the proof of Lemma 3.3, we use induction and just show the

general induction step UT
i D−1

i = ŪiD̄
−1
i diag(ŨT

c1 , Ũ
T
c2) for a nonleaf node i. According

to (3.22), (3.23), and the nested form of Ui,

UT
i D−1

i =
(
RT

c1 RT
c2

)
diag(UT

c1D
−1
c1 , UT

c2D
−1
c2 )−

(
RT

c1 RT
c2

)
·H
[
H−1 −H−1

((
Bc1

BT
c1

)
+H−1

)−1

H−1

]
diag(UT

c1D
−1
c1 , UT

c2D
−1
c2 )

=
(
RT

c1 RT
c2

)(( Bc1

BT
c1

)
+H−1

)−1

H−1 diag(UT
c1D

−1
c1 , UT

c2D
−1
c2 ).



1298 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

According to (3.23) and (3.24), H = diag(D̂c1 , D̂c2). Thus,

UT
i D−1

i = ŪT
i

(
D̂c1 Bc1

BT
c1 D̂c2

)−1

diag(D̂c1U
T
c1D

−1
c1 , D̂c2U

T
c2D

−1
c2 )

= ŪT
i D̄−1

i diag(D̂c1U
T
c1D

−1
c1 , D̂c2U

T
c2D

−1
c2 ).

Dc1 and Dc2 are submatrices of Di and are also HSS. Let j1 and j2 be the children
of c1. By induction,

D̂c1U
T
c1D

−1
c1 = D̂c1(Ū

T
c1D̄

−1
c1 diag(ŨT

j1 , Ũ
T
j2)) = (D̂c1Ū

T
c1D̄

−1
c1 ) diag(ŨT

j1 , Ũ
T
j2)

=
(
R̃T

j1
R̃T

j2

)
diag(ŨT

j1 , Ũ
T
j2) = ŨT

c1 ,

where (3.16) is used with i replaced by c1. Similarly, we have D̂c2U
T
c2D

−1
c2 = ŨT

c2 , and
then the theorem holds.

The benefit of this formula can be seen from a pictorial illustration similar to
Figure 3. By this formula, LNi,i in (3.31) can be written in a compact form

LNi,i = Uk̄B
T
k (ŪkD̄

−1
k diag(ŨT

k1
, ŨT

k2
)).

Note that at this point, we leave LNi,i in the above low-rank form, which can be
conveniently multiplied by the structured form of CNi,Ni

later.
Next, we study the structures of some blocks of C. For convenience, we write

down the following simple lemma, which can be proven by definition; see, e.g., [20].
Lemma 3.6. If F is an invertible matrix with HSS rank bounded by r, then F−1

also has HSS rank bounded by r.
Another lemma shows how the addition of matrices with the same off-diagonal

nested bases preserves the structure, and is a direct extension of the results in [39, 42]
and [40, Proposition 3.3].

Lemma 3.7. Assume F is an HSS matrix with generators D,B,U, V , etc., and
corresponds to an HSS tree with root k. Let H be any square matrix with size equal
to the column size of the nested basis matrix Uk. Then the following matrix is also
an HSS matrix:

F + UkHV T
k ,

and its U, V,R,W generators are the same as those of F , and its D,B generators
have the same sizes as (and can be obtained by updating) the D,B generators of F .

We can now prove an important theorem that discloses the rank structures of Ci,i

and CNi,i.
Theorem 3.8. Assume all the frontal matrices in the multifrontal factorization

of A can be approximated by HSS matrices with HSS ranks bounded by r, so that the
factorization is the exact one of Ã. Then for C in (3.1),

(a) Ci,i is an HSS matrix with HSS rank bounded by r;
(b) CNi,i is a low-rank form with rank bounded by r.
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Proof. We prove (a) first. For a node i of T , consider Ci,i in (3.29). The HSS
structure of F−1

i,i follows from Lemma 3.6. According to (3.31) and Theorem 3.5,

Ci,i = F−1
i,i + LT

Ni,i
CNi,Ni

LNi,i

(3.32)

= F−1
i,i + diag(Ũk1 , Ũk2)[(B

T
k ŪkD̄

−1
k )T (UT

k̄ CNi,Ni
Uk̄)(B

T
k ŪkD̄

−1
k )]︸ ︷︷ ︸

H

diag(ŨT
k1
, ŨT

k2
)

≡ F−1
i,i + diag(Ũk1 , Ũk2)H diag(ŨT

k1
, ŨT

k2
).

This indicates that diag(Ũk1 , Ũk2) gives a column basis of LT
Ni,i

CNi,Ni
LNi,i. On the

other hand, Ũk1 and Ũk2 are also the generators of F−1
i,i that give the column bases of

its appropriate off-diagonal blocks. In another word, the off-diagonal blocks of F−1
i,i

and LT
Ni,i

CNi,Ni
LNi,i have the same nested basis information. More specifically, we

can partition the right-hand side of (3.32) conformably into a block 2× 2 form:

Ci,i =

(
(F−1

i,i )11 (F−1
i,i )12

(F−1
i,i )21 (F−1

i,i )22

)
+

(
Ũk1

Ũk2

)(
H11 H12

H21 H22

)(
ŨT
k1

ŨT
k2

)

=

(
(F−1

i,i )11 + Ũk1H11Ũ
T
k1

(F−1
i,i )12 + Ũk1H12Ũ

T
k2

(F−1
i,i )21 + Ũk2H21Ũ

T
k1

(F−1
i,i )22 + Ũk2H22Ũ

T
k2

)
.

According to Lemma 3.7, the (1, 1) and (2, 2) blocks of the above matrix are HSS
forms, and the HSS generators are just those of F−1

i,i , except the entries (but not the

sizes) of the D̃, B̃ generators of F−1
i,i are updated. In addition, the (1, 2) block is

(F−1
i,i )12 + Ũk1H12Ũ

T
k2

= Ũk1(B̃k1 +H12)Ũ
T
k2
,

and the size of B̃k1 +H12 is bounded by r.
Thus, Ci,i has the same Ũ , R̃ generators as F−1

i,i , and the summation on the
right-hand side of (3.32) does not increase the HSS rank, which remains bounded by
r.

For (b), CNi,i has a low-rank form

CNi,i = −CNi,Ni
LNi,i = −(CNi,Ni

Uk̄)B
T
k (ŪkD̄

−1
k diag(ŨT

k1
, ŨT

k2
)).

Since Bk is an HSS generator of Fi and has size bounded by r, the right-hand side
has rank bounded by r.

Therefore, the blocks of CNi,Ni
in (3.29) can be conveniently represented by HSS

or low-rank forms, which then participate in the computation of Ci,i. This is illus-
trated in Figure 4.

The formula (3.32) in the proof above gives our structured method for computing
Ci,i. For notational convenience, let

(3.33) UNi
= CNi,Ni

Uk̄, Bi = Bk, VT
i = ŪkD̄

−1
k diag(ŨT

k1
, ŨT

k2
);

then

CNi,i = −UNi
BT
i VT

i ,(3.34)

Ci,i = F−1
i,i − LT

Ni,iCNi,i = F−1
i,i + ViBiUT

k̄ UNi
BT
i VT

i .(3.35)
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(i) Structures in the factors (ii) Structures in block lower-triangular C

Fig. 4. The rank structures in the LDL factors of Ã and in C, and the pieces (marked in red)
that are needed to compute Ci,i in (3.29).

We use the low-rank form (3.34) to form CNi,i, which is then used in the computation
of Ci,i as in (3.35). The structured forms of both CNi,i and Ci,i then participate in
the later inversion steps associated with the descendants of node i.

One task is to compute the product UNi
= CNi,Ni

Uk̄ in (3.33). Note that Uk̄ is
a column basis matrix of an off-diagonal block of Fi in (2.9), and is hierarchically
represented by lower-level generators. Thus, the cost of computing UNi

is comparable
to the multiplication of an HSS matrix and a nested basis matrix. For simplicity, we
first briefly show how to compute CNi,Ni

Uk̄ with an explicit form of Uk̄. For meshes
with local connectivity, Ni in (3.28) usually has only a finite/small number of nodes.
Thus, this only involves a small number of HSS matrix-vector products and low-rank
matrix-vector products. That is, we partition Uk̄ into block rows Uj,k̄, for j ∈ Ni, so
that the row size of Uj,k̄, is equal to the row size of Cj,j. Also partition UNi

into block

rows U (i)
j ≡ Cj,Ni

Uk̄ for j ∈ Ni. (3.34) similarly holds for each j ∈ Ni. Thus,

(3.36) U (i)
j = Cj,jUj,k̄, −

∑
t∈Ni,t<j

U (j)
t BT

t VT
t Ut,k̄ − VjBjUT

Nj
Ûj,k̄,

where Ûj,k̄ is obtained by stacking all the blocks Ut,k̄ for t ∈ Ni, t > j. The first term
on the right-hand side involves HSS matrix-vector products, and the remaining two
terms are low-rank matrix-vector products. A fast HSS matrix-vector multiplication

scheme can be found in [9]. U (i)
j can then be quickly computed. After this, stack all

the pieces U (i)
j to get UNi

.
Moreover, since Uk̄ is a nested basis matrix, the cost of multiplying CNi,Ni

and Uk̄

may be lower than straightforward HSS matrix-vector multiplications. The is because
of the existence of possible rank patterns across different levels of the HSS tree (see
the next section). That is, in (2.2), Ui may have a larger column size than Uc1 or Uc2 ,
i.e., the HSS block corresponding to i may have a higher rank than the individual
HSS blocks corresponding to c1 and c2. Thus, multiplying a matrix by the nested
form of Ui may be cheaper than by the explicit form of Ui. With multilevel hierarchy,
the difference in the efficiency can be very significant.
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Table 1

Major structured operations for computing CNi,i and Ci,i.

Formulas Structured operations

CNi,i
CNi,Ni

Uk̄ Multiplication of HSS and nested basis matrices

−UNi
BT
i VT

i Multiplication of nested basis matrices

F−1
i,i HSS inversion

Ci,i ViBiUk̄UNi
BT
i VT

i Multiplications of nested basis matrices

F−1
i,i + ViBiUk̄UNi

BT
i VT

i HSS generator update

Overall, computing CNi,i and Ci,i involves the structured operations in Table 1.
Some of the matrix products are related to the multiplications of HSS matrices. See
[28, section 3.2] for an HSS multiplication scheme. That is, the generators of the
product matrix can be computed following a bottom-up traversal of the HSS tree and
a top-down traversal. (The latter traversal is not needed during the multiplication of
an HSS matrix and a nested basis matrix.) Interested readers can find the detailed
derivation of the algorithm in [28, proof of Theorem 3.2.1].

The results of the matrix multiplications in Table 1 are also structured, i.e., can
be represented by nested basis matrices. (One way to understand this is to use the
idea of the fast multipole method (FMM) [19] when A−1 corresponds to a discretized
Green’s function, together with the fact that CNi,i is an off-diagonal block of A−1.)
Sometimes, after the multiplications, a recompression step [38, section 5] may be
used to recover compact structured forms. That is, in a bottom-up traversal of the
HSS tree, the basis matrices are compressed, and related upper-level generators are
modified. Then in a top-down traversal, the Bi generators are compressed, and the
related lower-level generators are modified.

As an example, for the separator i = 2 in Figures 1 and 4, we haveNi = {3,7,15}.
Then

CN2,N2 =

⎛
⎜⎜⎝

C3,3 V3B3
(

(U (3)
7 )T (U (3)

15 )T
)

(
U (3)
7

U (3)
15

)
BT
3 VT

3

(
C7,7 V7B7UT

N7

UN7BT
7 VT

7 C15,15

)
⎞
⎟⎟⎠ .

See Figure 5 for an illustration of the multiplication of CN2,N2 with Uk̄, where a nested
form of Uk̄ is shown in Figure 6.

The overall structured selected inversion scheme is summarized in Algorithm 1.
As in the structured multifrontal factorization, a switching level ls is involved for the
optimization of the complexity in the next section.

Remark 3.2. Throughout the multifrontal method coupled with nested dissection,
we only need to work on LNi,i and CNi,Ni

, which contain the local subblocks of L and
C, respectively. This naturally takes advantage of the nonzero pattern of L and has
nice data locality. On the other hand, the method in [25, 26] uses the indices of the
nonzero entries of L and it is not immediately clear which dense pieces need to be put
together. In addition, in [26], to find CNi,i, the blocks Cj,i for all the ancestors j of i
are visited. Here, we only visit Ni, which is often just a small subset of the ancestors.
Ni is determined in the symbolic factorization stage after nested dissection.

Remark 3.3. In terms of the memory, in lines 5, 6, 13, and 14 of Algorithm 1,
the storage for the dense or structured blocks of L and Λ may be used to (at least
partly) store CNi,i and Ci,i. Thus, the overall memory for the extraction of diag(C) is
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Fig. 5. The structure of CN2N2
related to Figure 4 (zoomed in) and the multiplication of

CN2N2
with Uk̄, where Uk̄ is shown in Figure 6.

Fig. 6. A nested basis form of Uk̄ in Figure 5.

Algorithm 1. Structured selected inversion for extracting the diago-

nal blocks of A−1.
1: procedure SINV

2: Find the diagonal generators of the HSS inverse Ck,k = F−1
k for k ≡ root (T )

3: for node/separator i of T from k− 1 to 1 do
4: if i is at level l < ls then � Dense extraction below the switching level ls
5: CNi,i ← −CNi,Ni

LNi,i � From (3.30); e.g., (3.25)
6: Ci,i ← F−1

i,i − LT
Ni,i

CNi,i � From (3.29); e.g., (3.25)
7: else � Dense matrix LNi,i below ls
8: Find the HSS generators D̃i and Ũi of F

−1
i,i � Structured F−1

i,i

9: Form Bi and Vi as in (3.33) � Structures of CNi,i

10: for node/separator j ∈ Ni do � Structures of CNi,i

11: Form UNj
as in (3.33) (with i replaced by j)

� With appropriate changes of the detailed matrices
12: end for
13: CNi,i ← −UNi

BT
i VT

i � Low-rank approximation of CNi,i as in Table 1
14: Ci,i ← F−1

i,i + ViBiUk̄UNi
BT
i VT

i � As in Table 1
15: end if
16: end for
17: end procedure
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Table 2

Factorization cost ξfact, inversion cost ξinv, and storage σmem for the extraction of diag(C)
for A discretized on a regular mesh, with the methods in [23, 25, 26, 27] or the dense multifrontal
method.

Mesh ξfact ξinv σmem

2D (m ×m, n = m2) O(n1.5) O(n1.5) O(n logn)

3D (m ×m×m, n = m3) O(n2) O(n2) O(n4/3)

Table 3

Inversion cost ξ̃inv and storage σ̃mem of the structured method for the extraction of diag(C)
for A discretized on a regular mesh, where r is the maximal HSS rank of all the frontal matrices.
(In practice, the HSS ranks may depend on n. The results here based on a maximum rank bound r
would then overestimate the actual costs.)

Mesh ξ̃inv σ̃mem

2D (m×m, n = m2) O(rn) O(rn)

3D (m×m×m, n = m3) O(r3/2n) O(r1/2n)

about the same as that for the LDL factorization. The blocks of L and Λ are accessed
just like in the backward substitution for solving a linear system. Moreover, in the
backward traversal of T , some blocks LNj,j and CNj,j may be discarded when j is not
within any Ni for the remaining nodes i.

4. Complexity optimization. For the purpose of later comparison, we restate
the complexity and memory usage for the direct selected inversion algorithms in [23,
25, 26, 27] as well as the inversion algorithm based on the dense multifrontal method.
Assume A is discretized on a 2D m ×m mesh or a 3D m ×m ×m mesh. Then the
cost ξfact of factorizing A, the cost ξinv of extracting diag(C), and the memory σmem

are reported in Table 2. Here, σmem measures the storage for the LDL factors and the
blocks of C corresponding to the block nonzero pattern of the factors. (Later, we also
use tilde notation for the counts of the structured method. For example, ξ̃inv denotes
the cost of extracting diag(C) with the structured inversion.)

Then we turn to the analysis of our structured method when A has the low-rank
property. The analysis is similar to that for the structured direct solvers in [39, 40].
We first present the traditional case when the HSS ranks of all the frontal matrices in
the LDL factorization are bounded by r, and then show some similar results by letting
r grow following certain patterns. In the following remarks, the cost of factorizing
A and the memory may be slightly different from those in [39, 40], since we try to
optimize the inversion cost.

Remark 4.1. Suppose the structured multifrontal factorization and Algorithm 1
are applied to a discretized matrix A on a 2Dm×mmesh (n = m2) or a 3Dm×m×m
mesh (n = m3), and the HSS ranks of the frontal matrices in the multifrontal method
are bounded by r. Choose the switching level ls = O(logm)−O(log r) of the assembly
tree T so that the inversion costs before and after ls are the same. Then after
ξ̃fact = O(rn log n) flops in two dimensions and ξ̃fact = O(rn4/3) in three dimensions
for the structured factorization,

• the optimal structured inversion costs ξ̃inv are O(rn) in two dimensions and
O(r3/2n) in three dimensions;
• the memory requirements σ̃mem are O(n log r) +O(n log logn) in two dimen-
sions and O(r1/2n) in three dimensions (see Table 3).
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The justification of Remark 4.1 follows similar strategies to [41]. We assume the
root node of T is at level 0, and the leaves are at level lmax = O(logm).

For convenience, we count the number of separators following the proof of [41,
Theorem 4.2]. That is, assume each separator partitions all the directions of a domain
so that it splits the domain into 2d subdomains of the same shape, where d = 2 for
2D and d = 3 for 3D problems. (For example, a separator has a cross shape in two
dinensions.) Thus, at level l of the assembly tree, there are 2d·l separators, each of
the same size O((m

2l
)d−1). The size of a frontal matrix Fi at level l is then

(4.1) N (l) = O

((m
2l

)d−1
)
.

(In selected inversion with the standard multifrontal method, the costs associated with
node i areO((N (l))3). This is precisely why the selected inversion costs in Table 2 have
the same orders as the factorization costs.) In our structured inversion, the factors
are data sparse, and the structured operations such as HSS matrix multiplication,
addition, and inversion at step i cost O(r2N (l)) (see, e.g., [38]).

Unlike the methods in [39, 41], here, we choose the switching level ls to minimize
ξ̃inv, so that ξ̃inv is linear in n, while ξ̃fact and σ̃mem are roughly of the same order
as those in [39, 41]. The dense and structured operations associated with Fi cost
c1(N

(l))3 and c2r
2N (l) flops, respectively, where c1 and c2 are constants, and the

low-order terms are dropped. The total inversion cost is thus

ξ̃inv =

lmax∑
l=ls+1

2d·lc1(N (l))3

︸ ︷︷ ︸
before the switching level

+

ls∑
l=0

2d·lc2r2N (l)

︸ ︷︷ ︸
after the switching level

(4.2)

=

lmax∑
l=ls+1

2d·lc1
(m
2l

)3(d−1)

+

ls∑
l=0

2d·lc2r2
(m
2l

)d−1

.

For the 2D case (d = 2),

ξ̃inv = c1
m3

2ls
+ c2r

2m2ls +O(m2).

With the optimality condition c1
m3

2ls
= c2r

2m2ls , we have 2ls = O(mr ) or ls = lmax −
O(log r), and get the optimal cost ξ̃inv = O(rm2) = O(rn). The storage can be easily
counted. For the 3D case (d = 3), the derivation follows similarly.

In practice, the assumption of bounded off-diagonal numerical ranks in Remark 4.1
is not realistic, and may usually be used for preconditioning. For direct solutions, the
off-diagonal ranks of the frontal matrices usually depend on the HSS block sizes. For
example, if A results from discretized 3D Poisson or Helmholtz equations, it is ob-
served that the off-diagonal numerical ranks of the frontal matrices grow with the
HSS block sizes [11, 38, 39]. A rank relaxation idea in [4, 21, 38] can be used to study
the approximate patterns of such rank growth. A rank pattern rl measures the max-
imum numerical rank of the HSS blocks at level l of the HSS tree. For convenience,
we say that the HSS matrix follows the off-diagonal rank pattern rl. For example,
in Figure 6, upper-level HSS generators are allowed to have larger sizes. It is shown
that even if rl is not bounded, the HSS form may still be very effective. The costs of
HSS construction, factorization, and solution for different rank patterns are given in
[38]. Here, since the main operations in the selected inversion are HSS matrix-vector
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Table 4

Costs ξ̃hssmv of HSS matrix-vector multiplication and ξ̃hssmm of HSS matrix-matrix multipli-
cation with different rank patterns for the HSS blocks.

Rank pattern rl r = maxl rl ξhssmv ξhssmm

O(1) O(1)

O(N)
O(N)O(logpNl) O(logpN)

p > 3 O(N1/p)

O(N
1/p
l ) p = 3 O(N1/3) O(N logN)

p = 2 O(N1/2) O(N logN) O(N3/2)

O(αlmax−lr0)

0 < α <21/3 < O(N1/3)

O(N)

O(N)

α =21/3 O(N1/3) O(N logN)

21/3 < α <21/2 < O(N1/2) O(N logα3
)

α =21/2 O(N1/2) O(N logN) O(N3/2)

or matrix-matrix multiplications, we can get their costs with various rank patterns as
follows, and the derivations are the same as those in [38].

Remark 4.2. Let rl be the maximum rank of the HSS blocks at level l of the
HSS tree for two conformably partitioned HSS matrices F and G of order N , and
Nl = O(N

2l
) be the maximum diagonal block size at level l of the HSS partition.

Assume different rank patterns rl in Table 4 hold. Then the cost of multiplying F
with a vector ranges from O(N) to O(N logN), depending on the actual rank patterns
rl, and the cost of multiplying F and G to get an HSS form of FG ranges from O(N)
to O(N3/2).

The rank patterns rl in Table 4 are studied in detail in [38, 39]. They have
been observed in various practical problems. Some cases can be roughly shown. For
example, for Toeplitz problems in Fourier space, the off-diagonal rank pattern ap-
proximately looks like rl = O(logNl) following the idea of FMM [37]. For discretized
Poisson’s equations in three dimensions, the rank pattern for the intermediate (exact)

Schur complements approximately follows rl = O(N
1/2
l ) under certain conditions [11].

The HSS rank relaxation is further extended to a sparse rank relaxation idea in
[39]. Similarly, we can count the costs of the major operations in Table 1 for computing
CNi,i and Ci,i. We then have the performance results of our structured selected
inversion for more general problems where the frontal matrices in the factorization
have unbounded HSS ranks.

Remark 4.3. Use the notation in Remark 4.1, and assume that any frontal matrix
of size N follows the off-diagonal rank patterns rl in Tables 5 and 6. Then with the
same optimization strategy for ξ̃inv as in Remark 4.1,

• the optimal structured inversion cost ξ̃inv is O(n) in two dimensions and up
to O(n log n) in three dimensions;
• the memory requirement σ̃mem is O(n) in two dimensions and up to O(n log n)
in three dimensions;

The details are given in Tables 5 and 6.
The difference between the justification here and that of Remark 4.1 is using the

results in Table 4 to replace the operation count in (4.2) associated with a frontal
matrix after the switching level. Without loss of generality, we consider one rank

pattern rl = O(N
1/2
l ) for the 3D case, where N has a specific form of N (l) as in (4.1)

for a frontal matrix Fi at level l of the assembly tree. According to Remark 4.2, the
costs of the HSS operations associated with Fi are bounded by c2(N

(l))3/2, where
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Table 5

Inversion cost ξ̃inv and storage σ̃mem of the structured method for the extraction of diag(C) for
the matrix A discretized on a 2D m×m regular mesh, where n = m2, p ∈ N, α > 0, rl is the rank
pattern for a frontal matrix of size N as in [39], and Nl is the maximum diagonal block size at level
l of the HSS partition of the frontal matrix.

Rank pattern rl r = maxl rl ξ̃inv σ̃mem

O(1) O(1)

O(n) O(n)

O((logNl)
p) O((logN)p)

O(N
1/p
l )

p > 3 O(N1/p)

p = 3 O(N1/3)

p = 2 O(N1/2)

O(αlmax−lr0)

0<α<21/3 < O(N1/3)

α = 21/3 O(N1/3)

21/3<α<21/2 < O(N1/2)

α = 21/2 O(N1/2)

Table 6

Inversion cost ξ̃inv and storage σ̃mem of the structured method for the extraction of diag(C) for
the matrix A discretized on a 3D m ×m ×m regular mesh, where n = m3, p ∈ N, α > 0, rl is the
rank pattern for a frontal matrix of size N as in [39], and Nl is the maximum diagonal block size at
level l of the HSS partition of the frontal matrix.

Rank pattern rl r = maxl rl ξ̃inv σ̃mem

O(1) O(1)

O(n) O(n)
O((logNl)

p) O((logN)p)

O(N
1/p
l ), p > 3 O(N1/p)

O(N
1/p
l )

p = 3 O(N1/3)

p = 2 O(N1/2) O(n logn) O(n logn)

O(αlmax−lr0)

0 < α < 21/3 < O(N1/3)

O(n) O(n)α = 21/3 O(N1/3)

21/3<α<21/2 < O(N1/2)

α = 21/2 O(N1/2) O(n logn) O(n logn)

Table 7

Basic idea of a flop count for Remark 4.3.

Level l # of separators Inversion cost with each separator

Dense ls + 1, . . . , lmax 8l at level l c1(N
(l))3

Structured 0, 1, . . . , ls 8l at level l c2(N
(l))3/2 (see rl = O(N

1/2
l ) in Table 4)

c2 is a constant (see rl = O(N
1/p
l ) with p = 2 in Table 4). The count of the total

inversion cost proceeds as in Table 7 (following the discussions above (4.1)).
The inversion cost in three dimensions is thus

ξ̃inv =

lmax∑
l=ls+1

8lc1(N
(l))3 +

ls∑
l=0

8lc2(N
(l))3/2 =

lmax∑
l=ls+1

8lc1

(m
2l

)6
+

ls∑
l=0

8lc2

(m
2l

)3
= c1m

6/8ls + c2m
3ls +O(m3).

With the optimality condition c1m
6/8ls = c2m

3ls, the minimal cost is ξ̃inv = 2c2m
3ls+

O(m3) = O(n log n). The other counts can be shown in the same way.
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According to the remarks above, ξ̃inv is significantly lower than the standard
inversion cost ξinv in Table 2, especially in three dimensions, where ξinv = O(n2).
The memory in three dimensions is reduced from O(n4/3) to at most O(n log n).

Remark 4.4. The shortcut mentioned in Remark 2.2 may be avoided by the
randomized method in [40] (which is much more sophisticated and is slower for modest
n in our tests in MATLAB). In this case, the factorization cost for three dimensions
is O(n) in Remark 4.1, and between O(n) and O(n4/3 logn) in Remark 4.3 [40].
Nevertheless, the inversion costs have the same orders (this is our main focus); see
Remark 2.2.

Remark 4.5. In Algorithm 1, the multiplications such as CNi,Ni
LNi,i may involve

multiple HSS and nested basis matrix multiplications, followed by possible recompres-
sion. Sometimes, it may take less computing time to treat some blocks such as Uk̄ in
Figure 5 as a dense skinny matrix, though this might slightly increase the theoretical
flop counts.

5. Numerical experiments. In this section, we test our algorithms on some
discretized matrices as well as various more general sparse matrices. They include both
2D and 3D problems. Our structured inversion is compared with the direct selected
inversion based on the standard multifrontal method (which has the same complexity
as those in [23, 25, 26, 27]). The algorithms are implemented in MATLAB R2013a
and carried out on a Unix server with 8-core Intel Xeon-E5 CPUs. The simplification
in Remark 4.5 is made in the code.

In order to provide a fair comparison between structured and nonstructured inver-
sion so as to demonstrate the efficiency gained via structured operations, we compare
our structured version with our own nonstructured one, where the nonstructured one
uses the same ordering as the structured one, except with a different switching level
(the top level). In this way, the difference of the two algorithms can be clearly seen
from the flops. On the other hand, if we compare our structured code with another
multifrontal implementation, we may not have access to the flops or a selected inver-
sion code, and even if we do, the difference in the ordering and other implementation
details may affect the comparison. It would be hard to judge whether the performance
difference is due to the implementation or the use of structures.

The following notation is used throughout this section:
• Structured: our new structured selected inversion;
• Standard: the corresponding nonstructured selected inversion which uses
dense matrix operations in both the multifrontal factorization and the se-
lected inversion (here, we simply set the switching level ls in the structured
multifrontal method and Algorithm 1 to be the top level);
• τ : relative compression tolerance used in the HSS construction in Structured

(the off-diagonal numerical ranks of the frontal matrices are dynamically de-
tected in the HSS construction);

• e = ‖x−x̃‖2

‖x‖2
: the relative accuracy, where x = diag(A−1) is computed by

Standard and is treated as the exact result, and x̃ = diag(C) is computed by
Structured;
• ξfact, ξinv, σmem, ξ̃fact, ξ̃inv, σ̃mem, lmax, ls: defined as in the previous section.

In the examples, we also report the structured multifrontal LDL factorization
costs, since the factorization and the flop counts are slightly different from those in
[39]. The memory we report is for the LDL factors (noticing Remark 3.3).

Example 1. Consider the Helmholtz equation

(5.1) [−Δ− ω2v(x)−2]u = f ,
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Table 8

Example 1 (2D case): Factorization flops, memory (number of nonzeros in factors), selected
inversion flops, and relative error e.

Mesh (m×m) 256 × 256 512× 512 1024 × 1024 2048 × 2048

lmax 13 15 17 19

Factorization
Standard 3.84e8 3.43e9 2.87e10 2.41e11

Structured 3.12e8 2.09e9 1.20e10 6.51e10

Memory
Standard 3.07e6 1.46e7 6.77e7 3.11e8

Structured 2.89e6 1.25e7 5.26e7 2.17e8

Inversion
Standard 6.08e8 5.39e9 4.50e10 3.78e11

Structured 6.49e8 3.88e9 2.07e10 9.90e10

e Structured 1.43e−6 4.92e−6 1.32e− 5 4.39e−5

where ω is the angular frequency and v is the P-wave velocity field. The Helmholtz
operator with a frequency 4 Hz in both two dimensions and three dimensions is
considered.

For the 2D case, we use a domain size 10, 240 m in each direction and choose
v = 6000 m/s. The number of grid points in each direction increases, so that the
numerical solution tends to the exact one. Similar test models are often used in
seismic modeling of the earth’s media. The Helmholtz operator is discretized on an
m × m mesh, and the resulting matrix A is of order n = m2 and is indefinite. m
ranges from 256 to 2048. We choose τ = 10−6, and fix the number of levels before the
switching level to be lmax− ls = 9. Here, according to the complexity optimization in
section 4, lmax− ls should remain roughly constant so that the inversion costs before
and after ls are almost equal. The nearly optimal value lmax− ls is thus chosen based
on small problem sizes. This idea is similar to that in [41]. The costs, memory, and
accuracy are reported in Table 8.

In particular, we also plot the costs in Figure 7(i)–(ii) together with reference
lines for O(n). The curve for ξ̃inv is close to the O(n) reference line, which indicates
the nearly linear selected inversion complexity. In fact, let ξ̃inv(n) be the structured
inversion cost corresponding to the problem size n, then when n increases, the ra-
tio ξ̃inv(n)/ξ̃inv(n/4) approaches 4 for Structured and ξinv(n)/ξinv(n/4) approaches
8 for Standard. To better see the prefactors in the complexity for Structured, we
also plot ξ̃fac/n and ξ̃inv/n in Figure 7(iii)–(iv). Though there is no theoretical jus-
tification of the prefactors, ξ̃fac/n and ξ̃inv/n are observed (through curve fitting) to
be close to O(log3 n) and O(log2 n), respectively. On the other hand, the prefactors
ξinv/n for Standard are close to O(n0.5), which is consistent with the complexity
ξinv = O(n1.5). We also achieve reasonable accuracies as roughly determined by the
compression tolerance τ . Since the accuracy measurement e is the relative forward
error in x = diag(A−1), it might be possible for e to increase with n.

Then we consider the Helmholtz operator discretized on a 3D m1×m2×m3 mesh,
and the resulting matrix A is of order n = m1m2m3. The physical parameters are
similar to those of the 2D case. The mesh sizes are 100 × 50 × 50, 100 × 50 × 100,
100× 100× 100, etc., and n doubles every time and ranges from 250,000 to 4,000,000.
We choose τ = 10−5 and fix lmax − ls = 10. The factorization costs, memory sizes,
inversion costs, and accuracy are shown in Table 9. The ratio ξ̃inv(n)/ξ̃inv(n/2) for
Structured decreases from 3.64 to 3.07 when n increases. We expect this ratio to
eventually approach 2 when n becomes sufficiently large.

In Figure 8, we also plot the flops divided by n for both methods. The prefactor
ξ̃inv/n for Structured is also observed to be a low-order power of O(log n) through
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(i) Factorization flops (ii) Inversion flops

(iii) ξfact/n and ξ̃fact/n (iv) ξinv/n and ξ̃inv/n

Fig. 7. Example 1 (2D case): Factorization costs and selected inversion costs (divided by n).

Table 9

Example 1 (3D case): Factorization flops, memory (number of nonzeros in factors), selected
inversion flops, and relative error e.

n (= m1m2m3) 250, 000 500, 000 1, 000, 000 2, 000, 000 4, 000, 000

lmax 13 14 15 16 17

Factorization
Standard 4.16e11 1.62e12 7.60e12 2.89e13 1.11e14

Structured 3.62e11 1.09e12 3.75e12 1.34e13 3.96e13

Memory
Standard 1.67e8 4.28e8 1.18e9 2.91e9 7.64e9

Structured 1.55e8 3.57e8 8.11e8 1.87e9 4.16e9

Inversion
Standard 6.31e11 2.49e12 1.16e13 4.42e13 1.70e14

Structured 5.83e11 2.12e12 6.89e12 2.37e13 7.28e13

e Structured 4.33e− 7 6.84e− 6 8.06e−6 5.85e− 6 3.39e−6

curve fitting. (Ideally, this should be O(log n).) The prefactor ξinv/n for Standard is
close to O(n), which is consistent with the complexity ξinv = O(n2).

Remark 5.1. In practice, the prefactors ξ̃inv/n are slightly higher than the the-
oretical prediction due to several reasons, such as the modest problem sizes, the
complexity of the implementation, and, in particular, the discrepancy between the
theoretical and the practical rank patterns. In Remark 4.3, it is assumed that the
rank patterns hold for all the Schur complements. This is the case if the Schur com-
plements in the relevant problems are exact (as in the exact multifrontal method).
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(i) ξfact/n and ξ̃fact/n (ii) ξinv/n and ξ̃inv/n

Fig. 8. Example 1 (3D case): Factorization costs and selected inversion costs (divided by n).
(Note that the theoretical inversion cost for Structured is O(n logn) and yet the vertical axis is the
cost divided by n, for consistency in the comparison of the two methods.)

However, the Schur complements in the structured factorization are approximate, as
often is in the case of hierarchical structured methods. Within a frontal matrix, the
HSS blocks are hierarchically compressed. Within the structured multifrontal scheme,
lower-level approximate Schur complements are used in later factorizations so that the
structure of upper-level Schur complements may further deviate from the theoretical
rank patterns. It is not yet clear how much the deviation of the rank patterns is likely
as a low-degree power of logn (see Remark 2.1). The deviation also depends on the
problem and the approximation accuracy. Thus in practice, ξ̃inv is likely equal to the
estimates in Remark 4.3 magnified by a low-degree power of logn.

Since the current implementation is in MATLAB and Structured is much more
complicated, its runtime is not very competitive. Structured is slower for smaller
n and has comparable timing to Standard for larger n. For Structured, the ratio
of the timing still approaches 2 when n doubles. For example, for the 3D cases, for
n = 1,000,000, 2,000,000, and 4,000,000, the Structured inversion timings are 275 s,
772 s, and 1980 s, respectively. (In the future, it would also be interesting to compare
our methods with selected inversion algorithms based on other structured methods
such as H-LU factorizations [18, 22].)

Example 2. We then apply our algorithm to more general symmetric sparse
matrices, mostly from the University of Florida Sparse Matrix Collection [12]. They
include several 3D problems and problems with practical background. See Table 10
for the information on the test matrices.

We choose τ to be between 10−5 and 2 × 10−2 so as to reach about four digits
of accuracy or higher. lmax − ls also varies for the different matrices. We report the
factorization and inversion flops for Standard and Structured in Table 11, together
with the accuracy of Structured. Structured is faster in both the factorization and
the inversion. In particular, for shallow_water1 and shallow_water2, which are
quite small, the structured inversion is significantly faster. In fact, according to [13],
shallow_water1 is much slower to solve directly in practice since there are many
denormals in the factorization. Here with our structured factorization and inversion,
shallow_water1 can be solved at less cost with even higher accuracy.

In particular, the ratios of the costs of the two methods are given in Table 12.
Although all the matrix sizes are relatively small, the structured inversion cost is from
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Table 10

Example 2: Test matrices in two and three dimensions from the University of Florida Sparse
Matrix Collection (except the case random), where nnz stands for the number of nonzeros in the
matrix.

Matrix n nnz Description
apache2 715,176 4,817,870 3D finite difference matrix from

APACHE small

Dubcova3 146,689 3,636,643 Matrix from a PDE solver with high
fill-in in the leading submatrix

G3_circuit 1,585,478 7,660,826 Circuit simulation problem

parabolic_fem 525,825 3,674,625 Parabolic FEM problem for constant
homogeneous diffusion-convection
reaction

pwtk 217,918 11,524,432 Stiffness matrix from a pressurized
wind tunnel problem

qa8fm 66,127 1,660,579 3D acoustic FE mass matrix

random 216,000 3,154,318 Ill-conditioned symmetric random matrix
from [40] generated with the MATLAB
function sprandsym following
a 3D tetrahedral grid pattern

shallow_water1 81,920 327,680 Automatic differentiation problem from
shallow water modeling (slower to
solve due to many denormals)

shallow_water2 81,920 327,680 Automatic differentiation problem from
shallow water modeling

wathen120 36,441 301,101 Positive definite matrix in the
GHS psdef group

Table 11

Example 2: Factorization and inversion costs for the matrices in Table 10.

Matrix lmax
Factorization flops Inversion flops

e
Standard Structured Standard Structured

apache2 15 2.82e11 1.35e11 4.42e11 2.19e11 7.94e− 5

Dubcova3 15 2.58e9 1.26e9 4.05e9 2.03e9 4.67e− 5

G3_circuit 17 1.10e11 4.06e10 1.74e11 7.10e10 2.07e− 4

parabolic_fem 15 9.96e9 4.57e9 1.60e10 7.92e9 5.01e−5

pwtk 13 4.36e10 1.11e10 6.81e10 1.63e10 5.22e− 5

qa8fm 14 3.31e10 1.22e10 5.02e10 1.56e10 7.73e− 5

random 15 4.19e11 6.51e10 6.39e11 6.63e10 4.52e− 4

shallow_water1 15 4.64e8 8.93e7 7.17e8 1.11e8 4.39e− 10

shallow_water2 15 4.64e8 1.22e8 7.17e8 1.66e8 6.02e− 9

wathen120 13 3.33e8 1.14e8 5.28e8 1.49e8 7.02e− 5

2.00 to 9.64 times lower. The largest performance improvement is achieved for the
matrix random corresponding to a 3D grid. We also notice that the improvement
in the inversion cost is generally more significant than that in the factorization cost,
which is consistent with the complexity analysis.

Since the implementation is in MATLAB, and the matrix sizes are relatively small,
Structured is not very competitive in the computational timing, and is slightly slower
for some cases. For example, for the case Dubcova3, Standard and Structured take
32 s and 39 s, respectively. We hope a more practical code will provide much better
timing in the future.
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Table 12

Example 2: Ratios of the costs in Table 11 for Standard over those for Structured, which
measure how much faster Structured is than Standard.

ξfact(Standard)

ξ̃fact(Sstructured)

ξinv(Standard)

ξ̃inv(Structured)

apache2 2.09 2.02

Dubcova3 2.05 2.00

G3_circuit 2.71 2.45

parabolic_fem 2.18 2.02

pwtk 3.93 4.18

qa8fm 2.71 3.22

random 6.44 9.64

shallow_water1 5.20 6.46

shallow_water2 3.80 4.32

wathen120 2.92 3.54

6. Conclusions. We show a structured selected inversion scheme for symmetric
sparse matrices. When the matrices have the low-rank property, the selected inversion
cost and the memory requirement are nearly linear in n in both two and three dimen-
sions. This is significantly more efficient than some recently proposed direct selected
inversion methods. The work here serves as a first attempt in applying structured
techniques to selected inversion. We would like to mention that the prefactors in
the complexity of these types of structured factorizations (and inversions) are usually
quite big, which is also the case for a lot of existing structured solvers. One reason is
the overhead. Another reason is that the intermediate off-diagonal numerical ranks
are generally considered relatively small only when n is quite large. This is prob-
lem dependent. In addition, the assumptions in Remark 4.3 are theoretical, and the
practical rank behaviors may be worse by a low-degree power of logn. These struc-
tured direct methods are more attractive for large-scale problems. The algorithms are
quite involved and we are in the process of developing a parallel code to test larger
n for real-world applications such as those in seismic imaging [36]. In our future
work, we would also like to compare the method with some optimized nonstructured
factorization and inversion codes (when available). Nevertheless, we already observe
satisfactory gains in the efficiency with the current preliminary implementation. For
example, for n = 20482 in Table 8, we observe a speedup of about four times in the
inversion complexity. In Table 12, gains up to 9.6 times are observed for modest n.

The studies of the structures in C here are useful for the structured solution
of higher dimensional problems. Our inversion scheme can also be extended to the
extraction of general off-diagonal entries of C. This will appear in our future work.

Acknowledgment. We are grateful to the editor and the anonymous referees
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