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Abstract. We propose an unconditionally robust and highly effective preconditioner for general4
dense symmetric positive definite (SPD) matrices based on structured incomplete factorization (SIF),5
called enhanced SIF (eSIF) preconditioner. The original SIF strategy proposed recently derives a6
structured preconditioner by applying block diagonal preprocessing to the matrix and then com-7
pressing appropriate scaled off-diagonal blocks. Here, we use an enhanced scaling-and-compression8
strategy to design the new eSIF preconditioner. Some subtle modifications are made, such as the9
use of two-sided block triangular preprocessing. A practical multilevel eSIF scheme is then designed.10
We give rigorous analysis for both the enhanced scaling-and-compression strategy and the multilevel11
eSIF preconditioner. The new eSIF framework has some significant advantages and overcomes some12
major limitations of the SIF strategy. (i) With the same tolerance for compressing the off-diagonal13
blocks, the eSIF preconditioner can approximate the original matrix to a much higher accuracy.14
(ii) The new preconditioner leads to much more significant reductions of condition numbers due to15
an accelerated magnification effect for the decay in the singular values of the scaled off-diagonal16
blocks. (iii) With the new preconditioner, the eigenvalues of the preconditioned matrix are much17
better clustered around 1. (iv) The multilevel eSIF preconditioner is further unconditionally robust18
or is guaranteed to be positive definite without the need of extra stabilization, while the multilevel19
SIF preconditioner has a strict requirement in order to preserve positive definiteness. Comprehen-20
sive numerical tests are used to show the advantages of the eSIF preconditioner in accelerating the21
convergence of iterative solutions.22
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1. Introduction. In this paper, we consider the design of an effective and robust26

preconditioning strategy for general dense symmetric positive definite (SPD) matri-27

ces. An effective preconditioner can significantly improve the convergence of iterative28

solutions. For an SPD matrix A, it is also desirable for the preconditioner to be29

robust or to preserve the positive definiteness. A commonly used strategy to design30

robust preconditioners is to apply modifications or incomplete/approximate Cholesky31

factorizations to A together with some robustness or stability enhancement strategies32

(see, e.g., [3, 4, 5, 11, 16]).33

In recent years, a powerful tool has been introduced into the design of robust SPD34

preconditioners and it is to use low-rank approximations for certain dense blocks in35

A, A−1, or some factors of A. A common way is to directly approximate A by rank-36

structured forms such as the ones in [2, 6, 7, 14, 34], but it is usually difficult to37

justify the performance of the resulting preconditioners. On the other hand, there38

are two types of methods that enable rigorous analysis of the effectiveness. One type39

is in [18, 19, 20, 28] based on low-rank strategies for approximating A−1. Another40

type is in [1, 9, 12, 13, 21, 33, 35, 36] where approximate Cholesky factorizations are41

computed using low-rank approximations of relevant off-diagonal blocks. Both types42

of methods have been shown useful for many applications. A critical underlying reason43

(sometimes unnoticed in earlier work) behind the success of these preconditioners is44

actually to apply appropriate block diagonal scaling to A first and then compress the45
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2 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

resulting scaled off-diagonal blocks. A systematic way to formalize this is given in46

[35] as a so-called scaling-and-compression strategy and the resulting factorization is47

said to be a structured incomplete factorization (SIF). The preconditioning technique48

is called SIF preconditioning.49

The basic idea of (one-level) SIF preconditioning is as follows [35]. Suppose A is50

N ×N and is partitioned as51

(1.1) A ≡
(
A11 A12

A21 A22

)
.52

where the diagonal blocks A11 and A22 have Cholesky factorizations of the forms53

(1.2) A11 = L1L
T
1 , A22 = L2L

T
2 .54

Then the inverses of these Cholesky factors are used to scale the off-diagonal blocks.55

That is, let56

(1.3) C = L−11 A12L
−T
2 .57

Suppose C has singular values σ1 ≥ σ2 ≥ · · · ≥ σk (which are actually all smaller58

than 1), where k is the smaller of the row and column sizes of C. Then the singular59

values σi are truncated aggressively so as to enable the quick computation of a rank60

structured approximate factorization of A.61

Thus, the SIF technique essentially employs block diagonal scaling to preprocess62

A before relevant compression. This makes a significant difference as compared with63

standard rank-structured preconditioners that are based on direct off-diagonal com-64

pression. Accordingly, the SIF preconditioner has some attractive features, such as65

the convenient analysis of the performance, the convenient control of the approxima-66

tion accuracy, and the nice effectiveness for preconditioning [35, 36]. In fact, if only r67

largest singular values of C are kept in its low-rank approximation, then the resulting68

preconditioner (called a one-level or prototype preconditioner) approximates A with a69

relative accuracy bound σr+1. The preconditioner also produces a condition number70
1+σr+1

1−σr+1
for the preconditioned matrix. This idea can be repeatedly applied to the71

diagonal blocks to yield a practical multilevel SIF preconditioner.72

A key idea for the effectiveness of the SIF preconditioner lies in a decay magnifi-73

cation effect [33, 35]. That is, although for a matrix A where the singular values σi of74

C may only slightly decay, the condition number 1+σr+1

1−σr+1
decays at a much faster rate75

to 1. Thus, it is possible to use a relatively small truncation rank r to get a structured76

preconditioner that is both effective and efficient to apply. A similar reason is also77

behind the effectiveness of those preconditioners in [18, 19, 20, 28, 33].78

However, the SIF preconditioning has two major limitations. One is in the ro-79

bustness. In the multilevel case, it needs a strict condition to avoid breakdown and80

ensure the existence or positive definiteness of the preconditioner. This condition81

needs either the condition number of A to be reasonably small, the low-rank approx-82

imation tolerance to be small, or the number of levels to be small. These mean the83

sacrifice of either the applicability or the efficiency of the preconditioner, as pointed84

out in [36].85

Another limitation is in the effectiveness. Although the condition number form86
1+σr+1

1−σr+1
has the decay magnification effect, if the decay of σi is too slow, using small87

r would not reduce the condition number too much. With small r, the eigenvalues of88

the preconditioned matrix may not closely cluster around 1 either. The performance89

of the preconditioner can then be less satisfactory.90
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JIANLIN XIA 3

Therefore, the motivation of this work is to overcome both limitations of the SIF91

technique. We make enhancements in several aspects. First, we would like get rid92

of the condition in the SIF scheme that avoids breakdown. That is, we produce a93

type of structured preconditioners that is unconditionally robust or always positive94

definite. Second, we would like to approximate A with better accuracies using the same95

truncation rank r. Next, we intend to accelerate the decay magnification effect in the96

condition number form. Lastly, we also try to improve the eigenvalue clustering of the97

preconditioned matrix. (We originally discussed how to achieve these enhancements98

in the presentation [32].)99

Our idea to achieve these enhancements is to make some subtle changes to the100

original SIF scheme. Instead of block diagonal scaling, we use two-sided block tri-101

angular preprocessing which leads to an enhanced scaling-and-compression strategy.102

Then a low-rank approximation is still computed for C, but it is just used to acceler-103

ate computations related to Schur complements instead of off-diagonal blocks. (This104

will be made more precise in Section 2.) This strategy can be repeatedly applied to105

A11 and A22 in (1.1) so as to yield an efficient structured multilevel preconditioner.106

This strategy makes it convenient to analyze the resulting preconditioners. The107

one-level preconditioner can now approximate A with a relative accuracy bound σ2
r+1108

(in contrast with the bound σr+1 in the SIF case). The preconditioned matrix now109

has condition number 1
1−σ2

r+1
, which is a significant improvement from 1+σr+1

1−σr+1
due to110

the quadratic form σ2
r+1 and the smaller numerator. Similar improvements are also111

achieved with the multilevel preconditioner.112

Moreover, the eigenvalues of the preconditioned matrix are now more closely113

clustered around 1. With the new one-level preconditioner, the eigenvalues are re-114

distributed to [1 − σ2
r+1, 1], with the eigenvalue 1 of multiplicity N − (k − r). In115

comparison, the one-level SIF preconditioner only brings the eigenvalues to the inter-116

val [1− σr+1, 1 + σr+1], with the eigenvalue 1 of multiplicity N − 2(k− r). Similarly,117

the new multilevel preconditioner also greatly improves the eigenvalue clustering.118

In addition, the multilevel generalization of the strategy always produces a pos-119

itive definite preconditioner Ã without the need of extra stabilization or diagonal120

compensation. In fact, the scheme has an automatic positive definiteness enhance-121

ment effect. That is, Ã is equal to A plus a positive semidefinite matrix. Thus, the122

new multilevel preconditioner is unconditionally robust.123

Due to all these enhancements, the new preconditioner is called an enhanced SIF124

(eSIF) preconditioner. We give comprehensive analysis of the accuracy, robustness,125

and effectiveness of both the one-level and the multilevel eSIF preconditioners in126

Theorems 2.1, 2.2, 3.1 and 3.2. All the benefits combined yield significantly better127

effectiveness than the SIF scheme. With the same number of levels and the same128

truncation rank r, although the eSIF preconditioner is slightly more expensive to129

apply in each iteration step, the total iterative solution cost is much lower.130

We also show some techniques to design a practical multilevel eSIF scheme and131

then analyze the complexity and storage. The practical scheme avoids forming dense132

blocks like C in (1.3) while enabling the convenient low-rank approximation of these133

blocks. It also produces structured factors defined by compact forms such as House-134

holder vectors.135

The performance of the preconditioner is illustrated in terms of some challenging136

test matrices including some from [35]. As compared with the SIF preconditioner, the137

eSIF preconditioner yields dramatic reductions in the number of conjugate gradient138

iterations.139
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4 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

We would also like to mention some other relevant work. In earlier work [13, 33]140

where off-diagonal scaling and compression are used, although local Schur complement141

approximations have quadratic accuracy bounds like O(τ2) in terms of a truncation142

tolerance τ , the overall accuracy (in their one-level scheme) is O(τ) due to the ap-143

proximation of the scaled off-diagonal blocks. There is no accuracy analysis for the144

multilevel schemes in [13, 33]. An overall linear accuracy bound also arises in [37]. All145

these schemes have factorization complexity quadratic in N unless some structures146

are predetermined like in [38]. After the original submission of the current paper, an147

arXiv preprint [17] was posted and its latest version also cites the arXiv version [31]148

of our paper. The work in [17] deals with sparse SPD matrices instead of dense ones149

and uses a related strategy to achieve quadratic approximation accuracy. A condition150

number study for its one-level scheme is given in [17], but not for its multilevel one.151

Since the work in [17] approximates local Schur complements in the factorization of152

sparse matrices, the overall complexity is likely lower than quadratic, which is unclear153

from [17] though.154

The organization of the remaining sections is as follows. The enhanced scaling-155

and-compression strategy and the one-level eSIF preconditioner will be presented and156

analyzed in Section 2. The techniques and analysis will then be generalized to mul-157

tiple levels in Section 3. Section 4 further gives the practical multilevel design of the158

preconditioning scheme and also analyzes the storage and costs. Comprehensive nu-159

merical tests will be given in Section 5, following by some conclusions and discussions160

in Section 6. For convenience, we list frequently used notation as follows.161

• λ(A) is used to represent an eigenvalue of A (it is used in a general way and162

is not for any specific eigenvalue).163

• κ(A) denotes the 2-norm condition number of A.164

• diag(·) is used to mean a diagonal or block diagonal matrix constructed with165

the given diagonal entries or blocks.166

• In is the n× n identity matrix and is used to distinguish identity matrices of167

different sizes in some contexts.168

2. Enhanced scaling-and-compression strategy and prototype eSIF pre-169

conditioner. We first give the enhanced scaling-and-compression strategy and ana-170

lyze the resulting prototype eSIF preconditioner in terms of the accuracy, robustness,171

and effectiveness.172

In the SIF preconditioner in [35], A in (1.1) can be written as a factorized form173

as follows based on (1.2) and (1.3):174

(2.1) A =

(
L1

L2

)(
I C
CT I

)(
LT1

LT2

)
,175

where

(
I C
CT I

)
can be viewed as the result after the block diagonal preprocessing176

or scaling of A. C is then approximated by a low-rank form so as to obtain a rank-177

structured approximate factorization of A.178

Here, we make some subtle changes which will turn out to make a significant179

difference. Rewrite (2.1) in the following form:180

(2.2) A =

(
L1

L2C
T L2

)(
I

I − CTC

)(
LT1 CLT2

LT2

)
.181

Suppose C is m× n and a rank-r truncated SVD of C is182

(2.3) C ≈ U1Σ1V
T
1 ,183
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JIANLIN XIA 5

where Σ1 = diag(σ1, σ2, . . . , σr) is for the largest r singular values σ1 ≥ σ2 ≥ · · · ≥ σr184

of C. For later convenience, we also let the full SVD of C be185

(2.4) C = UΣV T = U1Σ1V
T
1 + U2Σ2V

T
2 ,186

where U =
(
U1 U2

)
and V =

(
V1 V2

)
are orthogonal and Σ2 is a (rectangular)187

diagonal matrix for the remaining singular values σr+1 ≥ · · · ≥ σmin{m,n}. We further188

suppose τ is a tolerance for truncating the singular values in (2.3). That is,189

(2.5) σr ≥ τ ≥ σr+1.190

Note that all the singular values σi of C satisfy σi < 1 [35], so τ < 1.191

The apply (2.3) to CTC in (2.2) to get192

CTC ≈ V1Σ2
1V

T
1 .193

In the meantime, we preserve the original form of C in the two triangular factors in194

(2.2). Accordingly,195

(2.6) A ≈ Ã ≡
(

L1

L2C
T L2

)(
I

I − V1Σ2
1V

T
1

)(
LT1 CLT2

LT2

)
196

Suppose D̃2 is the lower triangular Cholesky factor of I − V1Σ2
1V

T
1 :197

(2.7) I − V1Σ2
1V

T
1 = D̃2D̃

T
2 .198

Let199

(2.8) L̃ =

(
L1

L2C
T L2

)(
I

D̃2

)
=

(
L1

L2

)(
I
CT I

)(
I

D̃2

)
.200

Then we get a prototype (1-level) eSIF preconditioner201

(2.9) Ã = L̃L̃T .202

This scheme can be understood as follows. Unlike in the SIF scheme where203

A is preprocessed by the block diagonal factor

(
L1

L2

)
, here we use a block204

triangular factor

(
L1

L2C
T L2

)
to preprocess A. Note that it is still convenient to205

invert

(
L1

L2C
T L2

)
=

(
L1

L2

)(
I
CT I

)
in linear system solution so the206

form of C does not cause any substantial trouble. Also, we do not need to explicitly207

form or compress C. In addition, the Cholesky factor D̃2 in (2.7) is only used for the208

purpose of analysis and does not need to be computed. The details will be given later209

in a more practical scheme in Section 4.210

This leads to our enhanced scaling-and-compression strategy. We then analyze the211

properties of the resulting prototype eSIF preconditioner. Obviously, Ã in (2.9) always212

exists and is positive definite. Furthermore, an additional benefit in the positive213

definiteness can be shown. We take a closer look at the positive definiteness of Ã and214

also the accuracy of Ã for approximating A.215
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6 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

Theorem 2.1. Let τ be the truncation tolerance in (2.5). Ã in (2.9) satisfies216

Ã = A+ E,217

where E is a positive semidefinite matrix and218

(2.10)
‖E‖2
‖A‖2

≤ σ2
r+1 ≤ τ2.219

In addition,220

(2.11)
‖L̃− L‖2
‖L‖2

≤
c
√

1− σ2
n

1− σ2
1

τ2,221

where L is the lower triangular Cholesky factor of A, c = 1 + 2 dlog2 ne, and σn is222

either the n-th singular value of C when m ≥ n or is 0 otherwise. On the other hand,223

if D̃2 in L̃ in (2.8) is replaced by (I − V1Σ2
1V

T
1 )1/2 and L is modified accordingly as224

L =

(
L1

L2C
T L2(I − V ΣTΣV T )1/2

)
so that A = LLT still holds, then225

(2.12)
‖L̃− L‖2
‖L‖2

< τ2.226

Proof. From (2.4) and (2.6), Ã can be written as227

Ã =

(
A11 A12

A21 L2C
TCLT2 + L2(I − V1Σ2

1V
T
1 )LT2

)
228

=

(
A11 A12

A21 A22 + L2(CTC − V1Σ2
1V

T
1 )LT2

)
229

=

(
A11 A12

A21 A22 + L2(V2ΣT2 Σ2V
T
2 )LT2

)
= A+ E,230

231

where E = diag(0, L2(V2ΣT2 Σ2V
T
2 )LT2 ) is positive semidefinite and232

‖E‖2 = ‖L2(V2ΣT2 Σ2V
T
2 )LT2 ‖2 ≤ σ2

r+1‖L2‖22 = σ2
r+1‖A22‖2 ≤ σ2

r+1‖A‖2.233

Also, let D2D
T
2 = I − V ΣTΣV T . Then L =

(
L1

L2C
T L2D2

)
. Thus,234

‖L̃− L‖2 =

∥∥∥∥( L1

L2C
T L2D̃2

)
−
(

L1

L2C
T L2D2

)∥∥∥∥
2

(2.13)235

=

∥∥∥∥( 0

L2(D̃2 −D2)

)∥∥∥∥
2

≤ ‖L‖2‖D̃2 −D2‖2.236

237

When D2 is the lower triangular Cholesky factor of I − V ΣTΣV T , an inequality in238

[35] gives239

‖D̃2 −D2‖2 ≤
c
√

1− σ2
n

1− σ2
1

σ2
r+1, c = 1 + 2 dlog2 ne .240

This leads to (2.11).241

This manuscript is for review purposes only.



JIANLIN XIA 7

If D̃2 in L̃ is replaced by (I−V1Σ2
1V

T
1 )1/2 and D2 is replaced by (I−V ΣTΣV T )1/2,242

then243

‖D̃2 −D2‖2 = ‖(I − V1Σ2
1V

T
1 )1/2 − (I − V ΣTΣV T )1/2‖2244

= ‖(I − diag(Σ2
1, 0))1/2 − (I − ΣTΣ)1/2‖2245

= 1−
√

1− σ2
r+1 < σ2

r+1.246
247

Then following (2.13), we get (2.12).248

This theorem gives both the accuracy and the robustness of the prototype eSIF249

preconditioner. Unlike the SIF framework where a similar prototype preconditioner250

has a relative accuracy bound τ , here the bound is τ2 that is much more accurate.251

In addition, this theorem means the construction of Ã automatically has a positive252

definiteness enhancement effect : it implicitly compensates A by a positive semidefinite253

matrix E. This is similar to ideas in [13, 33]. Later, we will show that this effect254

further carries over to the multilevel generalization, which is not the case for the SIF255

preconditioner.256

The effectiveness of the prototype eSIF preconditioner can be shown as follows.257

Theorem 2.2. The eigenvalues of L̃−1AL̃−T are258

λ(L̃−1AL̃−T ) = 1− σ2
r+1, . . . , 1− σ2

k, 1, . . . , 1︸ ︷︷ ︸
N−(k−r)

,259

where k = min{m,n}. Accordingly,260

‖L̃−1AL̃−T − I‖2 = σ2
r+1 ≤ τ2,261

κ(L̃−1AL̃−T ) =
1

1− σ2
r+1

≤ 1

1− τ2
.262

263

Proof. It is not hard to verify264

(2.14) L̃−1AL̃−T = diag(IN−n, D̃
−1
2 (In − V ΣTΣV T )D̃−T2 ).265

The eigenvalues of D̃−12 (In − V ΣTΣV T )D̃−T2 are266

λ(D̃−12 (In − V ΣTΣV T )D̃−T2 ) = λ(D̃−T2 D̃−12 (In − V ΣTΣV T ))267

= λ((In − V1Σ2
1V

T
1 )−1(In − V ΣTΣV T )).268269

Further derivations can be done via the Sherman-Morrison-Woodbury formula or in270

the following way:271

(In − V1Σ2
1V

T
1 )−1(In − V ΣTΣV T )272

= (V (In − diag(Σ2
1, 0))V T )−1V (In − ΣTΣ)V T273

= V diag((Ir − Σ2
1)−1, In−r)(In − ΣTΣ)V T274

= V diag(Ir, In−r − ΣT2 Σ2)V T .275276

Thus,277

(2.15) λ(D̃−12 (In − V ΣTΣV T )D̃−T2 ) = λ(diag(Ir, In−r − ΣT2 Σ2)),278
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8 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

which are just 1 − σ2
r+1, . . . , 1 − σ2

k, 1. The eigenvalue 1 is a multiple eigenvalue. If279

k = n, then the eigenvalue 1 in (2.15) has multiplicity r. If k = m, In−r − ΣT2 Σ2280

also has n − k eigenvalues equal to 1 so the eigenvalue 1 in (2.15) has multiplicity281

n− (k− r). For both cases, the eigenvalue 1 of L̃−1AL̃−T has multiplicity N − (k− r)282

according to (2.14).283

To give an idea on the advantages of the prototype eSIF preconditioner over the284

corresponding prototype SIF preconditioner in [35], we compare the results in Table285

2.1 with L̃ and Ã from the eSIF or SIF scheme. The eSIF scheme yields a much higher286

approximation accuracy than SIF (τ2 vs. τ) for both ‖A−Ã‖2‖A‖2 and ‖L̃−1AL̃−T − I‖2.287

The eigenvalues of the preconditioned matrix L̃−1AL̃−T from eSIF are also much288

more closely clustered around 1 and eSIF produces a lot more eigenvalues equal to 1289

than SIF. This is further illustrated in Figure 2.1.290

Table 2.1
Comparison of prototype SIF and eSIF preconditioners that are used to produce L̃ and Ã, where

k = min{m,n} and the results for the SIF preconditioner are from [35, 36].

SIF eSIF

‖Ã−A‖2
‖A‖2 ≤ τ ≤ τ2

‖L̃−L‖2
‖L‖2 ≤ τ +

c
√

1−σ2
n

1−σ2
1
τ2 ≤ c

√
1−σ2

n

1−σ2
1
τ2

λ(L̃−1AL̃−T ) 1± σr+1, . . . , 1± σk, 1, . . . , 1︸ ︷︷ ︸
N−2(k−r)

1− σ2
r+1, . . . , 1− σ2

k, 1, . . . , 1︸ ︷︷ ︸
N−(k−r)

‖L̃−1AL̃−T − I‖2 σr+1 ≤ τ σ2
r+1 ≤ τ2

κ(L̃−1AL̃−T ) 1+σr+1

1−σr+1
≤ 1+τ

1−τ
1

1−σ2
r+1
≤ 1

1−τ2

( )
1− τ 1 + τ10

SIF

(
1− τ

2 10

eSIF ]

Fig. 2.1. How the eigenvalues λ(L̃−1AL̃−T ) cluster around 1 when L̃L̃T is obtained with the
prototype SIF and eSIF preconditioners.

Specifically, SIF produces κ(L̃−1AL̃−T ) = 1+σr+1

1−σr+1
, while eSIF leads to much291

smaller κ(L̃−1AL̃−T ) = 1
1−σ2

r+1
. (Notice the quadratic term σ2

r+1 in the denominator292

and the smaller numerator.) To further illustrate the difference in κ(L̃−1AL̃−T ), we293

use an example like in [35]. In the example, the singular values of C look like those in294

Figure 2.2(a) and are based on the analytical forms from a 5-point discrete Laplacian295

matrix [36]. The singular values of C in (1.3) only slowly decay. Figure 2.2(b) shows296

κ(L̃−1AL̃−T ) from both schemes. We can observe two things.297

1. Like in SIF, the modest decay of the nonzero singular values σi of C is further298

dramatically magnified in 1
1−σ2

i
. That is, even if σi decays slowly, 1

1−σ2
i

decays299

much faster so that σi can still be aggressively truncated so as to produce300

reasonably small κ(L̃−1AL̃−T ). This is the decay magnifying effect like in301
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[35].302

2. Furthermore, the decay magnification effect from eSIF is more dramatic303

since 1
1−σ2

i
is smaller than 1+σi

1−σi by a factor of (1 + σi)
2. For a large range of304

r values, eSIF gives much better condition numbers than SIF.305

10
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2
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10
4

Index i

0

0.2

0.4

0.6

0.8

1
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10
1

10
2

10
3

10
4

Index i

10
0

10
1

10
2

10
3

10
4 SIF

eSIF

(a) Nonzero singular values σi of C (b) κ(L̃−1AL̃−T )

Fig. 2.2. For an example where the singular values σi of C slowly decay, how κ(L̃−1AL̃−T )
decays when L̃ is from the prototype SIF or eSIF preconditioner obtained by truncating σi with r
set to be i in (b).

Remark 2.3. The approximation accuracy σr+1 depends on the ordering and par-306

titioning of A. It is desirable to reorder and partition A so as to make σr+1 as small307

as possible. Since it is generally unknown in advance what σr+1 would be like (other308

than σr+1 < 1), we may try to reduce the numerical rank of A12 as much as possible.309

However, just like most other hierarchical rank-structured methods, there is no quick310

way to reorder a general dense matrix to reduce its off-diagonal numerical ranks.311

For some cases, heuristics might be used. For example, if A corresponds to certain312

underlying mesh or data points, then we may permute and partition A following a313

partitioning of the mesh or point set so that the connection or interaction between the314

resulting subsets is as weak as possible. Sometimes, this may also be combined with315

randomized processes (see, e.g, [10]). Since we deal with general dense SPD matrices,316

our studies do not require any specific ordering and the ordering issue is expected to317

be considered in future work. In addition, one thing that is worth mentioning is that,318

as pointed out in [35, 36], the scaling of the off-diagonal blocks often has an effect319

of enhancing the decay of off-diagonal singular values. For instance, for the matrix320

example used in Figure 2.2, the original A12 block has a negative identity matrix and321

the nonzero singular values do not decay at all. After scaling, the nonzero singu-322

lar values σi of C have reasonable decay. See Figure 2.2(a). This is also a feature323

exploited in [18, 19, 20, 28].324

3. Multilevel eSIF preconditioner. The prototype preconditioner in the pre-325

vious section still has two dense Cholesky factors L1 and L2 in (2.8). To get an efficient326

preconditioner, we generalize the prototype preconditioner to multiple levels. That327

is, apply it repeatedly to the diagonal blocks of A. For convenience, we use eSIF(1)328

to denote the prototype 1-level eSIF scheme. A 2-level eSIF scheme or eSIF(2) uses329

eSIF(1) to obtain approximate factors L̃1 ≈ L1 and L̃2 ≈ L2 for (1.2). Similarly,330

an l-level eSIF scheme or eSIF(l) uses eSIF(l − 1) to approximate L1 and L2. With331

a sufficient number of levels (usually l = O(logN)), the finest level diagonal blocks332

are small enough and can be directly factorized. The overall resulting factor L̃ is an333

eSIF(l) factor. The resulting approximation matrix Ã is an eSIF(l) preconditioner.334
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10 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

We prove that the eSIF(l) preconditioner Ã is always positive definite and show335

how accurate Ã is for approximating A.336

Theorem 3.1. Let τ be the tolerance for any singular value truncation like (2.3)–337

(2.5) in the eSIF(l) scheme. The approximate matrix Ã resulting from eSIF(l) is338

always positive definite and satisfies339

(3.1) Ã = A+ E,340

where E is a positive semidefinite matrix and341

‖E‖2
‖A‖2

≤ (1 + τ2)l − 1.342

Proof. We prove this by induction. l = 1 corresponds to eSIF(1) and the result is343

in Theorem 2.1. Suppose the result holds for eSIF(l−1) with l > 1. Apply eSIF(l−1)344

to A11 and A22 to get approximate Cholesky factors L̃1 and L̃2, respectively. By345

induction, we have346

L̃1L̃1
T = A11 + E1, L̃2L̃2

T = A22 + E2,347

where E1 and E2 are positive semidefinite matrices satisfying348

‖E1‖2 ≤
[
(1 + τ2)l−1 − 1

]
‖A11‖2 ≤

[
(1 + τ2)l−1 − 1

]
‖A‖2,349

‖E2‖2 ≤
[
(1 + τ2)l−1 − 1

]
‖A22‖2 ≤

[
(1 + τ2)l−1 − 1

]
‖A‖2.350351

Thus,352

A ≈
(
L̃1L̃1

T AT21
A21 L̃2L̃2

T

)
= A+ diag(E1, E2) ≡ Â.353

Clearly, Â is always positive definite.354

Then apply eSIF(1) to Â to yield355

Â ≈ Ã ≡ L̃L̃T ,356

where L̃ is the eSIF(l) factor. With Theorem 2.1 applied to Â, we get357

Ã = Â+ Ẽ,358

where Ẽ is a positive semidefinite matrix satisfying ‖Ẽ‖2 ≤ τ2‖Â‖2. Then359

Ã = A+ (diag(E1, E2) + Ẽ) ≡ A+ E,360

where E = diag(E1, E2) + Ẽ is positive semidefinite. Thus, Ã is positive definite and361

‖E‖2 ≤ ‖diag(E1, E2)‖2 + ‖Ẽ‖2362

≤ ‖diag(E1, E2)‖2 + τ2‖Â‖2363

= ‖ diag(E1, E2)‖2 + τ2‖A+ diag(E1, E2)‖2364

≤ τ2‖A‖2 + (1 + τ2)‖ diag(E1, E2)‖2365

≤ τ2‖A‖2 + (1 + τ2)
[
(1 + τ2)l−1 − 1

]
‖A‖2366

=
[
(1 + τ2)l − 1

]
‖A‖2.367368

The result then holds by induction.369
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Thus, ‖E‖2‖A‖2 is roughly O(lτ2) for reasonable τ , which indicates a very slow lev-370

elwise approximation error accumulation. Moreover, like eSIF(1), eSIF(l) also has a371

positive definiteness enhancement effect so that Ã remains positive definite. In con-372

trast, the multilevel SIF scheme in [35] may breakdown due to the loss of positive373

definiteness.374

Then we can look at the effectiveness of the eSIF(l) preconditioner.375

Theorem 3.2. Let τ be the tolerance for any singular value truncation like (2.3)–376

(2.5) in the eSIF(l) scheme and ε =
[
(1 + τ2)l − 1

]
κ(A). Let L̃ be the eSIF(l) factor.377

Then the eigenvalues of the preconditioned matrix L̃−1AL̃−T satisfy378

(3.2)
1

1 + ε
≤ λ(L̃−1AL̃−T ) ≤ 1.379

Accordingly,380

‖L̃−1AL̃−T − I‖2 ≤
ε

1 + ε
,381

κ(L̃−1AL̃−T ) ≤ 1 + ε.382383

Proof. Let A = LLT be the Cholesky factorization of A. With (3.1),384

L−1ÃL−T = I + L−1(Ã−A)L−T = I + L−1EL−T ,385

According to Theorem 3.1, L−1EL−T is positive semidefinite. Thus, λ(L−1ÃL−T ) ≥386

1.387

Theorem 3.1 also yields388

‖L−1EL−T ‖2 ≤ ‖E‖2‖L−1‖2‖L−T ‖2389

≤
[
(1 + τ2)l − 1

]
‖A‖2‖A−1‖2 = ε.390391

Therefore,392

1 ≤ λ(L−1ÃL−T ) ≤ 1 + ε.393

Since the eigenvalues of L̃−1AL̃−T are the inverses of those of L−1ÃL−T , we get394

(3.2).395

A comparison of the multilevel eSIF and SIF preconditioners is given in Table396

3.1. The multilevel eSIF preconditioner has several significant advantages over the397

SIF one.398

1. The multilevel eSIF preconditioner is unconditionally robust or is guaranteed399

to be positive definite, while the SIF one needs a strict (or even impractical)400

condition to ensure the positive definiteness of the approximation. That is,401

the SIF one needs ε̂ ≡
[
(1 + τ)l − 1

]
κ(A) < 1. This means τ needs to be402

small and/or the magnitudes of l and κ(A) cannot be very large.403

2. The eSIF one gives a more accurate approximation to A with a relative error404

bound (1 + τ2)l − 1 instead of (1 + τ)l − 1.405

3. The eSIF one produces a much better condition number for the preconditioned406

matrix (1 + ε vs. 1+ε̂
1−ε̂ with ε further much smaller than ε̂).407

4. The eSIF one further produces better eigenvalue clustering for the precondi-408

tioned matrix. The eigenvalues of the preconditioned matrix from eSIF lie in409

[ 1
1+ε , 1], while those from SIF lie in a much larger interval [ 1

1+ε̂ ,
1

1−ε̂ ].410

A combination of these advantages makes the eSIF preconditioner much more411

effective, as demonstrated later in numerical tests.412
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12 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

Table 3.1
Comparison of l-level SIF and eSIF preconditioners that are used to produce L̃ and Ã, where

the results for the SIF preconditioner are from [35].

SIF eSIF

Existence/ Conditional
Unconditional

Positive definiteness (ε̂ ≡
[
(1 + τ)l − 1

]
κ(A) < 1)

‖Ã−A‖2
‖A‖2 ≤ (1 + τ)l − 1 ≤ (1 + τ2)l − 1

λ(L̃−1AL̃−T ) ∈ [ 1
1+ε̂ ,

1
1−ε̂ ] ∈ [ 1

1+ε , 1]

‖L̃−1AL̃−T − I‖2 ≤ ε̂
1−ε̂ ≤ ε

1+ε

κ(L̃−1AL̃−T ) ≤ 1+ε̂
1−ε̂ ≤ 1 + ε

4. Practical eSIF(l) scheme. In our discussions above, some steps are used413

for convenience and are not efficient for practical preconditioning. In the design of a414

practical scheme for eSIF(l), we need to take care of the following points.415

1. Avoid expensive dense Cholesky factorizations like in (2.7).416

2. Avoid the explicit formation of C in (1.3) (needed in (2.8)) which is too costly.417

3. Compute the low-rank approximation of C without the explicit form of C.418

For the first point, we can let Q be an orthogonal matrix extended from V1 in419

(2.3) so that420

QTV1 =

(
I
0

)
.421

Since V1 has column size r which is typically small for the purpose of preconditioning,422

Q can be conveniently obtained with the aid of r Householder vectors. Due to this,423

Q is generally different from V in (2.4). Then (2.7) can be replaced by424

I − V1Σ2
1V

T
1 = Q(I − diag(Σ2

1, 0))QT .425

Accordingly, Ã in (2.6) can be rewritten as426

Ã =

(
L1

L2C
T L2

)(
I

Q

)(
I

I − diag(Σ2
1, 0)

)(
I

QT

)(
LT1 CLT2

LT2

)
.427

Thus, we can let428

L̃ =

(
L1

L2

)(
I
CT I

)(
I

QΣ̃1

)
, with(4.1)429

Σ̃1 = diag((I − Σ2
1)1/2, I) = diag(

√
1− σ2

1 , . . . ,
√

1− σ2
r , 1, . . . , 1),430

431

so that (2.9) still holds.432

Next, we try to avoid the explicit formation of C in (1.3) which is too expensive.433

Note (4.1) means434

L̃−1 =

(
I

Σ̃−11 QT

)(
I
−CT I

)(
L−11

L−12

)
.435

If C is not formed but kept as the form in (1.3), then the application of L̃−1 to a436

vector involves four smaller solution steps: one application of L−11 to a vector, one437
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application of L−T1 to a vector, and two applications of L−12 to vectors. To reduce the438

number of such solutions, we rewrite L̃ in (4.1) as439

L̃ =

(
L1

I

)(
I

AT12L
−T
1 L2

)(
I

QΣ̃1

)
(4.2)440

=

(
L1

I

)(
I

AT12L
−T
1 I

)(
I

L2QΣ̃1

)
.441

442

L̃−1 now has the following form and can be conveniently applied to a vector:443

(4.3) L̃−1 =

(
I

Σ̃−11 QTL−12

)(
I

−AT12L−T1 I

)(
L−11

I

)
.444

In fact, the application of L̃−1 to a vector now just needs the applications of L−11 ,445

L−T1 , L−12 to vectors. In the eSIF(l) scheme, L1 and L2 are further approximated446

by structured factors from the eSIF(l − 1) scheme. In addition, QT is a Householder447

matrix defined by r Householder vectors and can be quickly applied to a vector.448

AT12 is just part of A. With (4.2), there is no need to form C explicitly. From these449

discussions, it is also clear how L̃−1 can be applied to vectors in actual preconditioning450

as structured solution.451

Remark 4.1. With the form of L̃ in (4.2), it is clear that (2.9) still holds for Ã in452

(2.6). Thus, the approximation error result (2.10) in Theorem 2.1 and the effectiveness453

results in Theorem 2.2 remain the same. This further means that Theorems 3.1 and454

3.2 for the multilevel scheme still hold.455

Thirdly, although C needs not to be formed, it still needs to be compressed so456

as to produce Σ̃1 and Q in (4.2). We use randomized SVD [22] that is based on457

matrix-vector products. That is, let458

(4.4) Y = CTZ = L−12 (AT12(L−T1 Z)),459

where Z is an appropriate skinny random matrix with column size r + α and α is a460

small constant oversampling size. Y can be used to extract an approximate row basis461

matrix V̂ T1 for C. After this, let462

(4.5) T = CV̂1 = L−11 (A12(L−T2 V̂1)).463

T V̂ T1 essentially provides a low-rank approximation to C. Many studies of randomized464

SVDs in recent years have shown the reliability of this process. The tall and skinny465

matrix T can then be used to quickly extract r approximate leading singular values of466

C. Accordingly, this process provides an efficient way to get approximate Q and Σ1.467

That is, we can compute an SVD T = U1Σ1Ṽ
T
1 and set V1 = V̂1Ṽ1. To improve the468

quality of the randomized approximation, a power iteration may also be used [15].469

Computing Y in (4.4) and T in (4.5) uses linear solves in terms of L1 and L2470

and matrix-vector multiplications in terms of A12. When L̃ results from the eSIF(l)471

scheme, L1 and L2 are approximated by structured eSIF(l − 1) factors.472

Algorithms 4.1 and 4.2 show the construction and application of the eSIF(l) pre-473

conditioner, respectively. The construction algorithm uses the solution algorithm.474

Algorithm 4.1 includes a simple randomized SVD scheme without the use of power475

iterations. To make it convenient to understand, the l-level schemes are constructed476

by calling the (l−1)-level schemes. In practical implementations, this may be changed477
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14 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

to the traversal of a binary tree so as to get scalable algorithms. Operations associ-478

ated with each diagonal block correspond to a node of the binary tree. Operations479

associated with an off-diagonal block correspond to a pair of sibling nodes. Thus, at480

each level of the tree, the operations can be performed in parallel. This is very similar481

to the situations in various existing hierarchical rank-structured methods so that the482

parallelization can conveniently take advantage of techniques well developed in, say,483

[23, 24, 27, 39]. For example, like in the parallel randomized algorithms in [23] for484

hierarchically semiseparable (HSS) matrices [7, 34], a process grid can be used for the485

operations associated with each node of the tree. Distributed structured operations486

can then be conveniently designed. Since our focus here is on the design of the eSIF487

preconditioner and the theoretical analysis, the reader is referred to those references488

for relevant techniques for parallel implementations.489

Algorithm 4.1 eSIF(l) factorization scheme (for constructing the preconditioner)

1: procedure L̃ = eSIF(l, A, r, α)
2: if l = 0 then . Finest level diagonal block
3: A = L̃L̃T . Cholesky factorization
4: else . Structured factorization
5: Partition A into a block 2× 2 form like in (1.1)
6: L̃1 ← eSIF(l − 1, A11, r, α), L̃2 ← eSIF(l − 1, A22, r, α)

. Diagonal block factorizations with eSIF(l − 1)
7: Z ← skinny random matrix with column size r + α

. Lines 7–14: randomized SVD
8: Y ← eSIFsol(l − 1, L̃1, Z,‘bwd’) . L̃−T1 Z
9: Y ← eSIFsol(l − 1, L̃2, A

T
12Y,‘fwd’) . Y like in (4.4)

10: V̂1 ← leading r left singular vectors of Y
11: T ← eSIFsol(l − 1, L̃2, V̂1,‘bwd’) . L̃−T2 V̂1
12: T ← eSIFsol(l − 1, L̃1, A12T,‘fwd’) . T like in (4.5)
13: T = U1Σ̃1Ṽ

T
1 . SVD

14: V1 ← V̂1Ṽ1
15: Extend V1 to an orthogonal matrix Q

. Q given in terms of Householder vectors
16: L̃← {L̃1, L̃2, Σ1, Q} . L̃ given in terms of a series of structured factors
17: end if
18: end procedure

We then study the costs to construct and apply the eSIF(l) factor L̃ and the490

storage of L̃. In practice, we specify r instead of τ in low-rank compression so as to491

explicitly control the cost. Also see Remark 4.3 below.492

Proposition 4.2. Suppose A is repeatedly bipartitioned into l = blogNc levels493

with the diagonal blocks at each partition level having the same size (for convenience).494

Let ξf be the complexity to compute the eSIF(l) factor L̃ where each intermediate495

low-rank approximation step uses rank r. Let ξs be the complexity to apply L̃−1 to a496

vector. Then497

(4.6) ξf = 6(r + α)N2 +O(r(r + α)N log2 3), ξs = 2N2 +O(rN log2 3),498

where α is a small constant oversampling size in randomized SVDs. (Here, we suppose499

no power iteration is used in randomized SVDs. Otherwise, the number of iterations500
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Algorithm 4.2 eSIF(l) solution via forward or backward substitution

1: procedure x = eSIFsol(l, L̃, b,s)
. Solving L̃x = b or L̃Tx = b, depending on the variable s

2: if s = ‘fwd’ then . Forward substitution for solving L̃x = b
3: if l = 0 then . Finest level dense solution
4: x← L̃−1b
5: else . Structured solution (see (4.3))

6:

(
b1
b2

)
← b . Conformable partition following the sizes of L̃1, L̃2

7: x1 ← eSIFsol(l − 1, L̃1, b1,‘fwd’)
8: x2 ← b2 −AT12 · (eSIFsol(l − 1, L̃1, x1,‘bwd’))
9: x2 ← QT · (eSIFsol(l − 1, L̃2, x2,‘fwd’))

10: x2(1 : r)← (I − Σ2
1)−1/2x2(1 : r)

. Σ̃1 = diag((I − Σ2
1)1/2, I) like in (4.1); x2(1 : r): first r entries of x2

11: x←
(
x1
x2

)
12: end if
13: else if s = ‘bwd’ then . Backward substitution for solving L̃Tx = b
14: if l = 0 then . Finest level dense solution
15: x← L̃−Tx
16: else . Structured solution (see the transpose of (4.3))

17:

(
b1
b2

)
← b . Conformable partition following the sizes of L̃1, L̃2

18: b2(1 : r)← (I − Σ2
1)−1/2b2(1 : r)

. Σ̃1 = diag((I − Σ2
1)1/2, I) like in (4.1); b2(1 : r): first r entries of b2

19: x2 ← eSIFsol(l − 1, L̃2, Qb2,‘bwd’)
20: x1 ← b1− eSIFsol(l − 1, L̃1, A12x2,‘fwd’)
21: x1 ← eSIFsol(l − 1, L̃1, x1,‘bwd’)

22: x←
(
x1
x2

)
23: end if
24: end if
25: end procedure

will appear in ξf .) The storage of L̃ is501

θ = O(rN logN),502

excluding any storage for the blocks of A.503

Proof. Let L̃1 and L̃2 be the eSIF(l − 1) factors that approximate L1 and L2,504

respectively. For the eSIF(l) factor L̃, we use ξs(N) to denote the cost to apply L̃−1505

to a vector. According to (4.3),506

ξs(N) = 3ξs(
N

2
) + 2(

N

2
)2 +O(rN),507

where the first term on the right-hand side is for applying L̃−11 , L̃−T1 , L̃−12 to vectors,508

the second term is the dominant cost for multiplying AT12 in (4.3) to a vector, and the509

third term is for the remaining costs (mainly to multiple QT to a vector). This gives510
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16 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

a recursive relationship which can be expanded to yield511

ξs(N) =
2

3
N2

l∑
i=1

3i

4i
+O(rN

l∑
i=1

3i

2i
)(4.7)512

= 2N2 +O(r3l) = 2N2 +O(rN log2 3).513514

Then consider the cost ξf (N) to compute L̃. We have515

ξf (N) = 2ξf (
N

2
) + 4(r + α)ξs(

N

2
) + 4(r + α)(

N

2
)2 +O(r2N),516

where the first term on the right-hand side is for constructing L̃1 and L̃2, the second517

term is for applying the relevant inverses of these factors as in (4.4) and (4.5) during518

the randomized SVD, the third term is the dominant cost for multiplying AT12 and519

A12 to vectors as in (4.4) and (4.5), and the last term is for the remaining costs.520

According to (4.7),521

ξf (N) = 2ξf (
N

2
) + 3(r + α)N2 +O(r(r + α)N log2 3).522

Based on this recursive relationship, we can obtain the count ξf in (4.6).523

Finally, the storage θ(N) for L̃ (excluding the blocks of A) mainly includes the524

storage for L̃1, L̃2 and the r Householder vectors for Q in (4.2):525

θ(N) = 2θ(
N

2
) +O(rN).526

At the finest level of the partitioning of A, it also needs the storage of O(rN) for the527

Cholesky factors of the small diagonal blocks. Essentially, the actual storage at each528

level is then O(rN) and the total storage is θ = O(rlN).529

We can see that the storage for the structured factors is roughly linear in N since530

r is often fixed to be a small constant in preconditioning. The cost of applying L̃−1 to531

a vector has a leading term 2N2. However, note that it costs about 2N2 to multiply A532

with a vector in each iteration anyway. For the SIF case in [35], the application cost is533

lower but each iteration step still costs O(N2) due to the matrix-vector multiplication.534

It also costs O(rN2) to construct the multilevel SIF preconditioners. The precise535

constant factor of the flop count is not given in [35]. There are two SIF versions536

in [35]. One also uses repeated block 2 × 2 partitioning of A like above and uses537

randomized SVDs. We can similarly show that the leading term of the complexity is538

2(r + α)N2. The second version involves nested off-diagonal basis matrices and has539

better robustness. Its cost is slightly higher in general, based on some counts from540

[30]. Thus, the construction of the eSIF preconditioner is a little more expensive.541

Nevertheless, the construction cost is just a one-time expense and the preconditioner542

can be used for multiple solves. Furthermore, SIF preconditioners may not exist for543

some cases due to the loss of positive definiteness. In the next section, we can see544

that the eSIF preconditioner can often dramatically reduce the number of conjugate545

gradient iterations so that it saves the solution cost significantly.546

Remark 4.3. During the construction of the preconditioner, we specify r so as to547

explicitly control the cost of the preconditioner. Since the practical scheme uses ran-548

domized SVDs to avoid forming large dense blocks, it is actually not very convenient549
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to control the approximation accuracy via a tolerance τ for singular values. This is550

because there is not a direct mechanism to explicitly monitor the accuracy of singular551

values in the randomized process. With a certain number of random vectors, if the552

resulting singular values from randomized SVDs do not reach the desired tolerance,553

more random vectors are used, but then it is not immediate to get the next singular554

values. Instead, it needs to go through some reorthogonalizations, multiplications,555

and moreover, SVD updates. In other words, adaptive sampling with more random556

vectors does not immediately produce new (smaller) singular values on top of exist-557

ing singular values, and the monitoring of the approximation accuracy is then not558

very convenient. This is why a probabilistic strategy is used to roughly estimate the559

approximation accuracy in a somewhat nontrivial adaptive scheme in previous work560

such as [15, 23, 24, 29]. To ensure reasonable reliability of the error estimate, if the561

estimated error satisfies a certain bound for a consecutive number of times, it assumes562

the approximation error meets the desired accuracy. This not only needs extra costs563

but can also highly overestimate the actual numerical rank for a desired accuracy. It564

may lead to r much larger than necessary and also varying a lot for different runs565

and different tolerances. This would then defeat the purpose of designing an efficient566

preconditioner since we want r to be quite small. Thus, directly using a prespecified567

r is much more convenient.568

5. Numerical experiments. We then show the performance of the multilevel569

eSIF preconditioner in accelerating the convergence of the preconditioned conjugate570

gradient method (PCG). We compare the following three preconditioners.571

• bdiag: the block diagonal preconditioner.572

• SIF: an SIF preconditioner from [35] (for the two versions of SIF precondi-573

tioners in [35], we use the one with better robustness).574

• eSIF: the multilevel eSIF preconditioner.575

In [35], it has been shown that SIF is generally much more effective than a pre-576

conditioner based on direct approximations by HSS forms. Here, we would like to577

show how eSIF further outperforms SIF. The following notation is used to simplify the578

presentation of the test results.579

• γ = ‖Ax−b‖2
‖b‖2 : 2-norm relative residual for a numerical solution x, with b580

generated using the exact solution vector of all ones.581

• niter: total number of iterations to reach a certain accuracy for the relative582

residual.583

• Aprec: matrix preconditioned by the factors from the preconditioners (for584

example, Aprec = L̃−1AL̃−T in the eSIF case).585

• r: numerical rank used in any low-rank approximation step in constructing586

SIF and eSIF.587

• l: total number of levels in SIF and eSIF.588

When SIF and eSIF are constructed, we use the same parameters r, l, and finest589

level diagonal block size. Also in the construction of eSIF, one step of power iteration is590

used in randomized SVDs and the oversampling size is set to be 3. The preconditioner591

bdiag is constructed with the same diagonal block sizes as those of the finest level592

diagonal block sizes of SIF and eSIF. Just like in [35], all the test matrices are treated593

as general dense SPD matrices and are not specifically reordered.594

Example 1. We first test the methods on the matrix A with the (i, j) entry595

Aij =
(ij)1/4π

20 + 0.8(i− j)2
,596
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18 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

which is modified from a test example in [35] to make it more challenging.597

In the construction of SIF and eSIF, we use r = 5. With the matrix size N598

increases, l increases accordingly for SIF and eSIF so that the finest level diagonal block599

size is fixed. Table 5.1 shows the results of PCG iterations to reach the tolerance 10−12600

for the relative residual γ. Both SIF and eSIF help significantly reduce the condition601

numbers. The both make PCG converge much faster than using bdiag. eSIF is further602

much more effective than SIF and leads to κ(Aprec) close to 1. PCG with eSIF only603

needs few steps to reach the desired accuracy. The numbers of iterations are lower604

than with SIF by about 12 to 15 times.

Table 5.1
Example 1. Convergence results of PCG with bdiag, SIF, and eSIF preconditioners. (For the

two largest matrices, it is very slow to form Aprec, so the condition numbers are not computed.)

N 1280 2560 5120 10, 240 20, 480 40, 960

l 8 9 10 11 12 13

κ(A) 2.66e7 3.85e7 5.55e7 7.95e7

κ(Aprec)

bdiag 1.41e5 1.42e5 1.42e5 1.42e5

SIF 5.03e1 5.03e1 5.03e1 5.03e1

eSIF 1.01 1.01 1.02 1.02

niter

bdiag 570 562 546 551 526 525

SIF 57 60 61 60 60 60

eSIF 4 4 4 4 4 5

γ

bdiag 9.65e−13 9.49e−13 9.50e−13 6.33e−13 7.89e−13 7.93e−13

SIF 8.02e−13 8.42e−13 3.54e−13 9.36e−13 7.36e−13 8.28e−13

eSIF 5.90e−15 5.48e−15 1.34e−13 4.28e−13 5.00e−14 9.61e−15

605

Figure 5.1(a) shows the actual convergence behaviors for one matrix and Figure606

5.1(b) reflects how the preconditioners change the eigenvalue distributions. With eSIF,607

the eigenvalues of Aprec are all closely clustered around 1.608
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Fig. 5.1. Example 1. Convergence of PCG with bdiag, SIF, and eSIF preconditioners and
eigenvalues of the preconditioned matrices for N = 2560 in Table 5.1.

To confirm the efficiency of eSIF, we plot the storage requirement of eSIF and609

the costs to construct and apply the preconditioner in each step. Since r is fixed, the610

storage of eSIF is O(N logN) and the construction and application costs are O(N2),611

which is confirmed in Figure 5.2. (Some tests for SIF can be found in [35]. We are612
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then not showing the results for SIF. In fact, here SIF has storage roughly comparable613

to that of eSIF.)
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Fig. 5.2. Example 1. Storage for the structured factors of the eSIF preconditioner (excluding
the storage for A) and the construction and application costs with varying N .

614
To see how the efficiency is related to the number of levels l, we vary l for the615

matrix with size N = 10240. See Figure 5.3. A larger l leads to lower storage for the616

structured factors. When l is too small, the finest level diagonal blocks are large and617

it is costly to factorize these diagonal blocks and store the factors. When l increases,618

the cost for constructing the preconditioner decreases quickly at the beginning. The619

cost for applying the preconditioner slightly increases initially (since more levels need620

multiplications involving dense off-diagonal blocks of A), but then remains roughly621

steady (since the dominant cost is from higher levels). For larger l, the cost for the622

construction also becomes roughly steady. Thus, it makes sense to use relatively larger623

l so as to reduce the storage.
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Fig. 5.3. Example 1. Storage for the structured factors of the eSIF preconditioner (excluding
the storage for A) and the construction and application costs with varying l for the matrix with size
N = 10240.

624

Example 2. In the second example, we consider to precondition some RBF (ra-625

dial basis function) interpolation matrices which are known to be notoriously chal-626

lenging for iterative methods due to the ill condition with some shape parameters627

(see, e.g., [8]). We consider the following four types of RBFs:628

e−ε
2t2 , sech εt,

1√
1 + ε2t2

,
1

1 + ε2t2
,629
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where ε is the shape parameter. The interpolation matrices are obtained with grid630

points 0, 1, . . . , N − 1.631

We test the RBF interpolation matricesA with various different shape parameters.632

With N = 1280, r = 6, and l = 8, the performance of PCG to reach the tolerance633

10−12 for γ is given in Table 5.2. When the shape parameter ε reduces, the condition634

numbers of the interpolation matrices increase quickly. SIF improves the condition635

numbers more significantly than bdiag. However, for smaller ε, the condition numbers636

resulting from both bdiag and SIF get much worse and the convergence of PCG slows637

down.638

Table 5.2
Example 2. Convergence results of PCG using bdiag, SIF, and eSIF preconditioners with r = 6

in SIF and eSIF.

RBF e−ε
2t2 sech εt

ε 0.4 0.36 0.32 0.3 0.25 0.2

κ(A) 2.49e6 9.27e7 1.46e10 3.48e6 9.34e7 1.30e10

κ(Aprec)

bdiag 1.26e5 4.50e6 7.11e8 1.52e5 4.24e6 6.28e8

SIF 2.38 2.11e3 2.14e6 1.34 5.02e2 7.58e5

eSIF 1.00 1.00 1.00 1.00 1.00 1.30

niter

bdiag 700 2193 4482 547 1271 3211

SIF 15 107 549 9 52 282

eSIF 1 1 2 1 1 3

γ

bdiag 8.82e−13 8.62e−13 8.97e−13 7.97e−13 9.28e−13 8.25e−13

SIF 4.94e−13 5.16e−13 9.86e−13 4.02e−13 9.44e−13 9.91e−13

eSIF 6.16e−16 7.34e−15 2.63e−16 6.96e−15 1.85e−13 4.91e−14

RBF 1√
1+ε2t2

1
1+ε2t2

ε 0.3 0.25 0.2 1/4 1/5 1/6

κ(A) 2.64e5 2.27e6 5.62e7 1.42e5 3.29e6 7.59e7

κ(Aprec)

bdiag 1.15e4 9.64e4 2.40e6 6.18e3 1.41e5 3.34e6

SIF 1.74 6.30 2.22e2 1.94 2.66e1 8.91e2

eSIF 1.00 1.00 1.26 1.00 1.00 1.03

niter

bdiag 195 375 937 190 541 1222

SIF 13 27 86 14 43 104

eSIF 3 3 6 2 3 5

γ

bdiag 9.21e−13 7.19e−13 8.92e−13 9.84e−13 9.16e−13 7.52e−13

SIF 4.23e−13 5.14e−13 6.20e−13 2.72e−13 7.15e−13 1.95e−13

eSIF 1.77e−15 1.62e−15 8.16e−15 2.36e−13 5.58e−13 2.05e−15

On the other hand, eSIF performs significantly better for all the cases. Dramatic639

reductions in the numbers of iterations can be observed. In Table 5.2, the number of640

PCG iterations with eSIF is up to 274 times lower than with SIF and up to 2241 times641

lower than with bdiag. Overall, PCG with eSIF takes just few iterations to reach the642

desired accuracy.643

Figure 5.4(a) shows the actual convergence behaviors for one case and Figure644

5.4(b) illustrates how the preconditioners improve the eigenvalue distribution. Again,645

the eigenvalue clustering with eSIF is much better.646
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Fig. 5.4. Example 2. Convergence of PCG and eigenvalues of the preconditioned matrices for
the case with RBF 1

1+ε2t2
, ε = 1

6
in Table 5.2.

We also try different numerical ranks r and the results are reported in Table647

5.3. SIF is more sensitive to r. For some cases, SIF with r = 4 leads to quite slow648

convergence of PCG. In contrast, eSIF remains very effective for the different r choices649

and yields much faster convergence.650

Example 3. In the last example, we compare eSIF with SIF in terms of the651

following test matrices from different application backgrounds.652

• MHD3200B (N = 3200, κ(A) = 1.60e13): The test matrix MHD3200B from653

the Matrix Market [25] treated as a dense matrix. r = 9 and l = 8 are used654

in the test.655

• ElasSchur (N = 3198, κ(A) = 8.91e6): A dense Schur complement in the656

factorization of a discretized linear elasticity equation as used in [33]. The657

ratio of the so-called Lamé constants is 105. The original sparse discretized658

matrix has size 5, 113, 602 and the Schur complement A corresponds to the659

last separator in the nested dissection ordering of the sparse matrix. r = 5660

and l = 9 are used in the test.661

• LinProg (N = 2301, κ(A) = 2.09e11): A test example in [35] from linear662

programming. The matrix is formed by A = BDBT , where B is from the663

linear programming test matrix set Meszaros in [26] and D is a diagonal664

matrix with diagonal entries evenly located in [10−5, 1]. r = 3 and l = 9 are665

used in the test.666

• Gaussian (N = 4000, κ(A) = 1.41e10): a matrix of the form sI + G with667

G from the discretization of the Gaussian kernel e
−
‖ti−tj‖2

2µ2 . Such matrices668

frequently appear in applications such as Gaussian processes. Here, s = 10−9,669

µ = 2.5 and the ti points are random points distributed in a long three670

dimensional rectangular parallelepiped. r = 20 and l = 8 are used in the test.671

The convergence behaviors of PCG with SIF and eSIF preconditioners are given672

in Figure 5.5. Much faster convergence of PCG can be observed with eSIF. For the673

four matrices listed in the above order, the numbers of PCG iterations with SIF are674

about 11, 7, 7, and 21 times of those with eSIF, respectively.675

6. Conclusions. We have presented an eSIF framework that enhances a recent676

SIF preconditioner in multiple aspects. During the construction of the preconditioner,677

two-sided block triangular preprocessing is followed by low-rank approximations in678

appropriate computations. Analysis of both the prototype preconditioner and the679
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Table 5.3
Example 2. Convergence results of PCG using SIF and eSIF preconditioners with different r.

RBF e−ε
2t2 sech εt

ε 0.3 0.25 0.2 1/4 1/5 1/6

κ(Aprec)

r = 8
SIF 1.01 2.35 3.64e4 1.00 1.23 4.80e3

eSIF 1.00 1.00 1.00 1.00 1.00 1.06

r = 4
SIF 5.17e2 7.51e4 6.94e7 1.41e2 4.61e4 1.82e7

eSIF 1.00 1.00 5.58 1.00 1.01 1.58e2

niter

r = 8
SIF 5 13 245 4 7 69

eSIF 1 1 1 1 1 2

r = 4
SIF 178 751 3972 92 410 1613

eSIF 2 3 17 2 3 14

γ

r = 8
SIF 7.95e−15 2.90e−13 4.95e−13 2.64e−15 3.18e−13 4.28e−13

eSIF 6.89e−16 1.08e−15 1.23e−14 6.28e−15 1.85e−13 8.59e−13

r = 4
SIF 9.09e−13 9.42e−13 4.36e−11 8.11e−13 6.92e−13 6.06e−13

eSIF 1.20e−15 4.63e−15 7.58e−13 9.14e−16 8.64e−14 6.33e−13

RBF 1√
1+ε2t2

1
1+ε2t2

ε 0.3 0.25 0.2 1/4 1/5 1/6

κ(Aprec)

r = 8
SIF 1.39 3.66 1.06e2 1.45 6.32 6.21e1

eSIF 1.00 1.00 1.00 1.00 1.00 1.00

r = 4
SIF 6.96e1 7.44e2 2.47e4 2.98 9.42e1 1.91e4

eSIF 1.03 1.56 1.18 1.00 1.06 4.34

niter

r = 8
SIF 10 19 75 11 27 64

eSIF 2 2 2 2 2 3

r = 4
SIF 77 224 761 19 87 368

eSIF 5 8 19 4 5 14

γ

r = 8
SIF 9.73e−14 7.71e−13 4.63e−13 1.11e−13 2.50e−13 6.97e−13

eSIF 1.78e−15 2.19e−14 1.09e−13 1.44e−15 3.02e−15 1.95e−15

r = 4
SIF 5.93e−13 9.84e−13 9.21e−13 4.81e−13 9.20e−13 5.71e−13

eSIF 8.38e−14 9.19e−13 1.87e−13 3.84e−15 2.67e−13 1.05e−13

practical multilevel extension is given. We are able to not only overcome a major680

bottleneck of potential loss of positive definiteness in the SIF scheme but also signifi-681

cantly improve the accuracy bounds, condition numbers, and eigenvalue distributions.682

Thorough comparisons in terms of the analysis and the test performance are given.683

In our future work, we expect to explore new preprocessing and approximation684

strategies that can further improve the eigenvalue clustering and accelerate the de-685

cay magnification effect in the condition number. The current work successfully im-686

proves the relevant accuracy, condition number, and eigenvalue bounds by a significant687

amount (e.g., from 1+ε̂
1−ε̂ to 1+ε in Table 3.1 with ε much smaller than ε̂). We expect to688

further continue this trend and in the meantime keep the preconditioners convenient689

to apply. We will also explore the feasibility of extending our ideas to nonsymmetric690

and indefinite matrices.691

Acknowledgements. Thank the two anonymous referees for providing useful692

suggestions that help improve this paper.693
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Fig. 5.5. Example 3. Convergence of PCG with SIF and eSIF preconditioners.
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