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SUMMARY

Semiseparable matrices and many other rank-structured matrices have been widely used in developing
new fast matrix algorithms. In this paper, we generalize the hierarchically semiseparable (HSS) matrix
representations and propose some fast algorithms for HSS matrices. We represent HSS matrices in terms
of general binary HSS trees and use simplified postordering notation for HSS forms. Fast HSS algorithms
including new HSS structure generation and HSS form Cholesky factorization are developed. Moreover,
we provide a new linear complexity explicit ULV factorization algorithm for symmetric positive definite
HSS matrices with a low-rank property. The corresponding factors can be used to solve the HSS systems
also in linear complexity. Numerical examples demonstrate the efficiency of the algorithms. All these
algorithms have nice data locality. They are useful in developing fast-structured numerical methods for
large discretized PDEs (such as elliptic equations), integral equations, eigenvalue problems, etc. Some
applications are shown. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Rank-structured matrices have attracted much attention in recent years. These matrices have been
shown very effective in solving linear systems [1–4], least squares problems [5], eigenvalue
problems [6–11], PDEs [12–15], integral equations [16–18], etc. Examples of rank-structured
matrices include H-matrices [19–21], H2-matrices [22–24], quasiseparable matrices [25], and
semiseparable matrices [26–28]. It has been noticed that in the factorizations of some discretized
PDEs and integral equations, dense intermediate matrices have off-diagonal blocks with small
numerical ranks. By exploiting this low-rank property, fast numerical methods can be developed.
The property is also observed in some eigenvalue problems [6–8].
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Here, we consider a type of semiseparable structures called hierarchically semiseparable (HSS)
matrices proposed in [1, 2, 29]. HSS structures have been used to develop fast direct or iterative
solvers for both dense and sparse linear systems [1, 2, 15, 29–31]. For dense matrices with the
low-rank property and represented in HSS forms, the linear system solution needs only linear
complexity based on implicit ULV-type factorizations, where U and V are orthogonal matrices
and L is lower-triangular [2, 29]. HSS matrices can also be used in many other applications
where the low-rank property exists. The HSS representation features a nice hierarchical multi-level
tree structure (HSS tree), and is efficient in capturing the semiseparable low-rank property. HSS
structures are closely related to H-matrices [19–21] and H2-matrices [22–24], and is a special
case of the representations in the fast multipole method [18, 32, 33]. It is also a generalization of
the sequentially semiseparable representation [5, 26].

In the meantime, the implementation of the current HSS algorithms is still not very convenient,
partly due to the tedious notation and the level-wise (global) tree traversal scheme. Moreover, some
existing HSS algorithms can be highly improved, such as the structure construction and system
solution, especially for symmetric problems.

Thus in this paper, we present simplifications and generalizations of HSS representations,
which are easier to use and have better data locality. We also develop some HSS algorithms with
better efficiency. With the improved HSS representation, most HSS algorithms can be done more
conveniently by traversing postordering HSS trees. Our generalizations of HSS structures also
allow more flexibility in dealing with arbitrary HSS tree patterns.

The algorithms we propose can be used to provide nearly linear complexity direct solvers for
sparse-discretized PDEs [15], such as elliptic equations and others [12–14, 34, 35]. Note that these
dense HSS techniques apply to discretized PDEs in one-dimensional (1D) domains, but can be
used in sparse matrix schemes to work on 2D problems. For example, with the nested dissection
ordering of a sparse discretized PDE followed by a multifrontal factorization, we can use HSS
matrices to approximate the dense intermediate fill-in [15]. Such a scheme can also possibly be
used to solve or to precondition higher dimensional problems.

In addition, the postordering HSS tree notation we use simulates the assembly tree structure
[36–38] in sparse matrix solutions and has a good potential to be parallelized. The ideas presented
here are also useful for developing new HSS algorithms.

1.1. Review of HSS matrices

We first briefly review the standard HSS structure and give some concise definitions based on the
discussions in [1, 2, 15, 29–31].

The low-rank property is concerned with the ranks or numerical ranks of certain types of off-
diagonal blocks. Here, by numerical ranks we mean the ranks obtained by rank revealing QR
factorizations or �-accurate SVD (SVD with an absolute or relative tolerance � for the singular
values). The off-diagonal blocks used in HSS representations are called HSS blocks as shown in
Figure 1(i), (ii). They are block rows or columns without diagonal parts and are hierarchically
defined for different levels of splittings of the matrix.

Definition 1.1 (HSS blocks)

For an N×N matrix H and a partition sequence {mk; j }2kj=1 satisfying
∑2k

i=1mk; j =N , partition H

into 2k block rows so that block row j has row dimension mk; j . Similarly, partition the columns.
Denote the mk; j ×mk; j intersection block of block row j and block column j by Dk;i . Then,
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(1;2)(1;1)

(2;3)(2;2) (2;4)(2;1)

Figure 1. Two levels of HSS off-diagonal blocks: (i) first-level HSS blocks; (ii) second-level HSS blocks;
and (iii) corresponding binary tree.

block row (column) j with Dk; j removed is called the j-th HSS block row (column) at the k-th
level (bottom level) partition. Upper level HSS blocks are similarly defined using the partition
sequences {mi; j }2ij=1, which are given recursively by

mi−1; j =mi;2 j−1+mi;2 j , j =1,2, . . . ,2i−1−1,2i−1, i=k,k−1, . . . ,2,1.

Thus, the j th HSS block row at level i has dimensions mi; j ×(N−mi; j ). Clearly, these blocks
can be associated with a binary tree. For example, we can have a binary tree as shown in Figure 1(iii)
corresponding to Figure 1(i), (ii), where each tree node is associated with an HSS block row and
column. Later, we use (i; j) to denote the j-th node at level i of the tree.

Definition 1.2 (HSS tree and HSS representation)
For a matrix H and its HSS blocks as defined in Definition 1.1, let T be a perfect binary tree where
each node is associated with an HSS block row (column). H is said to have an HSS representation
if there exists matrices Di; j , Ui; j , Vi; j , Ri; j , Wi; j , Bi; j, j±1 associated with each tree node (i; j)
which satisfy the recursions

Di−1; j =
(

Di;2 j−1 Ui;2 j−1Bi;2 j−1,2 j V
T
i;2 j

Ui;2 j Bi;2 j,2 j−1V
T
i;2 j−1 Di;2 j

)
,

Ui−1; j =
(
Ui;2 j−1Ri;2 j−1

Ui;2 j Ri;2 j

)
, Vi−1; j =

(
Vi;2 j−1Wi;2 j−1

Vi;2 jWi;2 j

)
,

j=1,2, . . . ,2i−1−1,2i−1, (1)

i=k, k−1, . . . ,2,1,

so that D0;1≡H , corresponding to the root of T. The matrices in (1) are called generators of H .
If node (i; j) of T is associated with the generators Di; j , Ui; j , Vi; j , Ri; j , Wi; j , Bi; j, j±1, we say
T is an HSS tree of H .
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B1;1,2

B1;2,1
(1;2)

W2;2

R2;2R2;1

W2;1

B2;1,2

B2;2,1

(1;1)

(2;3)(2;2) (2;4)(2;1)

U2;2, V2;2U2;1, V2;1

W2;4

R2;4R2;3

W2;3

B2;4,3

B2;3,4

U2;4, V2;4U2;3, V2;3
D2;1 D2;2 D2;3 D2;4

Figure 2. HSS tree for (2).

Note that due to this hierarchical structure, only R, W generators and bottom level D, U , V
generators need to be stored. As an example, a block 4×4 HSS matrix looks like

m2;1
m2;2
m2;3
m2;4

⎛
⎜⎜⎜⎜⎜⎝

(
D2;1 U2;1B2;1,2V T

2;2
U2;2B2;2,1V T

2;1 D2;2

) (
U2;1R2;1
U2;2R2;2

)
B1;1,2(WT

2;3V
T
2;3 WT

2;4V
T
2;4)

(
U2;3R2;3
U2;4R2;4

)
B1;2,1(WT

2;1V
T
2;1 WT

2;2V
T
2;2)

(
D2;3 U2;3B2;3,4V T

2;4
U2;4B2;4,3V T

2,3 D2;4

)
⎞
⎟⎟⎟⎟⎟⎠ ,

(2)

which corresponds to the second-level block partition in Figure 1. The hierarchical structure of
HSS matrices can be seen by writing (2) in terms of the first-level block partition

m1;1≡m2;1+m2;2
m1;2≡m2;3+m2;4

(
D1;1 U1;1B1;1,2V T

1;2
U1;2B1;2,1V T

1;1 D1;2

)
. (3)

The corresponding HSS tree of H is shown in Figure 2.
HSS trees can be used to conveniently represent HSS matrices. As an example, the (2,3) block

of (2) can be identified by the directed path connecting the second and third nodes at level 2:

U2;2
(2;2) R2;2−→(1;1) B1;1,2−→(1;2) WT

2;3−→
V T
2;3

(2;3),
where U and R generators are used for outgoing directions, and V and W generators are used for
incident directions. HSS trees also allow the operations on HSS matrices to be done conveniently
via tree operations.

In addition, we can see that the second-level HSS block rows in (2) are given by

U2;1(B2;1,2 R2;1B1;1,2)diag(V T
2;2,V

T
1;2), U2;2(B2;2,1 R2;2B1;1,2)diag(V T

2;2,V
T
1;2), etc.,

where each U2;i is an appropriate column basis matrix and diag(V T
2;2,V

T
1;2) (denoting a diagonal

matrix formed with diagonal blocks V T
2;2 and V T

1;2) is a row basis.
The effectiveness of HSS structures relies on the low-rank property.

Definition 1.3 (low-rank property)
A matrix with given partition sequences as in Definition 1.1 is said to have the low-rank property
(in terms of HSS blocks) if all its HSS blocks have small ranks or numerical ranks.
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Definition 1.4 (HSS rank and compact HSS representation)
The HSS rank of a matrix H is the maximum (numerical) rank of all the HSS off-diagonal blocks
at all levels of HSS partitions of H . An HSS representation of (or approximation to) H is said to
be compact if all its R and B generators have sizes close to the HSS rank which is small when
compared with the matrix size.

When numerical ranks are used, the HSS form approximates the original matrix.

1.2. Main results

In this work, we first simplify and generalize HSS representations. The original HSS notation
in [2, 29], as in (2) and (3), uses up to three subscripts for the generators, and existing HSS
algorithms are mainly concerned with perfect binary HSS trees. The existing HSS operations are
also mostly based on level-wise traversal of the trees, which may reduce the data locality. Here, we
use only one subscript and allow the HSS tree to be a general (partial) binary tree. The nodes are
ordered following the postordering of the tree. This simplifies the manipulation of HSS matrices
and brings more flexibility to HSS operations. Postordering representations fit the patterns of many
HSS algorithms and are more natural for both the notation and the data structure. They also have
good data locality and are very suitable for parallel computations.

On the basis of the simplified postordering HSS notation, we provide some new HSS algorithms
which are fast and stable. They include:

1. Fast HSS structure generation algorithm which has better complexity than the one in [29].
The cost is O(N 2) flops for an order N dense matrix with the low-rank property. Comparison
with [29] is discussed.

2. Quadratic complexity explicit Cholesky factorization of a symmetric positive definite (SPD)
matrix in compact HSS form. The idea of this algorithm is useful in computing Schur
complements, when an HSS matrix is partially factorized [15].

3. Linear complexity explicit ULV factorization of an SPD matrix in compact HSS form. The
new algorithm is called a generalized HSS Cholesky factorization algorithm, because the
factors consist of orthogonal transformations and triangular matrices. Numerical experiments
are used to demonstrate the stability and linear complexity. Comparisons with the fast solver
in [29] are given in terms of system solution.

4. System solution using the generalized HSS Cholesky factors. Traditional forward and
backward substitutions are replaced by forward (postordering) and backward (reverse-
postordering) traversals of a solution tree, respectively. This solution process also has linear
complexity but with a small constant.

5. Applications of the new algorithms in more advanced schemes such as factorizing or precon-
ditioning discretized PDEs.

These algorithms are both cost and memory efficient. They are useful in solving more compli-
cated problems including discretized PDEs [15], integral equations, least squares problems, etc.
For some discretized PDEs, a nearly linear complexity direct solver is proposed based on these
algorithms [15].

The remaining sections are organized as follows. The next section shows the generalizations
and simplifications of HSS representations. The fast HSS construction algorithm is presented in
Section 3. Section 4 discusses the two types of HSS factorizations and also the generalized HSS
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solver. Numerical experiments are included. Some applications of these HSS algorithms are shown
in Section 5. Section 6 gives some concluding remarks.

2. GENERALIZATIONS OF HSS REPRESENTATIONS

In this section, we first simplify the HSS notation and then introduce partial HSS forms.

2.1. Postordering HSS representation

Tree structures are very useful in numerical problems like direct solutions of sparse linear systems
where they appear as assembly trees [36–38]. In an assembly tree, the nodes are often ordered
following the postordering, which gives the actual elimination order. Similarly in the situation of
HSS operations, it often needs to traverse HSS trees. A postordering of the HSS tree nodes brings
more flexibility and convenience.

For example, the nodes of the HSS tree in Figure 2 can be relabeled in the postordering form
as in Figure 3(i). Accordingly, the generators are relabeled with only one index each. We call
this HSS notation the postordering HSS notation. Accordingly, the HSS off-diagonal blocks at
different levels are also ordered and associated with the tree nodes. With the postordering notation,
the matrix (2) now looks like

⎛
⎜⎜⎜⎜⎜⎝

D1 U1B1V
T
2 U1R1B3W

T
4 V

T
4 U1R1B3W

T
5 V

T
5

U2B2V
T
1 D2 U2R2B3W

T
4 V

T
4 U2R2B3W

T
5 V

T
5

U4R4B6W
T
1 V

T
1 U4R4B6W

T
2 V

T
2 D4 U4B4V

T
5

U5R5B6W
T
1 V

T
1 U5R5B6W

T
2 V

T
2 U5B5V

T
4 D5

⎞
⎟⎟⎟⎟⎟⎠ . (4)

The postordering HSS notation simplifies the HSS representation and is convenient in HSS
structure transformations, data manipulations, parallelization, etc. Moreover, the postordering HSS
representation keeps good data locality by limiting direct communications to be between parent
and child nodes only.

B3

B6
6

W2

R2R1

W1

B1

B2

3

42 51

U2, V2U1, V1

W5

R5R4

W4

B4

B5

U5, V5U4, V4

D1 D2 D4 D5

7 7

B3

B6
63

4 5

U3, V3
W5

R5R4

W4

B4

B5

U5, V5U4, V4

D3

D4 D5

7

B3

B6
6

W2

R2

3

42 5

U2, V2

W5

R5R4

W4

B4

B5

U5, V5U4, V4

D2 D4 D5

Figure 3. Examples of a postordering HSS tree and partial HSS trees: (i) postordering form of Figure 2;
(ii) full HSS tree; and (iii) general partial HSS tree.
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2.2. Partial HSS form

In Figure 3(i), the HSS tree is a perfect binary tree, that is, the tree has 2l+1−1 nodes if it has
l levels (the root is at level 0). But HSS trees can be more general. For example, if we merge
the first two block rows and columns of the matrix (4), we get an HSS form corresponding to
Figure 3(ii). We may have even more general cases like Figure 3(iii).

An HSS tree which is not perfect is said to be a partial HSS tree, and the corresponding HSS
matrix is in partial HSS form. In various HSS operations like solving HSS systems, it is often more
convenient and practical to use partial HSS trees [15]. Thus, we consider operations on general
partial HSS matrices, not necessarily restricted to complete HSS matrices as in [29]. However, a
tree in Figure 3(iii) can be transformed to Figure 3(ii) by merging certain nodes and edges, so it
usually suffices to consider partial HSS trees which are full binary trees. That is, each non-leaf
node i has two children c1 and c2 with c1<c2, called the left and right children of i , respectively.
Furthermore, it suffices to use full binary trees due to the following simple fact.

Theorem 2.1
For any integer k>0, there always exists a full binary tree with exactly k leaf nodes and 2k−1
nodes in total.

Proof
A straightforward proof is to construct an unbalanced full binary tree where each right (or left)
node is only a leaf node . Such a tree with k leaves has exactly k−1 non-leaf nodes. A generally
better choice is to recursively construct a tree, which is as balanced as possible or has as small
depth as possible. �

3. FAST AND STABLE CONSTRUCTION OF HSS REPRESENTATIONS

For a dense matrix H and a partition sequence {mi }, there always exists a full HSS tree according
to Theorem 2.1. We assume that an HSS tree corresponding to {mi } is also given. The paper [29]
provides an HSS construction algorithm based on (�-accurate) SVDs. That method traverses HSS
trees by levels and, in general, can only generate HSS matrices with perfect HSS trees. Here, we
provide a new algorithm which follows a general postordering (partial) HSS tree. It is fully stable
and costs much less than the one in [29]. We compress the HSS off-diagonal blocks associated with
the tree nodes. Here, by compression we mean a QR factorization or SVD of a low-rank block,
or a rank-revealing QR or �-accurate SVD of a numerically low-rank block when approximations
are used.

3.1. A block 4×4 example

We first demonstrate the procedure of constructing a 4×4 block HSS form (4) for H using the
postordering HSS tree in Figure 3. Initially, we partition the matrix H into a 4×4 block form

H =

⎛
⎜⎜⎜⎜⎝

D1 T12 T14 T15

T21 D2 T24 T25

T41 T42 D4 T45

T51 T52 T54 D5

⎞
⎟⎟⎟⎟⎠ ,
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where the subscripts follow the node ordering, that is Tij denotes the block corresponding to nodes
i and j . Moreover, we use Ti,: (T:,i ) to denote the HSS block row (column) corresponding to node
i . As an example, the HSS block rows corresponding to nodes 1 and 3 are T1,: ≡(T12 T14 T15) and

T3,: ≡
(
T14 T15

T24 T25

)
,

respectively. The HSS construction is done following the traversal of the HSS tree. We demonstrate
the first few steps.

(a) Node 1. At the beginning, we compress the HSS off-diagonal block row and column
corresponding to node 1 by QR factorizations

T1,:(≡(T12 T14 T15)) =U1(T̃12 T̃14 T̃15),

T T:,1(≡(T T
21 T T

41 T T
51)) = V1(T̃

T
21 T̃ T

41 T̃ T
51),

where T̃ij denotes a temporary matrix (so does T̄ij below).
(b) Node 2. Now, compress the HSS block row and column for node 2. Parts of these blocks have

been compressed in the previous step. As U and V matrices are bases of appropriate off-diagonal
blocks, the compression of those blocks can be done without these basis matrices. For example,
this can be justified by writing

T2,: =(T̃21V
T
1 T24 T25)=(T̃21 (T24 T25))

(
V T
1

I

)
.

Thus, V T
1 can be ignored in further compressions. This is essential in saving the cost. Compute

QR factorizations

(T̃21 T24 T25) =U2(B2 T̃24 T̃25),

(T̃ T
12 T T

42 T T
52) = V2(B

T
1 T̃ T

42 T̃ T
52).

Then H becomes

H =

⎛
⎜⎜⎜⎜⎜⎝

D1 U1B1V
T
2 U1T̃14 U1T̃15

U2B2V
T
1 D2 U2T̃24 U2T̃25

T̃41V
T
1 T̃42V

T
2 D4 T45

T̃51V
T
1 T̃52V

T
2 T54 D5

⎞
⎟⎟⎟⎟⎟⎠ .

(c) Node 3. The HSS block row and column corresponding to node 3 can be obtained by merging
appropriate pieces of the HSS blocks of nodes 1 and 2 (Figure 1). We identify and compress them
(ignoring any U , V -bases)(

T̃14 T̃15

T̃24 T̃25

)
=
(
R1

R2

)
(T̄34 T̄35),

(
T̃ T
41 T̃ T

51

T̃ T
42 T̃ T

52

)
=
(
W1

W2

)
(T̄ T

43 T̄ T
53).

H then has a more compact form.
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Similarly, we can continue the compression of the HSS blocks, but with appropriate U , V -bases
ignored in the QR factorizations.

3.2. General algorithm

In general, we compress the HSS block row and column corresponding to each tree node i . The
major idea of the efficient construction is that we can ignore appropriate U , V -bases so that some
portions of the HSS blocks can be replaced by sub-blocks of previously compressed HSS blocks
(T̃ , T̄ blocks above). In the following, c1 and c2 denote the children of a node i .

ALGORITHM 1 (Fast and stable HSS construction)

1. For a matrix H and an HSS tree with n nodes, assign bottom level blocks to the leaves.
2. For nodes i=1, . . . ,n−1

(a) If node i is a leaf, locate the appropriate HSS block row Ti,: and column T:,i in H with
any previous U , V bases ignored. Compute (rank-revealing) QR factorizations

Ti,: =Ui T̃i,:, T T:,i =Vi T̃
T:,i .

Push T̃i,: and T̃:,i onto the stack. The T̃ notation will be replaced by T later.
(b) Otherwise, pop Tc2,:, T:,c2 , Tc1,:, T:,c1 from the stack.

(i) Form the HSS block row Ti,: based on Tc1,: and Tc2,:. See Figure 4. Any U,V bases
are automatically ignored. Similarly form T:,i .

(ii) Compress Ti,: and T:,i and obtain the generators Rc1 , Rc2 , W
T
c1 , W

T
c2

Ti,: =
(
Rc1

Rc2

)
T̃i,:, T T:,i =

(
Wc1

Wc2

)
T̃ T:,i .

Push T̃i,: and T̃:,i onto the stack.
(iii) Identify Bc1 and Bc2 from Tc1,: and Tc2,:, respectively. At step 2(b)i the columns of

Tc1 that do not go to Ti,: form Bc1 . Similarly, form Bc2 . See Figure 4.

This new algorithm is stable at all steps due to the use of orthogonal transformations. If H has a
small HSS rank, this new algorithm costs O(N 2) flops but with a hidden constant smaller than that
in the construction algorithm in [29]. For example, we consider the cost for constructing the above
block 4×4 HSS matrix. For simplicity, assume all mi ≡m= N

4 , the matrix H has HSS rank r �m,
and all matrices to be factorized have ranks r . The main costs are for the QR factorizations of the
matrices as listed in Table I. The total cost is about 3r N 2+6r2N flops. On the other hand, the
construction algorithm in [29] needs SVDs of eight m×3m matrices and several multiplications
of matrices with various sizes. The SVDs alone are already much more expensive than our new
algorithm.

The reader is also referred to [24] for detailed complexity counts and error analysis of an
H2-matrix construction algorithm, which has a similar hierarchical scheme as our method. Note
that in real applications like solving discretized PDEs [15], the HSS forms are constructed by
recursive accumulation along the elimination. The construction cost can then be much less than
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Figure 4. Forming Ti,: and identifying Bc1 and Bc2 .

Table I. Matrices for QR factorizations in the construction of the block 4×4 HSS matrix example.

Matrix size m×3m r×(2r+r) 2r×2m m×(m+r) m×2r 2m×r
Number of matrices 2 2 2 2 2 2

O(N 2). It is also possible to generalize HSS constructions to higher dimensional problems using
the techniques in [24].

4. FAST QUADRATIC COMPLEXITY AND LINEAR COMPLEXITY HSS
FACTORIZATIONS

In this section, we discuss explicit factorizations of HSS matrices. For simplicity, we only consider
SPD matrices. We look at two types of factorizations: the Cholesky factorization of an SPD HSS
matrix and a generalized HSS Cholesky factorization.

4.1. Fast Cholesky factorization of SPD HSS matrices

Given the HSS form of an SPD matrix, we can conveniently compute its HSS form Cholesky
factor. As the matrix is symmetric, the generators satisfy

DT
i =Di , Ui =Vi , Ri =Wi , and Bi = BT

j for siblings i and j.

Assume H has an HSS tree like Figure 3(i) but with more nodes. The factorization consists of two
major operations, eliminating the principal diagonal block and updating the Schur complement.
Correspondingly, there are two operations on the HSS tree: removing a node and updating the
remaining ones.

First, we look at the situation of eliminating node 1. Factorize D1= L1LT
1 and compute the

Schur complement H̃ as follows:

H =
(
L1 0

l1 I

)(
LT
1 lT1

0 H̃

)
,
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where

lT1 = (Ũ1B1U
T
2 Ũ1R1B3R

T
4U

T
4 Ũ1R1B3R

T
5U

T
5 . . .),

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

D̃2 U2 R̃2B3R
T
4U

T
4 U2 R̃2B3R

T
5U

T
5 . . .

U4R4B
T
3 R̃

T
2U

T
2 D̃4 U4 B̃4U

T
5 . . .

U5R5B
T
3 R̃

T
2U

T
2 U5 B̃

T
4U

T
4 D̃5

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with Ũ1= L−1
1 U1 and

D̃2 = D2−U2B
T
1 Ũ

T
1 Ũ1B1U

T
2 , R̃2= R2−BT

1 Ũ
T
1 Ũ1R1

D̃4 = D4−U4R4B
T
3 R

T
1 Ũ

T
1 Ũ1R1B3R

T
4U

T
4 , B̃4= B4−R4B

T
3 R

T
1 Ũ

T
1 Ũ1R1B3R

T
5 , . . .

We can see that the Schur complement H̃ takes a form similar to the original matrix but with its
first block row and column removed.

In general, the update of the generators can be clearly seen by using appropriate paths in the
tree. Following the postordering of the nodes i=1, . . . ,n, we can perform two steps to remove
each node i during the elimination. At the first step, eliminate node i by computing

Di = Li L
T
i , D̃i = Li , Ũi = L−1

i Ui .

At the second step, compute the Schur complement by updating the remaining nodes. This means,
we consider each node j = i+1, . . . ,n according to the rules below.

1. If node j is a leaf node, locate the path connecting j and i : j →···→ i→···→ j , and update
Dj as

D̃ j =Dj −Uj R j . . . R
T
i Ũ

T
i Ũi Ri . . . R

T
j U

T
j .

2. If node j is a left child, locate the path connecting j to i and then to s, the sibling of j :
j →···→ i → . . .→s, and update Bj as

B̃ j = Bj −R j . . . R
T
i Ũ

T
i Ũi Ri . . . R

T
s .

3. If node j is the right child of p which is an ascendant of i , locate the path connecting j to
i and then to s, the sibling of j : j →···→ i →···→s, and update R j as

R̃ j = R j −BT
s . . . RT

i Ũ
T
i Ũi Ri . . . Rs .

Nodes of the HSS tree are removed along the progress of the elimination. This algorithm gives
an explicit HSS form of the Cholesky factor. The idea is also useful for finding Schur complements
in partial HSS factorizations [15]. This algorithm costs O(N 2) flops where N is the dimension
of H . As our main concern is the linear complexity factorization below, we skip the detailed flop
count.
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4.2. Linear complexity generalized Cholesky factorization of HSS matrices

There exist O(N ) complexity algorithms for solving a compact HSS system [29]. The HSS solver
in [29] computes an implicit ULV factorization. However, sometimes an explicit factorization of
an HSS matrix may be convenient. Furthermore, various simplifications and improvements can be
made. Here, we provide an improved linear complexity factorization scheme. As our algorithm
computes an explicit ULV factorization instead of the traditional Cholesky factorization, we call
it a generalized HSS Cholesky factorization. In the following, we factorize a compact SPD HSS
matrix H such as the one represented by the HSS tree in Figure 3(i).

4.2.1. Introducing zeros into off-diagonal blocks. We consider to partially eliminate node i in the
HSS tree. The generator Ui is a basis matrix for the i-th off-diagonal block row. It is directly
available for any leaf node i , and can be formed recursively for a non-leaf node. By bringing zeros
into Ui , we can quickly introduce zeros into the HSS blocks corresponding to i .

Assume that Ui has size mi ×ki . In a compact HSS form, we should have mi�ki . Here, we
leave the case mi =ki to Subsection 4.2.3 and assume mi>ki . In such a situation, we can introduce
a QL factorization with an orthogonal transformation Qi such that

Ui =Qi

(
0

Ũi

)
, Ũi :ki ×ki . (5)

Multiply QT
i to the entire block row i . Then the first mi −ki rows of the off-diagonal block

become zeros. See Figure 5 for a pictorial representation. Similarly, we apply Qi on the right to
the off-diagonal column corresponding to node i . As the HSS form is symmetric, this will also
introduce mi −ki zero columns in the i-th off-diagonal block column. The diagonal block is now
changed to

D̂i =QT
i Di Qi . (6)

D1

D2

D4

D5

Q1
T

U1

U3

D1

D2

D4

D5

Figure 5. A pictorial representation for introducing zeros into the off-diagonal block rows of an HSS
matrix. Dark blocks represent the nonzero portions of the generators in the block upper triangular part.

The nonzero pattern for the block lower triangular part comes from symmetry and is not shown.
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Figure 6. Partial factorization of a diagonal block and merging generators of siblings: (i) partial factor-
ization; (ii) after partial elimination; and (iii) merging blocks.

4.2.2. Partially factorizing diagonal blocks. We partition the diagonal block D̂i conformally and
partially factorize it

D̂i =
(mi −ki ki

mi −ki Di;1,1 Di;1,2
ki Di;2,1 Di;2,2

)
=
(

Li 0

Di;2,1L−T
i I

)(
LT
i L−1

i Di;1,2
0 D̃i

)
, (7)

where D̃i is the Schur complement

D̃i =Di;2,2−Di;2,1L−T
i L−1

i Di;1,2. (8)

See Figure 6(i). We see that the block Di;1,1 can then be eliminated (Figure 6(ii)).

4.2.3. Merging child blocks. At this point, Ũi is a square matrix (corresponding to the situation
mi =ki mentioned in Subsection 4.2.1). We then merge sibling blocks and move to the parent
node (instead of doing level-wise elimination as in [29]). For notational convenience, we use i to
mean a parent node, with its children c1 and c2 partially eliminated as above. Then, we can merge
blocks to obtain upper level generators

Di =
(

D̃c1 Ũc1Bc1Ũ
T
c2

Ũc2B
T
c1Ũ

T
c1 D̃c2

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
. (9)

We emphasize that these Di and Ui are the generators of the reduced HSS matrix, instead of the
original H .

Now, we can remove nodes c1 and c2 from the HSS tree. We repeat these steps following
the postordering of the tree to eliminate other nodes, until we reach the root n where we can
factorize its reduced-size Dn generator directly. Note that a node only communicates with its
parent (and children). This is essential for the linear complexity of the factorization and is useful
for parallelization.
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4.2.4. Algorithm and complexity. We organize the steps in the following algorithm.

ALGORITHM 2 (Generalized HSS Cholesky factorization)

1. Let H be an SPD HSS matrix with n nodes in the HSS tree. Allocate space for a stack.
2. For each node i=1,2, . . . ,n−1

(a) If i is a non-leaf node

(i) Pop D̃c2 , Ũc2 , D̃c1 , Ũc1 from the stack, where c1,c2 are the children of i .
(ii) Obtain Di and Ui with (9).

(b) Compress Ui with (5). Push Ũi onto the stack.
(c) Update Di with (6). Factorize D̂i with (7) and obtain the Schur complement D̃i as in

(8). Push D̃i onto the stack.

3. For the root node n, form Dn and compute the Cholesky factorization Dn = LnLT
n .

Remark 1
For each step, we can also replace the compression step (5) and the partial Cholesky factorization
step (7) by a different process. That is, we first compute a full Cholesky factorization Di = Li LT

i

and then QR factorize L−1
i Ui . This way, Di is updated to an identity matrix and remains so that

step (6) is avoided, which can save some work.

Note that the factors after the generalized Cholesky factorization include lower triangular
matrices Li , orthogonal transformations Qi in the compressions, and applicable permutations Pi
during the merge step. They together form the generalized HSS Cholesky factor. To clearly see
the roles of these matrices in the actual factorization, we look at an example with three nodes in
the tree. The off-diagonal compression and the partial diagonal factorization leads to

H =
(
Q1 0

0 Q2

)
L̂3

⎛
⎜⎜⎜⎜⎜⎝

(
I 0

0 D̃1

) (
0 0

0 Ũ1B1Ũ
T
2

)
(
0 0

0 Ũ2B
T
1 Ũ

T
1

) (
I 0

0 D̃2

)
⎞
⎟⎟⎟⎟⎟⎠ L̂T

3

(
QT

1 0

0 QT
2

)
,

where the notation I for identity matrices and 0 for zero matrices may have different sizes, and

L̂3=diag

((
L1 0

T1 I

)
,

(
L2 0

T2 I

))
with T1=D1;2,1L−T

1 , T2=D2;2,1L−T
2 . (10)

The merge process then uses a permutation matrix P3 to bring together appropriate dense blocks
to form D3 as shown in (9) (there is no U3 as there are only two bottom-level blocks here). Then
another factorization step D3= L3LT

3 follows. Thus,

H = LH LT
H with LH =Q3 L̂3P3

(
I 0

0 L3

)
. (11)

The matrix LH is the actual generalized HSS Cholesky factor formed by {Li }, {Ti }, {Qi }, and
{Pi }. This procedure is recursive and we can easily generalize the example. In addition, Qi and
Pi can be stored in terms of (Householder) vectors and scalars (matrix dimensions), respectively.
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Table II. Flop counts of some basic matrix operations, with low-order terms dropped.

Operation Flops

Cholesky factorization of an n×n matrix n3/3
Inverse of an n×n lower triangular matrix times an n×k matrix n2k
QR factorization of an m×k tall matrix (m>k) 2k2(m− k

3 )

Product of Q and an m×n vector 2nk(2m−k)
Product of a general m×n matrix and an n×k matrix 2mnk

Table III. Sizes of the generators in Algorithm 2, where i and j are siblings.

Generator Ui Ri Bi
Size mi ×ki ki ×kp ki ×k j

The algorithm has linear complexity as shown in the following theorem.

Theorem 4.1
Assume that an N×N SPD matrix H is in compact HSS form with a full HSS tree. Moreover,
assume that the bottom-level HSS block row dimensions are O(r), where r is the HSS rank of
H . Then the generalized Cholesky factorization of H with Algorithm 2 has complexity O(r2N )

flops.

Proof
To show the complexity, we use the flop counts of some basic matrix operations as listed in
Table II. They can be found, say, in [39, 40].

Consider node i of the HSS tree corresponding to each step i of Algorithm 2. Assume node i
(except the root) has a sibling j , a parent p, and two children c1 and c2 if applicable. We further
assume the Ui basis being compressed in (5) has dimension mi ×ki . Note that for a non-leaf i , the
matrices Di and Ui are generators of a reduced HSS matrix after an intermediate merge process
(9), and is not a generator of the original H . This means, each Ui in the compression step (5) has
row dimension mi =O(r). Also, let Ri and Bi have dimensions as indicated in Table III. Clearly,
all ki =O(r).

The major operations in the factorization are as follows.

• For a non-leaf i , the merge step (9) needs four matrix-matrix products Ũc1Bc1 , (Ũc1Bc1)Ũ
T
c2 ,

Ũc1Rc1 , and Ũc2Rc2 , with costs 2mc1kc1kc2 , 2mc1kc2mc2 , 2mc1kc1ki , and 2mc2kc2ki , respec-
tively.

• For each i , the compression (QR) step (5) costs 2k2i (mi − ki
3 ).

• For each i , the diagonal update (6) costs 4miki (2mi −ki ) due to two products involving Qi .
• For each i , the partial factorization in (7) costs 1

3 (mi −ki )3, (mi −ki )2ki , and (mi −ki )k2i ,
which are for factorizing the pivot block, updating the lower triangular part, and computing
the Schur complement, respectively.

These counts are summarized in the third column of Table IV.
To simplify the calculations, we assume each bottom-level Ui has the same row dimension m.

The counts are then simplified as in the third column of Table IV. The HSS tree has N/m leaf
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Table IV. Cost of generalized HSS Cholesky factorization (leading terms only).

Node Operation Flops Number of nodes

Leaf Compression (5) 2k2i (mi − ki
3 ) =O(mr2) ×N/m

node i Diagonal update (6) 4miki (2mi −ki ) =O(m2r)
Factorization (7) 1

3 (mi −ki )
3+(mi −ki )

2ki
+(mi −ki )k

2
i =O((m−r)3)

Non-leaf Merge step (9) 2(mc1kc1kc2 +mc1kc2mc2 ×(N/m−1)
node i +mc1kc1ki +mc2kc2ki ) =O(r3)

Diagonal update (6) 4miki (2mi −ki ) =O(r3)
Compression (5) 2k2i (mi − ki

3 ) =O(r3)

Factorization (7) 1
3 (mi −ki )

3+(mi −ki )
2ki

+(mi −ki )k
2
i =O(r3)

Table V. Computation time (in seconds) of the generalized HSS Cholesky factorization and system solution
(denoted NEW), when compared with DPOTRF, where × means insufficient memory.

Matrix size 256 512 1024 2048 4096 8192 16 384

DPOTRF 0.074 0.765 11.339 105.068 845.855 6857.316 ×
NEW Factorization 0.068 0.076 0.104 0.172 0.280 0.520 0.953

Solution 0.003 0.006 0.013 0.029 0.054 0.109 0.227

Matrix size 32 768 65 536 131 072 262 144 524 288 1 048 576

DPOTRF × × × × × ×
NEW Factorization 1.855 3.773 7.453 14.914 32.797 59.547

Solution 0.457 0.871 1.746 3.566 7.211 13.875

nodes, and N/m−1 non-leaf nodes. Therefore, the total cost is

[O(mr2)+O(m2r)+O((m−r)3)]× N

m
+O(r3)× N

m
=O(r2N ),

as m=O(r). �

Numerical experiments for the algorithm are displayed in Table V of Subsection 4.4 together
with system solution results.

4.3. HSS linear system solver with the generalized HSS Cholesky factor

After we compute generalized Cholesky HSS factorization, we can solve HSS systems with
substitutions. Assume we solve the system Hx=b, where H = LH LT

H and the generalized Cholesky
factor LH is formed by {Li }, {Ti }, {Qi }, {Pi } as obtained in Algorithm 2. Just like the traditional
triangular system solution, our new HSS solver also has two stages, forward substitution and
backward substitution, for the following two systems, respectively

LH y = b, (12)

LT
H x = y. (13)
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Here, the substitutions are done along the HSS tree, following the postordering (or bottom-up,
forward) and reverse-postordering (or top-down, backward) traversals, respectively.

4.3.1. Forward substitution. We solve (12) first. If we have, say, an explicit expression like (11),
then we can explicitly write

y=
(
I 0

0 L−1
3

)
PT
3 L̂

−1
3

(
QT

1 0

0 QT
2

)
b (14)

which involves matrix–vector multiplications and standard triangular system solution. But in
general, we do this implicitly with the HSS factorization tree whose structure has good data locality.
The solution vector y is obtained in the following way.

We use the space of b for y. First, partition b conformally according to the bottom-level block
sizes or the partition sequence {mi }. Denote the vector pieces by {yi }. Associate yi with each
leaf i .

Next, apply QT
i to yi (see (14))

ŷi =QT
i yi =

mi −ri

ri

(
ŷi;1
ŷi;2

)
,

where ŷi is partitioned according to (5) and (7). Then, we solve for

ỹi =
(
Li 0

Ti I

)−1

ŷi =
(

ỹi;1
ŷi;2−Ti ỹi;1

)
≡mi −ri

ri

(
ỹi;1
ỹi;2

)
, (15)

where ỹi;1= L−1
i ŷi;1. The vector piece yi is now replaced by ỹi;1, and ỹi;2 is passed to the parent

node p of i . That is, ỹi;2 is the contribution from i to p. Thus, if i and j are the left and right
children of p, respectively, then essentially

yp =
(
ỹi;2
ỹ j;2

)
.

The formation of yp eventually finishes the operation

PT
p

(
ỹi

ỹ j

)

(see (14)). Note that no extra storage is necessary for yp as it can use the original storage of its
child solution vector pieces yi and y j , except that pointers are used for the locations.

We repeat this procedure along the postordering HSS factorization tree, until finally, for the root
node n we are ready to apply L−1

n to the generated yn . All solution vector pieces are stored in the
space of b, and at the end of the procedure b is transformed into y.
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4.3.2. Backward substitution. In this stage, we solve (12). Associate with each node of the HSS
factorization tree a solution piece xi which is initially yi . For the root n, we first get

xn = L−T
n yn ≡mc1 −rc1

mc2 −rc2

(
x̂c1

x̂c2

)
,

where the partition essentially applies the permutation Pn . Next for each node i<n, compute

x̃i =
(
Li 0

Ti I

)−T(
yi

x̂i

)
=
(
L−T
i (yi −T T

i x̂i )

x̂i

)
, (16)

where x̂i is inherited from p, the parent of i . Now set xi =Qi x̃i . The formation of xi is then
completed. Partition xi according to the children ĉ1 and ĉ2 of i as

xi =
mĉ1 −rĉ1

mĉ2 −rĉ2

(
x̂ĉ1

x̂ĉ2

)
.

Then, the procedure repeats along the reverse postordering of the HSS factorization tree.
After the backward substitution, the vector y is transformed into the solution x . That is, by

using b as the solution storage, it automatically becomes x after the two substitutions. If H is a
compact N×N HSS matrix with HSS rank r , it is easy to verify that the cost of the above solver
is O(r N ). Therefore, the overall complexity for solving Hx=b is linear in N .

4.4. Performance of the generalized Cholesky factorization and system solution

We implement the generalized HSS Cholesky factorization and solution algorithms in Fortran 90
and test them on some nearly random SPD HSS matrices with sizes from 256 to 1,048,576. These
matrices have small HSS ranks r , and the bottom HSS block rows have the same row dimension
m. For convenience, we choose m≡2r so that the factorization associated with each node starts
with a compression step instead of merging. Results for m=16 are reported. We ran the code on
a Sun UltraSPARC-II 248Mhz server. The CPU timing is shown in Table V. We also include the
timing for the standard Cholesky factorization routine, DPOTRF from LAPACK [41], applied to
the original dense matrices. The results are consistent with the complexity. The HSS algorithm is
also memory efficient. The generalized HSS Cholesky factors are then used to solve linear systems.
The timing is also included in Table V.

Now, we consider the stability of the overall procedure for solving SPD HSS systems using
the generalized HSS factorization and solution. This overall procedure has similar stability as the
solver in [29], that is, it is stable when ‖Ri‖<1 for a submultiplicative norm. We can verify that
the construction algorithm in Section 3 provides HSS matrices satisfying this condition for the
2-norm. The claimed stability is due to the use of orthogonal and triangular transformations. For
some test matrices in Table V, we report the experimental backward errors in Table VI, which
indicate the backward stability of the overall procedure.

4.5. Comparison with the implicit U LV solver in [29]
Both the generalized HSS factorization Algorithm 2 and the implicit ULV algorithm in [29]
(denoted Implicit ULV) are based on partial factorizations and off-diagonal compressions.

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:953–976
DOI: 10.1002/nla



FAST ALGORITHMS FOR HSS MATRICES 971

Table VI. Backward errors of the generalized HSS solver corresponding to Table V.

Matrix size 256 512 1024 2048 4096

‖Hx−b‖1
�mach(‖H‖1‖x‖1+‖b‖1) 0.38 0.47 0.39 0.53 0.62

Table VII. Computational costs (flops/N ) of the generalized HSS Cholesky factorization and system
solution (denoted NEW), when compared with the implicit ULV solver in [29] (denoted Implicit ULV),

where N is the order of each HSS matrix F̃ .

N 560 1023 1477 2777 4249 6143 10 038

flops

N
Implicit ULV 1.37E5 1.48E5 1.53E5 1.57E5 1.59E5 1.60E5 1.61E5

NEW Factorization 4.41E4 4.73E4 4.88E4 4.99E4 5.04E4 5.07E4 5.09E4
Solution 1.24E3 1.32E3 1.35E3 1.37E3 1.38E3 1.39E3 1.39E3

Although these two algorithms both have linear complexity for compact HSS matrices, there are
some major differences between them.

1. Implicit ULV uses level-wise traversal of the HSS tree. On the other hand, Algorithm 2
uses local traversal of the HSS tree following the postordering, and all the operations are done
with local communications between nodes and their parents (see the loop in Algorithm 2).
The new algorithm thus has better data locality, and is easier to implement and analyze in
general.

2. Implicit ULV is designed to work on general (nonsymmetric) matrices and does not
specifically preserve symmetry for symmetric problems. In terms of the detailed total flop
counts, Implicit ULV costs about 46r2N flops, with an assumption m=2r [29]. Under
the same assumption, Algorithm 2 with the idea in Remark 1 costs no more than 20r2N
flops.

3. In system solutions, there is also a major difference in updating the right-hand side vector
b after the partial factorization of a diagonal block. When the generalized HSS Cholesky
factor is used in system solution, the update of b is only done through local communication
between a node and its parent. See (15) and (16). On the other hand, Implicit ULV uses
an HSS matrix–vector multiplication algorithm to update the right-hand side. This could
involve all the rest uneliminated variables. This multiplication algorithm needs to be carefully
implemented to reuse information at different levels. Otherwise, the total complexity can be
more than O(N ). See [29] for more details.

4. Moreover, for systems with many right-hand sides, the new explicit algorithm is even more
efficient, because the solution stage is usually much faster than the one-time factorization
stage. Thus, when used as preconditioners, the new algorithm is especially more efficient
than Implicit ULV .

A numerical comparison of the two algorithms is given in Table VII of the next section in terms
of a practical application.
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5. APPLICATIONS

The algorithms developed in this work can be applied to dense matrices in more complicated
problems and to quickly obtain approximate solutions or to precondition difficult problems. As an
example, the generalized HSS Cholesky algorithm is used to factorize dense Schur complements
in the direct solution of some sparse discretized PDEs [15]. The main idea of the solver in [15] is
as follows.

First, it has been noticed that during the direct factorization of some discretized PDEs like
elliptic equations, the fill-in has the low-rank property [12–14, 34, 35]. Thus, we can approximate
the intermediate dense matrices by HSS matrices [15].

Second, this low-rank property can be revealed by organizing the factorization carefully. The
discretized matrix is first ordered to reduce fill-in, which corresponds to the reordering of the
mesh points in the discretization. Nested dissection [42] is used in [15], and the mesh points are
recursively put into different levels of separators. These separators are then eliminated bottom up.
The elimination is conducted with a supernodal version of the multifrontal method [43–45]. All
separators are ordered following an assembly tree. The multifrontal method reorganizes the overall
sparse elimination into partial factorizations of many smaller dense intermediate matrices called
frontal matrices. The Schur complement from the partial factorization of a frontal matrix is called
an update matrix. Following the traversal of the assembly tree, lower level update matrices are
assembled (called extend-add) into the parent frontal matrix in the tree.

Thus, when the multifrontal method is used to solve those discretized PDEs with the low-rank
property, the intermediate frontal and update matrices can be approximated by HSS matrices.
At certain elimination level, simple HSS approximations are constructed with Algorithm 1. At
later elimination levels, the HSS form frontal and update matrices are obtained with recursive
accumulation. The partial factorizations and extend-add operations are then done in HSS forms.
This leads to a structured approximate multifrontal method, as illustrated in Figure 7. Such a
structured multifrontal method reduces the factorization cost from O(n3/2) to nearly O(rn), and
the storage from O(n logn) to O(n logr), where r is the maximum of all applicable HSS ranks,
and n is size of the sparse matrix.

For problems such as elliptic equations and linear elasticity equations in 2D domains, the
low-rank property has been observed and leads to efficient direct-structured factorization [15].

UjFj

UpFp

Fi
Ui

Figure 7. Illustration of the structured multifrontal method in [15], where F and U represent HSS form
frontal and update matrices, respectively, a solid dark arrow represents the partial factorization, and a

broken arrow represents the pass of child contributions to the parent along the assembly tree.
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Table VIII. Preconditioning a system Fx=b with F̃ from Table VII and N =6143, where a relative
residual accuracy 10−16 is used, and the storage means the number of double precision nonzero entries.

Dense F With F̃ as the preconditioner

Storage Storage of F 3.77E7 Storage of F̃ 2.12E6
Cost of F times a vector 7.55E7 Cost of preconditioning by F̃ 8.52E6

Solving Fx=b Number of CG iterations 1375 Number of PCG iterations 96
Total CG cost 1.04E11 Total PCG cost 8.07E9

Condition number �2(F) 7.89E8 �2(F̃−1F) 1.70E2

Here, we do not show the details of factorizing those 2D examples, and instead, we consider the
preconditioning of an ill-conditioned 3D problem with a large jump in the coefficient [46]

−∇ ·(a∇u) = f in �=(−1,1)3≡(−1,1)×(−1,1)×(−1,1),

u=gD on �D, u=gN on �N ,

a(x) = 1 if x ∈(−0.5,0)3 or (0,0.5)3, a(x)=� otherwise,

(17)

where �D and �N are Dirichlet and Neumann boundaries, respectively, and appropriate boundary
conditions are defined as in [46]. When the parameter � is small, classical iterative methods
including multigrid deteriorate quickly. Here we use �=10−7. The problem is discretized by an
adaptive finite element method in the package iFEM [47].

As the current paper focuses on dense HSS operations, we demonstrate the performance of the
generalized HSS Cholesky factorization and solution algorithms in preconditioning intermediate
matrices in the multifrontal method for solving (17). Each exact frontal matrix F corresponding to
the last separator in nested dissection is calculated and is used as our model matrix. F is dense and
does not necessarily have significant low-rank property. Thus, we construct an HSS approximation
matrix F̃ by manually setting an upper bound r for the numerical ranks during the off-diagonal
compression. In the following tests, r is about 50, and so are the bottom-level HSS block row
dimensions. Then, HSS factorizations and solutions are tested on these HSS matrices F̃ .

Both the implicit ULV solver in [29] and the generalized HSS factorization/solution are used
to solve the HSS systems. See Table VII for the computational costs. Flop counts instead of timing
are used when only a Matlab code for the implicit ULV solver in [29] is available. The Matlab
timing results compare similarly. On the other hand, the Fortran timing of our new algorithms is
illustrated for another example in Table V. The flop counts are roughly certain constants times
N . Furthermore, the generalized HSS factorization/solution algorithms are more efficient than the
implicit ULV solver.

We then consider the effectiveness of precondition F with F̃ . For N =6143, Table VIII lists
some statistics of using F̃ (in its factorized form) as a preconditioner in the conjugate gradient
method (CG) for solving Fx=b. The preconditioned matrix has significantly better condition.

This example is used to illustrate the potential of our HSS algorithms for difficult problems. In
future work, we expect to conduct more comprehensive comparisons with other advanced solvers,
and to exploit the possibility of direct solutions of complicated 3D problems with HSS techniques.
Moreover, the reader is referred to [15] for more details on the structured multifrontal method
using HSS matrices.
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6. CONCLUDING REMARKS

We present generalizations of HSS representations and some new HSS algorithms in this work.
Existing work involving HSS matrices in [1, 2, 29, 30] can potentially benefit from the simplified
HSS representation. Furthermore, the new HSS generation and matrix factorization algorithms
have better performance than existing ones. These new algorithms have been used in a nearly
linear complexity direct solver for sparse-discretized PDEs [15]. Together with additional HSS
algorithms in [2, 15], an entire set of HSS operations can be defined. These HSS operations
are useful for many other problems where semiseparable structures can be used or the low-rank
property exists. In addition, existing rank-structured methods for problems such as Toeplitz systems
[3] and companion eigenproblems [7] can be possibly improved by using this work to obtain better
performance and scalability.
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