
A STABLE MATRIX VERSION OF THE 2D FAST MULTIPOLE
METHOD∗

XIAOFENG OU† , MICHELLE MICHELLE† , AND JIANLIN XIA†

Abstract. The fast multipole method (FMM) is a powerful method for accelerating some kernel
matrix-vector multiplications. In this paper, we show an intuitive matrix version of the FMM in
two dimensions via degenerate Taylor series expansions and, furthermore, give a simple stabilization
strategy to balance relevant low-rank factors so that the factors and some translation operators satisfy
certain norm bounds. Based on these, we provide the long-overdue backward stability analysis for
the FMM. The matrix version FMM translates the original FMM terminology into simple matrix
language with the aim of being more accessible to non-experts. It further makes it convenient to
perform the backward stability analysis. The stabilization strategy leads to entrywise backward errors
that depend only logarithmically on the matrix size, which shows the superior stability benefit of the
FMM on top of its efficiency advantage as compared with usual dense matrix-vector multiplications.
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1. Introduction. Given a kernel function κ(x, y) and two set of points X =
{xi}Mi=1 and Y = {yi}Ni=1 in the complex plane C, consider the matrix-vector multi-
plication

(1.1) ϕ = Kq, K := [κ(xi, yj)]xi∈X,yj∈Y,

where the matrix K is the kernel matrix or interaction matrix. Such kernel matrix-
vector products appear frequently in scientific computing, engineering, and data
analysis. For some kernels, the fast multipole method (FMM) provides an efficient
way to evaluate (1.1) to any given accuracy with O(M +N) complexity [14, 27]. The
FMM has been widely used in accelerating many different types of numerical com-
putations, such as N-body simulations, integral and differential equation solutions,
Gaussian processes, machine learning, as well as classical linear algebra problems like
some matrix transforms and eigenvalue solutions. See [8, 22, 25, 26, 27, 29, 30, 36]
and the references therein for some examples.

The FMM essentially constructs a rank-structured FMM matrix approximation
to the kernel matrix K (see, e.g., [28]), which is also known as the hierarchically struc-
tured H2-matrix [18, 19]. The FMM matrix is constructed via some degenerate or
separable expansions of the κ(x, y) to obtain low-rank approximations of certain off-
diagonal blocks of K. Some commonly used separable expansions include multipole
expansions, Taylor expansions, spherical harmonic expansions, Chebyshev interpola-
tions, and some kernel independent strategies. See, e.g., [10, 11, 14, 15, 23, 27, 28,
32, 37].

There exist many implementations of the FMM algorithm which can usually
achieve satisfactory accuracy. Nevertheless, it has been previously noticed that sta-
bility risks may arise in some separable expansions for constructing the FMM ap-
proximations [6, 7, 10, 15]. Some possible causes include fast-growing coefficients in
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the expansions, products of enormous and minuscule numbers, and extremely large
entries in the low-rank approximations. These issues may cause the algorithm to
lose accuracy or even break down in certain circumstances. Some heuristic scaling
methods to deal with such issues have been discussed in [7, 15] without justification.
In [16], for the three-dimensional Laplace equation, stability issues can be resolved
via the use of multipole expansions along with plane wave or exponential expansions.
More recently, the authors in [6], a rigorous algebraic scaling strategy is proposed to
stabilize low-rank approximations obtained from Taylor expansions for some kernels.
The scaling strategy is based on Stirling’s formula to design some scaling factors and
it is challenging to implement the scaled low-rank approximations efficiently. The jus-
tification of the effectiveness is also nontrivial. The work in [6] additionally includes
a matrix version of the FMM that is believed to be stable, but only in terms of one
dimension and without the full stability analysis.

In fact, a general analysis of the backward stability of the FMM has long been
overdue, likely due to its complicated nature. An earlier attempt has been made in
[33] for a highly simplified one-dimensional (1D) structure, the hierarchically semisep-
arable (HSS) form [35]. It is also limited to the case where relevant off-diagonal basis
matrices are orthogonal, so it is not applicable to the usual FMM.

In response to these limitations, the present paper intends to make the follow-
ing main contributions. Firstly, we show how to derive stable degenerate expansions
directly from Taylor expansions without the need of extra tools like Stirling’s for-
mula. The method we use may be viewed as an implicit balancing strategy that can
effectively bound appropriate norms (∥ · ∥max, ∥ · ∥1, or ∥ · ∥1,1) of the resulting low-
rank factors and translation operators in the FMM. The entries of the factors can be
computed in a stable and efficient manner by means of recurrence relations, which
is another benefit over the stabilization strategy in [6]. For convenience, the stable
degenerate expansions are discussed in terms of a class of 2D generalized Cauchy ker-
nels κ(x, y) = 1

(x−y)1+d and the 2D logarithmic kernel κ(x, y) = log 1
|x−y| as examples.

Our analysis and method are also applicable to other non-oscillating kernels where
degenerate expansions can be derived via Taylor expansions.

Next, to facilitate our backward stability analysis, we provide a quick intuitive
exposition of a matrix version of the 2D FMM, where we translate some FMM termi-
nology into simple matrix language for convenient understanding. The FMM, though
very successful, has not been widely accessible to some communities, probably due
to the need to understand techniques like multiple expansions, local expansions, and
shifting of centers. Here, we make the discussions mainly in terms of matrix factors
that are convenient to digest by non-experts. In particular, the use of basis contribu-
tions avoids the need to distinguish multipole and local expansions.

Thirdly, we rigorously study the stability of the 2D FMM algorithm and pro-
vide the long-overdue backward stability analysis. It is worth pointing out FMM
algorithms (including our matrix version) usually produce basis matrices that do not
have orthonormal columns. This makes it crucial to inspect the backward stability.
Here, with our stable low-rank approximations, we can show that the backward error
only depends logarithmically on the size of the kernel matrix K instead of linearly
as in the case for standard dense matrix-vector multiplications. This fact highlights
the stability benefit of hierarchical structured matrix methods over classical matrix
methods.

The organization of this paper is as follows. In section 2, we discuss stable de-
generate expansions for some kernels, relevant norm bounds for low-rank factors, and
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recurrence formulas for quickly and stably computing the low-rank factors. In sec-
tion 3, stable translation relations of the FMM are shown. In section 4, we interpret
standard FMM terminology in simple matrix language and summarize the framework
of the matrix version FMM. A rigorous backward stability analysis of the FMM is
then given in section 5. To validate our theoretical findings, some numerical experi-
ments are presented in section 6. A collection of notation is given below to facilitate
the presentation.

• For an m× n matrix A := [aij ]1≤i≤m,1≤j≤n, denote

∥A∥max := max
1≤i≤m,1≤j≤n

|aij |, ∥A∥1,1 :=

m∑
i=1

n∑
j=1

|aij |,

∥A∥1 := max
1≤j≤n

(
m∑
i=1

|aij |

)
, ∥A∥∞ := max

1≤i≤m

 n∑
j=1

|aij |

.

• For an m × n matrix A, denote |A| := [|aij |]1≤i≤m,1≤j≤n. If both A and B
are m × n, |A| ≤ |B| is understood as |aij | ≤ |bij | for all 1 ≤ i ≤ m and
1 ≤ j ≤ n.

• diag(·) denotes a (block) diagonal matrix.
• ℜ(z) and ℑ(z) denote the real and imaginary parts of a complex number z,
respectively.

•
(
α
n

)
:= α(α−1)···(α−n+1)

n! is the generalized binomial coefficient with α ∈ C.
•
∏j

i=k Ai := AkAk−1 · · ·Aj if j ≤ k, where Ai, i = j, . . . , k, are matrices of

appropriate sizes. Meanwhile, if k < j, then
∏j

i=k Ai := I, where I is the
identity matrix.

• Unless otherwise stated, define the multi-index notation

(1.2) ααα := (α1, . . . , αn), αi ∈ {0, 1}, 1 ≤ i ≤ n, n ∈ N,

and the sum of its components |ααα| := α1 + · · ·+ αn.
• For k ≥ j, define (

j∏
i=k

Ai

)ααα

:= Aα1

k . . . A
αk−j+1

j ,(1.3)

∆ααα

(
j∏

i=k

Ai

)
:= (∆α1Ak) . . . (∆

αk−j+1Aj) ,(1.4)

where ∆0Ai := Ai and ∆1Ai := ∆Ai for j ≤ i ≤ k.

2. Stable degenerate kernel expansions and low-rank approximations.
In this section, we show how to derive stable degenerate expansions that satisfies some
norm bounds so as to ensure the stability of the FMM. To facilitate the presentation,
we use two important kernels as examples, the generalized Cauchy kernel κ(x, y) =

1
(x−y)1+d , d ∈ C and the logarithmic kernel κ(x, y) = log 1

|x−y| . Then generalizations

to other kernels will be discussed.
Consider the evaluation of κ(x, y) at two well-separated sets of points x ⊂ X and

y ⊂ Y. Here, we follow the way used in [6, 28] to define well-separated sets x and y.
That is, there is a constant τ called the separation ratio such that

(2.1)
δx + δy
|ox − oy|

≤ τ, τ ∈ (0, 1) ,
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where δx and ox are respectively the radius and the center of a circle that encloses
the set x and δy and oy can be understood in the same way. This circle may not be
unique, but this does not affect the discussions.

We are interested in establishing a degenerate expansion of the form

(2.2) κ(x, y) =

r−1∑
i,j=0

bi,jui(x)vj(y) + er, x ∈ x, y ∈ y,

where r is a small positive integer and er is the remainder. Suppose m = |x|, n = |y|.
Then the corresponding m×n kernel matrix has a low-rank approximation UBV T as
in

(2.3) Kx,y := [κ(xi, yj)]xi∈x,yj∈y = UBV T + Er,

where U,B, V are m× r, r × r, and n× r matrices, respectively, and Er is the error
matrix. The expansion and the remainder will be studied in detail below.

2.1. Generalized Cauchy kernel. We first look at the stable degenerate ex-
pansion for the generalized Cauchy kernel κ(x, y) = 1

(x−y)1+d , where d ∈ Z (which may

be relaxed to d ∈ C for some cases as in subsection 2.3). The results generalize those
in [6] for the standard Cauchy kernel and further provide an improved stabilization
strategy. The stabilization makes sure that the magnitudes of U,B, V in (2.3) satisfy
certain bounds.

Our study of the degenerate expansion involves the remainder in a form of New-
ton’s generalized binomial expansion with complex exponents (see, e.g., [13]). The
following lemma gives a specific bound for the remainder. To the best of our knowl-
edge, we are not aware of such a bound. The discussion utilizes the generalized
binomial coefficient

(
α
n

)
with α ∈ C.

Lemma 2.1. Let F (s) = 1
(1−s)1+d with s, d ∈ C, |s| < 1, and

Rr(s) = F (s)−
r−1∑
p=0

(
p+ d

p

)
sp =

∞∑
p=r

(
p+ d

p

)
sp.

Then for any given ν > 0 with µ := (1 + ν)|s| < 1,

|Rr(s)| ≤

∣∣∣(N0+d
N0

)∣∣∣
(1 + ν)N0

(
µr

1− µ

)
for all r ≥ N0 :=

⌈
|d|
ν

⌉
.

Proof. Let ap(s) =
(
p+d
p

)
sp. If p ≥ N0 = ⌈|d|/ν⌉, then∣∣∣∣ap+1(s)

ap(s)

∣∣∣∣ = ∣∣∣∣(1 + d

p+ 1

)
s

∣∣∣∣ ≤ (1 + ν)|s| = µ.

This implies that |ap(s)| ≤
∣∣aN0(s)µ

p−N0
∣∣. As a result, for r ≥ N0,

|Rr(s)| ≤
∞∑
p=r

|ap(s)| ≤
∞∑
p=r

∣∣aN0
(s)µp−N0

∣∣ ≤
∣∣∣(N0+d

N0

)∣∣∣
(1 + ν)N0

µr

1− µ
.

We now present our first set of main results.
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Theorem 2.2. Let κ(x, y) = 1
(x−y)1+d , d ∈ Z. Suppose x = {xi}ni=1 and y =

{yi}ni=1 are well separated with separation ratio τ . Then the low-rank approximation
to the kernel matrix Kx,y in (2.3) has the following form:

U :=

[(
xi − ox

δx

)j
]
1≤i≤m,0≤j≤r−1

, V :=

[(
yi − oy

δy

)j
]
1≤i≤n,0≤j≤r−1

,(2.4)

B := [bi,j ]0≤i,j≤r−1 with(2.5)

bi,j :=

 (−1)i

(ox−oy)1+d

(
i+j+d
i+j

)(
i+j
i

) (
δx

ox−oy

)i (
δy

ox−oy

)j
, 0 ≤ i+ j ≤ r − 1,

0, i+ j > r − 1.

Moreover, for any given ν > 0 such that

(2.6) µ := (1 + ν) max
x∈x,y∈y

∣∣∣∣ (x− ox)− (y − oy)

oy − ox

∣∣∣∣ < 1,

we have

(2.7) |Er| ≤

∣∣∣(N0+d
N0

)∣∣∣
(1 + ν)N0

(
µr

(1− µ)(1− τ)|1+d|

)
|K| for r ≥ N0 :=

⌈
|d|
ν

⌉
.

Proof. Let x ∈ x, y ∈ y, and

(2.8) s =
(x− ox)− (y − oy)

oy − ox
or x− y = (ox − oy)(1− s).

Then

(2.9) (x− y)1+d = (ox − oy)
1+d(1− s)1+d, d ∈ Z.

Note that (2.9) does not generally hold if d /∈ Z. Since x and y are well separated

with separation ratio τ , we have |s| ≤ δx+δy
|ox−oy| ≤ τ < 1. Define εr(s) :=

∑∞
j=r

(
j+d
j

)
sj .

By Taylor and binomial expansions,

1

(x− y)1+d
=

1

(ox − oy)1+d(1− s)1+d

=
1

(ox − oy)1+d

r−1∑
k=0

(
k + d

k

)
sk +

εr(s)

(ox − oy)1+d

=

r−1∑
k=0

(
k + d

k

) k∑
i=0

(
k

i

)
(−1)i (x− ox)

i(y − oy)
k−i

(ox − oy)1+d+k
+

εr(s)

(ox − oy)1+d

=

r−1∑
k=0

k∑
i=0

(
k + d

k

)(
k

i

)
(−1)i (x− ox)

i(y − oy)
k−i

(ox − oy)1+d+k
+

εr(s)

(ox − oy)1+d

=

r−1∑
k=0

k∑
i=0

bi,k−i

(
x− ox
δx

)i(
y − oy
δy

)k−i

+
εr(s)

(ox − oy)1+d
.

This leads to (2.3).
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From (2.8), we have

|ox − oy| = (1− s)−1|x− y| ≤ (1− τ)−1|x− y|,
|ox − oy| ≥ (1 + τ)−1|x− y| ≥ (1− τ)|x− y|.(2.10)

Thus,

(2.11) |ox − oy|1+d ≥ (1− τ)|1+d||x− y|1+d, d ∈ Z.

Pick any ν > 0 such that (2.6) holds. Then, (2.11) and Lemma 2.1 imply, for r ≥
N0 :=

⌈
|d|
ν

⌉
,

(2.12)

∣∣∣∣ εr(s)

(ox − oy)1+d

∣∣∣∣ ≤
∣∣∣(N0+d

N0

)∣∣∣
(1 + ν)N0

(
µr

1− µ

)
1

(1− τ)|1+d||x− y|1+d
,

which gives us (2.7).

Note that the usual way of applying Taylor expansions may produce a low-rank
approximation Û B̂V̂ T, where

Û :=

[
(xi − ox)

j

j!

]
1≤i≤n,0≤j≤r−1

, V̂ :=

[
(yi − oy)

j

j!

]
1≤i≤m,0≤j≤r−1

,(2.13)

B̂ = [̂bi,j ]0≤i,j≤r−1 :=

{
(−1)i

(ox−oy)1+d+i+j

(i+j+d)!
d! , 0 ≤ i+ j ≤ r − 1,

0, i+ j > r − 1.
(2.14)

If we define

Λ := diag

(
1,

1

δx
, . . . ,

(r − 1)!

δr−1
x

)
and Ω := diag

(
1,

1

δy
, . . . ,

(r − 1)!

δr−1
y

)
,

then U,B, V in Theorem 2.2 may be written as

(2.15) U = ÛΛ, B = Λ−1B̂Ω−1, and V = V̂ Ω.

Hence, we can think of our low-rank approximation UBV T in Theorem 2.2 as an
implicitly balanced version of Û B̂V̂ T given in (2.13)–(2.14). Such implicit balancing is
simply built into the expansion without relying on extra tools like Stirling’s formula
used in [6]. While both low-rank expansions share the same truncation error, we can
clearly see that the entrywise magnitudes in (2.13)–(2.14) may become very large for
some data sets. In fact, when the data points are highly stretched so that the distances
between some points and their center are large, then the entries in Û , V̂ may become
large. If the points are highly clustered so that the distance between the centers is
small, then the entries in B̂ may be large. These lead to potential numerical instability.
On the other hand, our strategy in Theorem 2.2 tries to balance magnitudes of the
entries in U,B, V to ensure stability. The effectiveness is shown as follows.

Theorem 2.3. The entries of U, V,B in Theorem 2.2 satisfy

(2.16) ∥U∥max ≤ 1, ∥V ∥max ≤ 1, and ∥B∥1,1 ≤
Kmin

(1− τ)2+2|d| ,

where Kmin := minxi∈x,yj∈y |κ(xi, yj)|.
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Proof. Since |x − ox| ≤ δx and |y − oy| ≤ δy, we immediately have ∥U∥max ≤ 1
and ∥V ∥max ≤ 1. Note∣∣∣∣(k + d

k

)∣∣∣∣ = ∣∣∣∣ (k + d)(k − 1 + d) · · · (1 + d)

k!

∣∣∣∣ ≤ (k + |d|
k

)
.

Thus,

∥B∥1,1 =

r−1∑
k=0

k∑
i=0

|bi,k−i|

≤ |ox − oy|−(1+d)
r−1∑
k=0

k∑
i=0

(
k + |d|

k

)(
k

i

) ∣∣∣∣ δx
ox − oy

∣∣∣∣i ∣∣∣∣ δy
ox − oy

∣∣∣∣k−i

= |ox − oy|−(1+d)
r−1∑
k=0

(
k + |d|

k

) k∑
i=0

(
k

i

) ∣∣∣∣ δx
ox − oy

∣∣∣∣i ∣∣∣∣ δy
ox − oy

∣∣∣∣k−i

≤ |ox − oy|−(1+d)
r−1∑
k=0

(
k + |d|

k

) k∑
i=0

(
k

i

) ∣∣∣∣ τδx
δx + δy

∣∣∣∣i ∣∣∣∣ τδy
δx + δy

∣∣∣∣k−i

= |ox − oy|−(1+d)
r−1∑
k=0

(
k + |d|

k

)
τk

 k∑
j=0

(
k

i

)(
δx

δx + δy

)i(
δy

δx + δy

)k−i


= |ox − oy|−(1+d)
r−1∑
k=0

(
k + |d|

k

)
τk
(

δx
δx + δy

+
δy

δx + δy

)k

= |ox − oy|−(1+d)
r−1∑
k=0

(
k + |d|

k

)
τk ≤ |κ(x, y)|

(1− τ)|1+d|

∞∑
k=0

(
k + |d|

k

)
τk

=
|κ(x, y)|

(1− τ)|1+d|(1− τ)1+|d| ≤
|κ(x, y)|

(1− τ)2+2|d| ,

where (2.1) and (2.11) are used. Since the result above holds for all x ∈ x, y ∈ y, we
can replace |κ(x, y)| with Kmin to obtain the desired bound.

2.2. Logarithmic kernel. We now consider the logarithmic kernel evaluated at
well-separated sets x and y and use Taylor expansions to establish (2.2).

Theorem 2.4. Let κ(x, y) = log 1
|x−y| . Suppose x = {xi}mi=1 and y = {yj}nj=1

are well-separated with separation ratio τ . Then

(2.17) Kx,y := [(κ(xi, yj)]xi∈x,yj∈y = ℜ(UBV T) + Er,

where U and V take the forms in (2.4) and B := [bi,j ]0≤i,j≤r−1 with

(2.18) bi,j :=


log 1

|ox−oy| , i = j = 0,

(−1)i

i+j

(
i+j
i

) (
δx

ox−oy

)i (
δy

ox−oy

)j
, 0 < i+ j ≤ r − 1,

0, i+ j > r − 1.

Moreover, ∥Er∥max ≤ τr

r(1−τ) .
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Proof. Let x ∈ x, y ∈ y and let s be as in (2.8). Define εr(s) :=
∑∞

k=r k
−1sk.

Since x and y are well separated with separation ratio τ , we have |s| ≤ τ < 1. By
Taylor and binomial expansions,

log
1

1− s
=

r−1∑
k=1

sk

k
+ εr(s) =

r−1∑
k=1

k∑
i=0

(−1)i

k

(
k

i

)
(x− ox)

i(y − oy)
k−i

(ox − oy)k
+ εr(s)

=

r−1∑
k=1

k∑
i=0

bi,k−i

(
x− ox
δx

)i(
y − oy
δy

)k−i

+ εr(s),

where |εr(s)| ≤
∞∑
i=r

τ i

i ≤
τr

r(1−τ) . Then,

log
1

|x− y|
= log

1

|ox − oy|
+ log

1

|1− s|

= log
1

|ox − oy|
+ ℜ

(
log

1

1− s

)
= ℜ

(
b0,0 + log

1

1− s

)
= ℜ

(
b0,0 +

r−1∑
k=1

k∑
i=0

bi,k−i

(
x− ox
δx

)i(
y − oy
δy

)k−i

+ εr(s)

)

= ℜ

(
r−1∑
k=0

k∑
i=0

bi,k−i

(
x− ox
δx

)i(
y − oy
δy

)k−i
)

+ ℜ (εr(s)) ,

which gives (2.17) and (2.18).

Similarly, Theorem 2.4 may be viewed as an implicitly balanced version of a low-
rank approximation Û B̂V̂ T obtained from the usual application of Taylor expansions,
where Û , V̂ are given in (2.13) and B̂ looks like

(2.19) B̂ = [̂bi,j ]0≤i,j≤r−1 :=


log 1

|ox−oy| , i = j = 0,

(−1)i (i+j−1)!
(ox−oy)i+j , 0 < i+ j ≤ r − 1,

0, i+ j > r − 1.

Û B̂V̂ T may also suffer from large entrywise magnitudes in the factors. The balancing
strategy, on the other hand, can effectively control the magnitudes, as can be seen
below.

Theorem 2.5. The entries of U, V,B in Theorem 2.4 satisfy

(2.20) ∥U∥max ≤ 1, ∥V ∥max ≤ 1, and ∥B∥1,1 ≤ Kmin + 2 log
1

1− τ
,

where Kmin := minxi∈x,yj∈y |κ(xi, yj)|.
Proof. U and V have the same forms as in Theorem 2.2 and the reason for

∥U∥max ≤ 1, ∥V ∥max ≤ 1 is the same as in Theorem 2.3. Now,

∥B∥1,1 = |b0,0|+
r−1∑
k=1

k∑
i=0

|bi,k−i| = |b0,0|+
r−1∑
k=1

1

k

k∑
i=0

(
k

i

) ∣∣∣∣ δx
ox − oy

∣∣∣∣i ∣∣∣∣ δy
ox − oy

∣∣∣∣k−i

≤ |b0,0|+
r−1∑
k=1

1

k

k∑
i=0

(
k

i

) ∣∣∣∣ τδx
δx + δy

∣∣∣∣i ∣∣∣∣ τδy
δx + δy

∣∣∣∣k−i
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STABLE MATRIX VERSION 2D FMM 9

= |b0,0|+
r−1∑
k=1

τk

k

(
k∑

i=0

(
k

i

)(
δx

δx + δy

)i(
δy

δx + δy

)k−i
)

= |b0,0|+
r−1∑
k=1

τk

k

(
δx

δx + δy
+

δy
δx + δy

)k

≤ |b0,0|+
∞∑
k=1

τk

k

=

∣∣∣∣log 1

|ox − oy|

∣∣∣∣+ log
1

1− τ
≤
∣∣∣∣log 1

|x− y|

∣∣∣∣+ 2 log
1

1− τ
,

where we used (2.1) and (2.10). Since the result above holds for all x ∈ x, y ∈ y, we
immediately obtain the desired bound.

2.3. Extensions, generalizations, and other low-rank approximation
methods. The discussions in the previous two subsections are in terms of the gen-
eralized Cauchy kernel and the logarithmic kernel. In fact, various generalizations
may be made, including extensions of these two types of kernels and generalizations
to other kernels.

An extension can be made to the generalized Cauchy kernel in Theorem 2.2 with
d ∈ Z relaxed to d ∈ C for some data points. In the theorem, the assumption d ∈ Z
is only needed for the identity (2.9) and the inequality (2.11). If x and y are subsets
of a straight line in C, we can allow d ∈ C. This will be particularly useful in practice
for cases like real point sets x and y.

Corollary 2.6. If x and y are subsets of a straight line in C, then Theorem 2.2
still holds with the assumption d ∈ Z relaxed to d ∈ C, except with an extra factor
e2π|ℑ(1+d)| included on the right-hand side of (2.7).

Proof. If x and y are subsets of a straight line, then the centers ox and oy can be
set to be also on that line. Hence, s in (2.8) is actually a real number. Note 1− s > 0
since |s| ≤ τ < 1. Thus, the identity (2.9) still holds with d ∈ C. Use the inequality

|z|ℜ(η)e−π|ℑ(η)| ≤ |zη| ≤ |z|ℜ(η)eπ|ℑ(η)|, z, η ∈ C,

and recall (2.10) to get∣∣∣(ox − oy)
1+d
∣∣∣ ≥ |ox − oy|ℜ(1+d)e−π|ℑ(1+d)|

≥ (1− τ)|ℜ(1+d)||x− y|ℜ(1+d)e−π|ℑ(1+d)|

≥ (1− τ)|ℜ(1+d)|
∣∣∣(x− y)

1+d
∣∣∣ e−2π|ℑ(1+d)|.

Accordingly, we can update (2.12) by including an extra factor e2π|ℑ(1+d)| into its

right-hand side to get a new bound for | εr(s)
(ox−oy)1+d |. The extra factor e2π|ℑ(1+d)| then

appears on the right-hand side of (2.7).

Next, the logarithmic kernel case in Theorem 2.4 is to essentially dealing with the
more general kernel κ(x, y) = log 1

x−y by taking the real part.
Other than these kernels, the techniques used in the derivations in the previous

two subsections may be applied to other kernels of the form κ(x − y), where Taylor
expansions are used to obtain degenerate expansions. We can similarly apply Taylor
expansions based on the separation condition (2.1), followed by the binomial expansion
applied to the powers of the summation form of s in (2.8). The U, V basis matrices
take the same forms as in (2.4) in general and the specific form of the B matrix
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depends on the actual kernel. The strategy of stabilization by implicit balancing
applies just like before.

For a general kernel κ(x, y) with κ : R2×R2 → R that is not necessarily translation
invariant, if it is sufficiently smooth, we may use the bivariate Taylor expansion (if
we choose to stick to Taylor expansions to obtain our low-rank approximation). Let
ααα := (α1, α2) and βββ := (β1, β2), where α1, α2, β1, β2 ∈ N∪{0}. Define Dααα

1 to be the ααα-
th partial derivative of the first component of κ(x, y) (i.e.,Dααα

1 κ(x, y) = ∂α1
1 ∂α2

1 κ(x, y)),

and Dβββ
2 to be the βββ-th partial derivative of the second component of κ(x, y) (i.e.,

Dααα
2 κ(x, y) = ∂α1

2 ∂α2
2 κ(x, y)). Expanding the second component about the point y0 ∈

R2, and then for each function of x, further expanding the first component about the
point x0 ∈ R2, we have

κ(x, y) ≈
r−1∑
|βββ|=0

(y − y0)
βββ

βββ!
Dβββ

2κ(x, y0) ≈
r−1∑
|ααα|=0

r−1∑
|βββ|=0

(x− x0)
ααα

ααα!

(y − y0)
βββ

βββ!
Dααα

1D
βββ
2κ(x0, y0),

where the following standard notation for bivariate Taylor expansions is used: ααα! :=
α1!α2! and (x − x0)

ααα := (x1 − x0,1)
α1(x2 − x0,2)

α2 with x := (x1, x2) and x0 :=
(x0,1, x0,2). Thus if x,y ⊂ R2, then by (2.3), we can let

(2.21)

U :=

[
(x− ox)

ααα

δαααx

]
x∈x,0≤|ααα|≤r−1

, V :=

[
(y − oy)

βββ

δβ
ββ
y

]
y∈y,0≤|βββ|≤r−1

,

B :=

[
δαααxδ

βββ
y

ααα!βββ!
Dααα

1D
βββ
2κ(ox, oy)

]
0≤|ααα|≤r−1,0≤|βββ|≤r−1

,

where we set the expansion points x0 and y0 to be the centers ox and oy of the sets
x and y, respectively, and δx, δy ∈ R2 are respectively the radii of the sets x and
y. Note that the U, V basis matrices take a form similar to (2.4), and as before the
matrix B depends on the kernel. Clearly, ∥U∥max = ∥V ∥max = 1. To determine the
matrix norm of B, we would need to know more information about the underlying
kernel itself.

Using Taylor expansions is just one way to find a low-rank approximation of a
kernel. Interpolation is another common and useful way to achieve this [11, 37]. From
the approximation theory point of view, there are many kinds of interpolation methods
[5, 9, 12]. Hence, it is not straightforward to make a general statement on whether or
not similar stability issues arise from these interpolation methods. In the literature,
it is known that the barycentric interpolation [4, 31, 32] and Chebyshev interpolation
[11] are numerically stable from the approximation point of view. However, in the
context of the backward stability considered in this paper, we need to analyze the
corresponding U , B, V matrices and their norms to determine if similar stability issues
arise, which may also depend on the kernel. For example, if we consider Chebyshev
interpolations, the matrices U , B, and V can be obtained from the relation in [11, (6)].
A direct inspection suggests that each entry of U and V is can be crudely bounded
above by 2. The entries of matrix B solely depend on the kernel evaluations at the
Chebyshev nodes. Thus, we require more information on the kernel to determine if
stability risks may arise. Having said that, the subject of how to systematically resolve
potential stability issues (if any) for individual low-rank approximation techniques
serves as an interesting future research direction.

When the kernel under consideration is smooth and behaves well, and the deriv-
atives are known and easily computable, using Taylor expansions is advantageous for
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the following reasons. First, the procedure is simple, and it is convenient to know the
entries of the U , B, V generators and to control the accuracy. It is also convenient to
obtain the translation matrices T . Next, the U , V basis matrices and the translation
matrices T have a flavor of kernel independence in the sense that they stay the same
for all kernels whose low-rank approximations are obtained by Taylor expansions.
Thirdly, the simple forms of the generators ensure the design of simple scaling factors
to control their norms and the scaling factors only depend on rank-related factorial
terms and the radius of the set as seen in (2.15) and (2.21). Lastly, these generators
can be computed efficiently via recurrence relations like in the next subsection.

On the other hand, there exist kernels for which Taylor expansions may not be
suitable. Asymptotically smooth kernels are examples of this situation. We refer to
[1, Definition 2] or [3, Section 4] for the formal definition of an asymptotically smooth
function. From the definition, we only know that the magnitudes of the partial de-
rivatives decay as the distance between two points grows. Still, such kernels may
not behave well in certain regions. For example, they may exhibit large variations or
oscillations. As pointed out in [3, Section 4], some kernels may even have unbounded
derivatives as the two points get closer. Such behaviors often cannot be effectively ap-
proximated by Taylor expansions, as the error analysis suggests that one would have
to take many terms of such expansions. Interpolations have been used to deal with
asymptotically smooth kernels [11]. Even though Taylor expansions may not be suit-
able, the idea to scale U , B, V matrices such that their norms are bounded to ensure
stability may still be relevant regardless of the choice of low-rank approximations.

For oscillating kernels such as the Hankel function, a similar idea along with the
use of Graf’s formula can be applied. This is discussed in a different paper [24].

2.4. Recurrence relations for computing low-rank factors. To form the
required low-rank factors U,B, V , convenient recurrence relations may be used. The
construction of the U, V in (2.4) is straightforward. For example, for U in (2.4), we
may simply let

Ui,0 = 1, Ui,j =
xi − ox

δx
Ui,j−1, 1 ≤ j ≤ r − 1.

To obtain the recurrence relation for the entries of the B generators, we can take
the generalized Cauchy kernel case in subsection 2.1 and the logarithmic kernel case
in subsection 2.2 as examples. For the former case, B has the form in (2.5). Note
that for d ∈ Z and k, i ∈ N ∪ {0},

(2.22)

(
k + d

k

)
=

k + d

k

(
k − 1 + d

k − 1

)
,

(
k

i

)
=

(
k − 1

i− 1

)
+

(
k − 1

i

)
.

Letting k = i + j, taking the product of the above two identities, and plugging the
result into (2.5), we get

bi,j =
(−1)i

(ox − oy)1+d

(
i+ j + d

i+ j

)(
i+ j

i

)(
δx

ox − oy

)i(
δy

ox − oy

)j

=
(−1)i

(ox − oy)1+d

i+ j + d

i+ j

(
i+ j − 1 + d

i+ j − 1

)[(
i+ j − 1

i− 1

)
+

(
i+ j − 1

i

)]
·
(

δx
ox − oy

)i(
δy

ox − oy

)j

=
i+ j + d

i+ j

(
δy

ox − oy
bi,j−1 −

δx
ox − oy

bi−1,j

)
.
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Thus, we have the following recurrence relation to compute the entries of B:

bi,−1 = b−1,j = 0, b0,0 =
(−1)p

(ox − oy)1+d
,

bi,j =
i+ j + d

i+ j

(
δy

ox − oy
bi,j−1 −

δx
ox − oy

bi−1,j

)
, 1 ≤ i+ j ≤ r − 1.

For the logarithmic kernel case in subsection 2.2, B has the form in (2.18). Mul-
tiply bi,j in (2.18) by (i + j)/(i + j − 1) and use the second identity in (2.22) with
k = i+ j to get

i+ j

i+ j − 1
bi,j =

(−1)i

i+ j − 1

(
i+ j

i

)(
δx

ox − oy

)i(
δy

ox − oy

)j

=
(−1)i

i+ j − 1

[(
i+ j − 1

i− 1

)
+

(
i+ j − 1

i

)](
δx

ox − oy

)i(
δy

ox − oy

)j

= − δx
ox − oy

bi−1,j +
δy

ox − oy
bi,j−1.

Thus, we have the following recurrence relation to compute the entries of B:

bi,−1 = b−1,j = 0, b0,0 = log
1

|ox − oy|
, b1,0 =

−δx
ox − oy

, b0,1 =
δy

ox − oy
,

bi,j =
i+ j − 1

i+ j

(
δy

ox − oy
bi,j−1 −

δx
ox − oy

bi−1,j

)
, 2 ≤ i+ j ≤ r − 1.

Lastly, to obtain the recurrence relation for entries of T in (3.3), we use the second
identity in (2.22) with k = j to similarly get

t0,0 = 1, t−1,k−1 = tk,k−1 = 0,

ti,j =
δx′

δx
ti−1,j−1 +

ox′ − ox
δx

ti,j−1.

3. Stable translation relation. A critical idea for the FMM to reach linear
complexity is the use of translation relations in the U and V basis matrices in low-
rank approximations like (2.3). The relation allows the use of nested basis forms. For
notational clarity, we rewrite (2.3) as

Kx,y ≈ UxBx,yV
T
y ,

where the subscripts are used to emphasize the dependency on the underlying point
sets. The matrix Ux is the (approximate) column basis matrix of Kx,y and only
depends on x. Thus, it can be understood as the basis contribution of x to Kx,y. Vy

can be similarly understood. Translation relations connect the basis contribution of
a set with those of its subsets.

We now show that, with the basis contributions in the form of (2.4) produced
by our stabilization strategy, we can also derive a stable translation relation between
Ux and Ux′ for x′ ⊂ x. The translation relation for Vy can be derived analogously.
Suppose x′ has center ox′ and radius δx′ and x has center ox and radius δx so that
the corresponding disks Dx′ and Dx satisfy Dx′ ⊂ Dx, where

(3.1) Dx′ := {z ∈ C : |z − ox′ | ≤ δx′}, Dx := {z ∈ C : |z − ox| ≤ δx}.

See Figure 3.1 for an illustration.
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δx

δx′

o
x

o
x
′

Dx

Dx
′

Fig. 3.1. An illustration of the disks Dx′ and Dx in Theorem 3.1.

Theorem 3.1. Suppose x′ ⊂ x and Dx′ ⊂ Dx for Dx′ and Dx in (3.1). Then the
following translation relation holds:

(3.2) Ux′,x = Ux′Tx′,x,

where

Ux′,x :=

[(
x− ox
δx

)j
]
x∈x′,0≤j≤r−1

, Ux′ :=

[(
x− ox′

δx′

)j
]
x∈x′,0≤j≤r−1

,

Tx′,x := [ti,j ]0≤i,j≤r−1 with(3.3)

ti,j =


(
j
i

) ( δx′
δx

)i (
ox′−ox

δx

)j−i

, 0 ≤ i ≤ j ≤ r − 1,

0, 0 < j < i ≤ r − 1,

Moreover, if x′′ ⊂ x′ and x′′ has center ox′′ and radius δx′′ with the corresponding
disk Dx′′ = {z ∈ C : |z − ox′′ | ≤ δx′′} ⊂ Dx′ , then

(3.4) Tx′′,x = Tx′′,x′Tx′,x,

where Tx′′,x and Tx′′,x′ are defined like in (3.3), just with the centers and the radii
replaced by those associated with corresponding sets.

Proof. Let x ∈ x′. For 0 ≤ j ≤ r − 1, apply binomial expansions to get(
x− ox
δx

)j

=

(
(x− ox′) + (ox′ − ox)

δx

)j

=

j∑
i=0

(
j

i

)(
x− ox′

δx′

)i(
δx′

δx

)i(
ox′ − ox

δx

)j−i

=

j∑
i=0

(
x− ox′

δx′

)i

ti,j ,

which yields (3.2).

Now, for any x ∈ Dx′′ , let ux,x′′ =
[
1 x−ox′′

δx′′
· · ·

(x−ox′′
δx′′

)r−1 ]
and similarly

define ux,x′ and ux,x using the corresponding centers and radii. Then,

ux,x′′Tx′′,x =

[
j∑

i=0

(
x−ox′′
δx′′

)i(j
i

)(
δx′′

δx

)i(
ox′′ − ox

δx

)j−i
]
0≤j≤r−1

=

[
j∑

i=0

(
j

i

)(
x−ox′′

δx

)i(ox′′ − ox
δx

)j−i
]
0≤j≤r−1
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=

[(
x−ox
δx

)i]
0≤j≤r−1

= ux,x.

Similarly, we have

ux,x′′Tx′′,x′ = ux,x′ , ux,x′Tx′,x = ux,x.

Thus,

ux,x′′Tx′′,x′Tx′,x = ux,x = ux,x′′Tx′′,x,

which holds for any x ∈ Dx′′ . Therefore, we may take r unique points xi ∈ Dx′′ ,

i = 0, 1, . . . , r − 1 to form an r × r matrix W =

[(
xi−ox′′

δx′′

)j]
0≤i,j≤r−1

with rows

uxi,x′′ so that

WTx′′,x′Tx′,x = WTx′′,x.

Note that W is a Vandermonde matrix defined on distinct nodes so it is invertible.
Thus, Tx′′,x′Tx′,x = Tx′′,x.

Ux′,x is a submatrix of the basis contribution Ux from the set x. Thus, Tx′,x

is a translation matrix which connects the basis contribution Ux′ to Ux via Ux′,x =
Ux′Tx′,x.

Corollary 3.2. With the conditions in Theorem 3.1, the entries of Tx′,x satisfy
∥Tx′,x∥1 = 1.

Proof. Since Dx′ ⊂ Dx, we have |ox′ − ox| ≤ δx− δx′ . Thus, for all 0 ≤ j ≤ r− 1,
(3.3) satisfies

j∑
i=0

|ti,j | ≤
j∑

i=0

(
j

i

)(
δx′

δx

)i(
δx − δx′

δx

)j−i

= 1.

On the other hand, ∥Tx′,x∥1 ≥ 1 because t0,0 = 1. Therefore, ∥Tx′,x∥1 = 1.

Theorem 3.1 and Corollary 3.2 indicate that, for all kernels with degenerate expan-
sions that lead to U, V basis matrices as in (2.4), our stabilization strategy preserves
the translation relation like the original FMM and further guarantees that all the
translation matrices like Tx′,x have 1-norm equal to 1.

Before we move on to the next section, we make a remark on how the analysis in
this section can be applied to the case when the bivariate Taylor expansion is used to
obtain a degenerate expansion of a kernel that may not be translation invariant. By
(2.21), we have

U =

[
(x− ox)

ααα

δαααx

]
x∈x,0≤|ααα|≤r

=

[(
x1 − ox,1

δx,1

)α1
(
x2 − ox,2

δx,2

)α2
]
x∈x,0≤|ααα|≤r

,

where x := (x1, x2), ox := (ox,1, ox,2), δx := (δx,1, δx,2), and ααα := (α1, α2). The trans-
lation relation for the matrix U in (2.21) can be obtained by applying Theorem 3.1

individually to
(

x1−ox,1

δx,1

)α1

and
(

x2−ox,2

δx,2

)α2

and appropriately combining the entries

by taking into account of the multi-index. The same holds for the matrix V in (2.21).
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4. Stable matrix version of the FMM. In this section, we present the 2D
FMM in terms of an intuitive stable matrix version based on the results in the previous
two sections. We give a concise illustration of the main steps without involving too
many details or using expansion forms in the original FMM in [14]. This provides
a convenient way for non-experts to quickly digest the method and also serves as a
necessary preparation for our backward stability analysis in the next section.

For a given accuracy, the FMM in [14] essentially constructs an FMM matrix
approximation K̃ to the kernel matrix K in (1.1), where K is the evaluation of a
degenerate kernel function κ(x, y) at all x ∈ X and y ∈ Y. For convenience, we
suppose X and Y are located within a square domain S in C and also N = |X| = |Y|.
The FMM begins with a hierarchical partitioning of S. Quadrisect S recursively and
adaptively until the number of points in each subdomain is at most a prespecified
constant N0. A two-level partitioning example is given in Figure 4.1. We use a
postordered quadtree T to organize the partition, which is called the FMM tree for
convenience. Each node is labeled with a single index i and corresponds to S when i
is the root or to a subdomain otherwise. The root node is assumed to be at level 0
and the children of a level-l node are at level l + 1. The total number of levels of T
is L, which is assumed to be O(log

(
N
N0

)
). We use lv(i) to denote the level of node i.

We sometimes also use a node i to mean its corresponding subdomain.

1 2 6 7

3 4

5

8 9

10

11 12 16 17

19181413

15 20

21

1 2 3 4

l = 0

l = 1

l = 26 7 8 9 11 12 13 14 16 17 18 19

5 10 15 20

21

(a) Domain partitioning (b) FMM tree

Fig. 4.1. Example of a two-level domain partitioning and the corresponding postordered FMM
tree T .

4.1. Interpretation of FMM terminology in matrix language. To facili-
tate the understanding of the FMM for non-experts, we interpret some essential FMM
terminology in terms of the matrix forms.

Use xi to denote the subset of X that are located in the subdomain i, and yi

to denote the subset of Y that are located in the subdomain i. Let oi and δi be the
center and radius of the subdomain (or in other words, the sub-square) i. Without
loss of generality, we let the centers and radii of the subsets xi and yi to be equal to
those of the subdomain; i.e., oxi

= oyi
= oi and δxi

= δyi
= δi. For convenience, we

write Ki,j as the block of K defined by subsets xi and yj:

Ki,j = Kxi,yj
= [κ(x, y)]x∈xi,y∈yj

.

When i and j are not well separated, they are said to be neighbors and Ki,j is referred
as a near-field interaction or near-field block. Ki,j is a diagonal block if i = j. Oth-
erwise, it is often an off-diagonal block near the diagonal, but it may also be further
away because of the ordering of the subdomains.

When i and j are well separated with separation ratio τ , the block Ki,j is referred
to as the far-field interaction or far-field block and has a low-rank approximation as
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discussed in section 2:

(4.1) Ki,j = UiBi,jV
T
j + Ei,j ≈ UiBi,jV

T
j ,

where we write Ui = Uxi
, Bi,j = Bxi,yj

, Vj = Vyj
for convenience. Ui and Vj are the

basis contributions from xi and yj, respectively. In the original FMM in [14], Ui and
Vj are essentially produced by two different types of expansions, the so-called local
expansion and multipole expansion, respectively.

In contrast, here we use centers for both xi and yj like in [28] so that Ui and Vj

have similar forms like in (2.4) (just with different points, centers, and radii). Such a
setup makes it very convenient to handle Ui and Vj and they are treated in the same
way: simply as basis contributions from the respective point sets. There is then no
need to distinguish local expansions from multipole expansions. Indeed, if X and Y
are the same set, then we may set Ui and Vi to be the same.

Similarly, Bi,j corresponds to the multipole-to-local translation operation in [14].
Now when the translation operation in section 3 is used so as to construct a basis
contribution Ui associated with a node i from those associated with its children iα, we
can use a translation operator Tiα,i defined like in (3.3). Tiα,i then corresponds to a
so-called multipole-to-multipole translation in [14]. When row basis contributions like
Vi are considered, we can similarly see that Tiα,i also corresponds to a local-to-local
translation in [14].

For near-field interactions, a concept of interaction list is used in [14] to explore
finer-level rank structures. The interaction list Li associated with a node i of the
FMM tree T is defined to be the collection of nodes j that satisfies these conditions:
(i) lv(j) = lv(i); (ii) i and j are well separated with separation ratio τ ; (iii) the
parents of i and j are neighbors. An example is given in Figure 4.2(a) for a node
i with lv(i) = 3 and its parent p within a three-level partition of S. It is easy to
see for any node i ∈ T , its interaction list Li has at most 27 nodes. The interaction
list decides which far-field subblocks are to be considered within a near-field block.
Figure 4.2(b) gives an example of the far-field interactions at level 2.

i

p

1

2

3

4

6

7

8

9

11

12

13

14

16

17

18

19

1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

(a) Partitioning of the domain (b) Far-field blocks at level 2

Fig. 4.2. Interaction list and far-field blocks. In (a), the red squares correspond to nodes in the
interaction list of i and the red squares correspond to nodes in the interaction list of p. (b) shows the
far-field blocks at level 2 where each gray block is a far-field block that has a low-rank approximation
like in (4.1) and the numbers beside the matrix correspond to the leaf level nodes in Figure 4.1(b).

Following these discussions, we summarize key FMM terminology and the corre-
sponding matrix forms in Table 4.1.
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Table 4.1
FMM terminology and the corresponding matrix forms.

FMM terminology Nodes Corresponding matrix forms
Far-field interaction i↔ j Ki,j: well-separated i, j
Near-field interaction i↔ j Ki,j: i, j not well separated
Interaction list i All j at level l = lv(i) so that Bi,j is

a nonzero block of B(l) (later in (4.2))
Multipole expansion j Vj in (4.1)
Local expansion i Ui in (4.1)
Multipole-to-local expansion j→ i Bi,j in (4.1)
Multipole-to-multipole expansion c→ i Txc,xi

like in (3.3)
Local-to-local expansion c→ i Txc,xi

like in (3.3)

4.2. Levelwise low-rank approximation. We can now look at the matrix
structure of K. At level l = 1, all the nodes of the FMM tree T are neighbors. At
level l ≥ 2, we can define a level-l far-field matrix K(l) by retaining all the far-field
blocks Ki,j with lv(i) = lv(j) = l and j ∈ Li and setting other blocks of K to zero.
An example of K(2) for the two-level case is given in Figure 4.2(b). Each K(l) takes
the form of

K(l) = U (l)B(l)(V (l))T + E(l) with(4.2)

U (l) = diag(Ui1 , . . . , Uik) and V (l) = diag(Vi1 , . . . , Vik),

where {ij}kj=1 is the set of nodes at level l and B(l) and E(l) have the same block

structure as K(l), just with Ki,j replaced by Bi,j and Ei,j, respectively. We also define
the near-field matrix K(0) by retaining only the near-field blocks Ki,j with i and j
leaf-level neighbors (including the case i = j) and setting other blocks of K to zero.
Then the kernel matrix K can be decomposed as

(4.3) K = K(0) +

L∑
l=2

K(l) = K(0) +

L∑
l=2

U (l)B(l)(V (l))T + E,

where the error term E :=
∑L

l=2 E
(l) and the nonzero pattern of E(l) does not overlap

for different l. A matrix approximation to K is then obtained as

(4.4) K̃ := K(0) +

L∑
l=2

U (l)B(l)(V (l))T.

K̃ can be multiplied with a vector in O(LN) = O(N log(N)) complexity when N0 is
a constant.

4.3. Nested basis, FMM matrix, and FMM algorithm. To further accel-
erate the matrix-vector multiplication cost with K̃ to O(N), the FMM exploits the
nested relations in U (l) and V (l). This may be based on the results in section 3.
Suppose a non-leaf node i ∈ T has four children {c1, c2, c3, c4} in the hierarchical
partition of S and this node i contains the following subsets of X and Y:

xi ∪ yi = xc1
∪ xc2

∪ xc3
∪ xc4

∪ yc1
∪ yc2

∪ yc3
∪ yc4

.
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18 XIAOFENG OU, MICHELLE MICHELLE, AND JIANLIN XIA

For 1 ≤ j ≤ 4, let Tcj ,i be a translation matrix from node cj to node i so that

(4.5) Ui = diag(Uc1
, . . . , Uc4

)Ri with Ri := (TT
c1,i, . . . , T

T
c4,i)

T,

where Tcj ,i is defined like in (3.3) with the relevant centers and radii of x′ and x
replaced by those corresponding to the node cj and the node i, respectively. As
mentioned earlier, the centers and radii of the subsets of X and Y are chosen to be
equal to those of the subdomains they belong to. Thus, the translation matrix Ri can
be reused to get Vi = diag(Vc1 , . . . , Vc4)Ri.

Thus, we obtain the following nested basis relation

U (l) = U (l+1)R(l), V (l) = V (l+1)R(l) with(4.6)

R(l) = diag(Ri1 , . . . , Rik), {ij}kj=1: nodes at level l,

From this, we get a telescoping expansion of K̃ which is the final FMM matrix :

K̃ = K(0) +

L∑
l=2

U (L)

(
l∏

l̃=L−1

R(l̃)

)
B(l)

(
l∏

l̃=L−1

R(l̃)

)T

(V (L))T

(4.7)

= K(0) + U (L)

(
R(L−1)

(
· · ·
(
R(2)B(2)(R(2))T +B(3)

)
· · ·
)
(R(L−1))T+B(L)

)
(V (L))T,

which is given in terms of the U, V,R,B matrices called FMM generators.
In the actual representation of K̃ in (4.7), it just needs to assemble the generators

Ui, Vi for leaf nodes i, all the translation matrices Ti, and all the Bi,j generators.
Upper-level basis matrices are not explicitly stored. Then the matrix-vector product
with K̃ can be computed through bottom-up and top-down traversals along the FMM
tree T . See Algorithm 4.1. The FMM matrix-vector multiplication now just needs
O(N) complexity. Specifically, if we choose N0 = O(r), where r is the expansion order
in the degenerate expansion (2.2) and the far-field low-rank approximation (4.1), then
the FMM complexity is O(r2N). r is a constant for a given accuracy.

Algorithm 4.1 FMM matrix-vector multiplication ϕ = K̃q

v(L) ← (V (L))Tq
t(L) ← B(L)v(L)

for level l = L− 1, . . . , 2 do ▷ Bottom-up traversal

v(l) ←
(
R(l)

)T
v(l+1)

t(l) ← B(l)v(l)

end for
u(2) ← t(2)

for level l = 3, . . . , L do ▷ Top-down traversal
u(l) ← R(l−1)u(l−1) + t(l)

end for
ϕ← U (L)u(L) +K(0)q ▷ Evaluation

Remark 4.1. In Algorithm 4.1, we present the algorithm in terms of levelwise
operations and include superscripts in the intermediate vectors v(l) and t(l) so as to
facilitate our later stability analysis. In actual implementations, just two intermediate
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vectors v and t are needed. In all the levelwise products like (R(l))Tv(l+1), local
products associated with each node at level l are evaluated so as to perform relevant
block diagonal multiplications. Essentially, it is not hard to write the FMM algorithm
in terms of traversals of the FMM tree nodes where local products are communicated
between parents and children and between siblings.

5. Backward stability of the FMM. Given the matrix form FMM that is
based on the kernel expansions in Section 2 and the translation relation in Section 3,
we now study the backward stability of the FMM.

Assumption 5.1. To facilitate the proof of the backward stability of the FMM,
we make the following assumptions.

1. |X| = |Y| = N for X,Y in (1.1).
2. T is a full quadtree with L levels so that there are 4l nodes at level l for

0 ≤ l ≤ L.
3. For each leaf node i ∈ T , Ui and Vi have column sizes r and row sizes

|xi| = |yi| = N0 = O(r). Accordingly, L(≈ 1
2 log2

(
N
N0

)
) ≤ log2(N).

4. For each node i at level l > 1, Ri in (4.5) has column size r. This is based on
the column size of the translation matrix like in (3.3).

5. The low-rank factors for each far-field block in (4.1) with lv(i) = l > 1 and
j ∈ Li satisfy

∥Ui∥max ≤ cU , ∥Vj∥max ≤ cV , and ∥Bi,j∥1,1 ≤ cBKmin,

where Kmin := minx∈X,y∈Y |κ(x, y)| and the positive constants cU , cV , cB
are independent of nodes i, j and level l.

6. For a node i at level l1 and a descendant j of i at level l2 > l1, Tj,i as the
translation matrix like in (3.3) satisfies

(5.1) Tj,i = Tj,dl2
Tdl2

,dl2−1
· · ·Tdl1+1,i =

l1∏
l=l2

Tdl+1,dl
, ∥Tj,i∥1 ≤ 1,

where the nodes of T in the path between j and i are dl2+1 := j, dl2 , . . . ,dl1+1,
dl1 := i, Tdl+1,dl

is a translation matrix from dl+1 to dl. For example,
the product form of the translation matrices in Theorem 3.1 satisfies (3.4),
and the norm in Corollary 3.2 satisfies (5.1). Tj,i is a diagonal block of∏l1

l=l2+1 R
(l), where R(l) is defined in (4.6).

7. The error matrix E in (4.3) satisfies

(5.2) |E| ≤ ε|K|, ε > 0.

(After the main Theorem 5.8, we will comment on how this condition is
related to the two classes of kernels we used before.)

8. The inequality 3γr log2(N) ≤ 1/2 holds.

The low-rank factors in item 5 above do not necessarily need to be obtained from
Taylor expansions. The inequality in item 8 holds for most practical situations. It
serves only as a technical condition in the proof.

The following standard result is for the backward stability of dense matrix-vector
multiplications. Throughout this section, we use notation like ∆A in (5.4) below
to mean backward error terms. Also, fl(·) stands for the floating point result of an
operator and ϵmach stands for the machine precision.
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Lemma 5.2. [20, (3.11) in Section 3.5] Let A ∈ Cr×r, q ∈ Cr, and

(5.3) γr :=
rϵmach

1− rϵmach
.

Then the numerical matrix-vector product satisfies

(5.4) fl(Aq) = (A+∆A)q,

where ∆A satisfies

|∆A| ≤ γr|A|, ∥∆A∥1 ≤ γr∥A∥1, ∥∆A∥∞ ≤ γr∥A∥∞.

Our stability analysis will involve multiple types of norms and the following norm
inequalities will be frequently used later.

Lemma 5.3. Let X ∈ Cm×n, A ∈ Cn×r, and Y ∈ Cr×s. Then,

∥XAY ∥max ≤ ∥X∥∞∥A∥max∥Y ∥1 and ∥XAY ∥max ≤ ∥X∥max∥A∥1,1∥Y ∥max.

Proof. Since |(XA)ij | = |
∑

k XikAkj | ≤ ∥X∥∞∥A∥max, we have

∥XAY ∥max ≤ ∥X∥∞∥AY ∥max = ∥X∥∞∥Y TAT∥max

≤ ∥X∥∞∥Y T∥∞∥AT∥max = ∥X∥∞∥A∥max∥Y ∥1,

|(XAY )ij | =
∣∣∣∑
p,k

XipApkYkj

∣∣∣ ≤ ∥X∥max∥A∥1,1∥Y ∥max.

The next proposition results from the matrix form of the FMM and can be verified
by induction.

Proposition 5.4. For 1 < l1 ≤ l2 ≤ L− 1, the matrix R(l2,l1) :=
∏l1

l=l2
R(l) with

R(l) defined in (4.6) satisfies the following properties.
• R(l2,l1) is a 4l1 × 4l1 block diagonal matrix with each diagonal block Ti of size

(4l2+1−l1r)× r corresponding to a node i at level l1.
• If i is at level l1, j is at level l2+1 and is a descendant of i, and the nodes in
the path of T between j and i are j = dl2+1,dl2 , . . . ,dl1+1, i = dl1 , then the
r × r submatrix of Ti corresponding to j is Tj,i in (5.1).

Now, we study the backward stability of the FMM. We shall show that its back-
ward error depends logarithmically on N . The stability analysis is done for the key
stages of the FMM in Algorithm 4.1. To prove the main result Theorem 5.8, we need
Lemma 5.5 to account for the error accumulated in the bottom-up traversal stage,
Lemma 5.6 to account for the error accumulated in the top-down traversal stage, and
Lemma 5.7 to account for the error accumulated in the evaluation stage. To obtain
the error bounds, we repeatedly make use of the following simple identity:

(5.5)

j∏
i=k

(Ai +∆Ai) =

j∏
i=k

Ai +

k−j+1∑
|ααα|=1

∆ααα

(
j∏

i=k

Ai

)
, k ≥ j,

where ααα is defined in (1.2) and ∆ααα(·) is defined in (1.4). Additionally, we exploit the
block structures at each level and non-overlapping nonzero patterns across different
levels. The norm bounds of the FMM generators are used to achieve the overall
backward error bound. With Assumption 5.1, the techniques used in the proof of
Theorem 5.8 does not depend on any specific kernels.
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Lemma 5.5. With Assumption 5.1, the bottom-up traversal stage of Algorithm 4.1
satisfies

fl(v(l)) =

 L−l∑
|ααα|=0

∆ααα
(
R(L−1,l)

)T (
V (L) +∆V (L)

)T
q,(5.6)

fl(t(l)) =
(
B(l) +∆B(l)

) L−l∑
|ααα|=0

∆ααα
(
R(L−1,l)

)T (
V (L) +∆V (L)

)T
q,(5.7)

where

(5.8)
∣∣∣(∆V (L))T

∣∣∣ ≤ γN0

∣∣∣(V (L))T
∣∣∣ , |∆R(l)| ≤ γr|R(l)|, and |∆B(l)| ≤ γr|B(l)|.

Proof. Within this stage, the following floating point operations are performed:

fl(v(L)) = (V (L) +∆V (L))Tq, |(∆V (L))T| ≤ γN0
|(V (L))T|,

fl(v(l)) = (R(l) +∆R(l))T fl(v(l+1)), |∆R(l)| ≤ γr|R(l)|,
fl(t(l)) = (B(l) +∆B(l)) fl(v(l)), |∆B(l)| ≤ γr|B(l)|,

where ∆V (L), ∆R(l), and ∆B(l) have the same block structures as V (L), R(l), and
B(l), respectively, and the backward error bounds result from Lemma 5.2. Expanding
these recurrence relations and applying the identity in (5.5), we have (5.6) and (5.7).

Lemma 5.6. With Assumption 5.1, the top-down traversal stage of Algorithm 4.1
satisfies

fl(u(L)) =

L∑
k=2

(M (k) +∆M (k))(I +∆Z(k))(B(k) +∆B(k))(P (k) +∆P (k))T(5.9)

(V (L) +∆V (L))Tq,

where (5.8) holds, M (k) := M̃ (L−1,k), M̃ (j) := R(j), P (k) := R(L−1,k),

∆M (k) :=
L−k∑
|ααα|=1

∆ααα(M̃ (L−1,k)), ∆P (k) :=

L−k∑
|ααα|=1

∆ααα(R(L−1,k)),

∆M̃ (j) := ∆R(j) +∆Z(j+1)R(j) +∆Z(j+1)∆R(j),

∆Z(2) := 0, and |∆Z(k)| ≤ ϵmach|I|.(5.10)

Furthermore, for a given node i at level L, the blocks of M (k) and ∆M (k) associ-
ated with the translation from the node i to its parent/ancestor at level k, denoted by

M
(k)
i and ∆M

(k)
i respectively, satisfy

(5.11) ∥M (k)
i ∥1 ≤ 1 and ∥∆M

(k)
i ∥1 ≤ 6γr log2(N).

For a given node j at level L, the blocks of P (k) and ∆P (k) associated with trans-

lation from the node j to its parent/ancestor at level k, denoted by P
(k)
j and ∆P

(k)
j

respectively, satisfy

(5.12) ∥P (k)
j ∥1 ≤ 1 and ∥∆P

(k)
j ∥1 ≤ 2γr log2(N).
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Proof. Within this stage, the following floating point operations are performed:

fl(u(2)) = fl(t(2)),

fl(u(l)) = (I +∆Z(l))
(
(R(l−1) +∆R(l−1)) fl(u(l−1)) + fl(t(l))

)
, l > 2.

Expanding these recurrence relations, we have

fl(u(L)) =

L∑
k=2

k+1∏
j=L

(I +∆Z(j))(R(j−1) +∆R(j−1))

 (I +∆Z(k)) fl(t(k)).(5.13)

Since (I+∆Z(j))(R(j−1)+∆R(j−1)) = M̃ (j−1)+∆M̃ (j−1), the identity in (5.5) yields

k+1∏
j=L

(I +∆Z(j))(R(j−1) +∆R(j−1)) = M̃ (L−1,k) +

L−k∑
|ααα|=1

∆ααα
(
M̃ (L−1,k)

)
.

Plugging the above relation and (5.7) into (5.13), we obtain (5.9).
We now turn to the bounds in (5.11). Let i be a node at level L. Then, by item

6 of Assumption 5.1 and the definition of M
(k)
i , we have ∥M (k)

i ∥1 ≤ 1. Define M̃
(k)
i

to be the block of M̃ (k) corresponding to a node at level k whose descendant at level

L is the node i. The blocks R
(k−1)
i and ∆R

(k−1)
i are defined similarly. Then, we have∥∥∥∆M̃

(k−1)
i

∥∥∥
1
=
∥∥∥∆R

(k−1)
i +∆Z

(k)
i R

(k−1)
i +∆Z

(k)
i ∆R

(k−1)
i

∥∥∥
1

(5.14)

≤ γr + ϵmach + ϵmachγr ≤ 3γr,

where Z
(k)
i is an identity matrix whose size matches the block R

(k−1)
i such that

|∆Z
(k)
i | ≤ ϵmach|Z(k)

i |. In what follows, M̃
(L−1,k)
i stands for the block of M̃ (L−1,k)

corresponding to a node at level k whose descendant at level L is the node i. Now,
to prove the second inequality in (5.11), we have∥∥∥∆M

(k)
i

∥∥∥
1
≤

L−k∑
|ααα|=1

∥∥∥∆ααα
(
M̃

(L−1,k)
i

)∥∥∥
1
=

L−k∑
|ααα|=1

∥∥∥(∆α1M̃
(L−1)
i

)
. . .
(
∆αL−kM̃

(k)
i

)∥∥∥
1

≤
L−k∑
|ααα|=1

∥∥∥∆α1M̃
(L−1)
i

∥∥∥
1
. . .
∥∥∥∆αL−kM̃

(k)
i

∥∥∥
1
≤

L−k∑
|ααα|=1

(
L− k

|ααα|

)
(3γr)

|ααα|

≤
L−k∑
|ααα|=1

(3γr log2(N))|ααα| ≤ 3γr log2(N)

∞∑
|ααα|=0

2−|ααα| = 6γr log2(N),

where we used (5.14) in the third inequality, the fact that
(
L−k
|ααα|
)
≤ (log2(N))|ααα| in the

second last inequality and item 8 of Assumption 5.1 in the last inequality. We proved
both bounds in (5.11).

Finally, we prove the bounds in (5.12). The calculation is similar to what we did

before. By item 6 of Assumption 5.1 and the definition of P
(k)
j , we have

∥∥∥P (k)
j

∥∥∥
1
≤ 1.

Now, to prove the second inequality in (5.12), we have∥∥∥∆P
(k)
j

∥∥∥
1
≤

L−k∑
|ααα|=1

∥∥∥∆ααα
(
R

(L−1,k)
j

)∥∥∥
1
=

L−k∑
|ααα|=1

∥∥∥(∆α1R
(L−1)
j

)
. . .
(
∆αL−kR

(k)
j

)∥∥∥
1
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≤
L−k∑
|ααα|=1

∥∥∥(∆α1R
(L−1)
j

)∥∥∥
1
. . .
∥∥∥(∆αL−kR

(k)
j

)∥∥∥
1

≤
L−k∑
|ααα|=1

(
L− k

|ααα|

)
γ|ααα|
r ≤

L−k∑
|ααα|=1

(γr log2(N))|ααα|

≤ γr log2(N)

∞∑
|ααα|=0

2−|ααα| ≤ 2γr log2(N),

where we used the fact that
(
L−k
|ααα|
)
≤ (log2(N))|ααα| in the second last inequality and

item 8 of Assumption 5.1 in the last inequality. We proved both bounds in (5.12).

Lemma 5.7. With Assumption 5.1, the evaluation stage of Algorithm 4.1 satisfies

(5.15) fl(ϕ) = fl(K̃q) = (K +∆K)q,

where ∆K := −E +∆K̃, |E| ≤ ε|K|,

∆K̃ :=

L∑
k=2

7∑
|βββ|=1

(
∆β1H

) (
∆β2U (L)

)(
∆β3M (k)

)(
∆β4Z(k)

)(
∆β5B(k)

)
(5.16)

(
∆β6P (k)

)T (
∆β7V (L)

)T
+∆K(0) +∆HK(0) +∆H∆K(0),

with βi ∈ {0, 1} for 1 ≤ i ≤ 7, M (k), ∆M (k), P (k), ∆P (k) are defined as in
Lemma 5.6, the inequalities in (5.8), (5.10) hold,

|∆H| ≤ ϵmach|I|, |∆U (L)| ≤ γr|U (L)|, |∆K(0)| ≤ γw|K|,

and w stands for the maximum number of columns of near-field blocks.

Proof. Within this stage, the following floating point operations are performed:

fl(ϕ) = (I +∆H)
(
(U (L) +∆U (L)) fl(u(L)) + (K(0) +∆K(0))q

)
,

where fl(u(L)) is given in (5.9). By (5.5) and (4.3), we can rewrite fl(ϕ) as

fl(ϕ) =

L∑
k=2

U (L)R(L−1,k)B(k)(R(L−1,k))T(V (L))Tq

+

L∑
k=2

7∑
|βββ|=1

(
∆β1H

) (
∆β2U (L)

)(
∆β3M (k)

)(
∆β4Z(k)

)(
∆β5B(k)

)
(
∆β6P (k)

)T (
∆β7V (L)

)T
q

+ (K(0) +∆K(0) +∆HK(0) +∆H∆K(0))q,

= (K̃ +∆K̃)q = (K − E +∆K̃)q,

from which we obtain (5.15).
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Theorem 5.8. With Assumption 5.1, the FMM matrix-vector product in Algo-
rithm 4.1 satisfies

fl(K̃q) = (K +∆K)q with(5.17)

|∆K| ≤ (768r2cUcBcV max{γr, γN0} log2(N) + 4max{ε, γw, ϵmach})|K|,

where K̃ is defined in (4.4) and ε is the relative approximation accuracy of K̃ in (5.2).

Proof. We have computed how the error propagates in Lemma 5.5, Lemma 5.6,
and Lemma 5.7. Our goal now is to bound |∆K| in Lemma 5.7. To this end, we want
to find an entrywise upper bound for each term in the double summation of (5.16)
by considering the following node-wise inequality from a leaf node j at level L to the
leaf node i at level L (via the bottom-up and top-down traversals). The subscript i, j
are used to emphasize the dependence on these leaf nodes.

Since |∆U (L)| ≤ γr|U (L)|,
∣∣∣(∆V (L)

)T∣∣∣ ≤ γN0

∣∣∣(V (L)
)T∣∣∣, and the numbers of col-

umns U
(L)
i , V

(L)
j are both equal to r, and item 5 of Assumption 5.1 holds, we have

(5.18)
∥∥∥∆U

(L)
i

∥∥∥
∞
≤ γrrcU and

∥∥∥∥(∆V
(L)
j

)T∥∥∥∥
1

≤ γN0
rcV .

for given nodes i, j at level L.
In what follows, let Hi be an identity matrix whose size matches the block cor-

responding to the node i at level L of the matrix U (L) (i.e., U
(L)
i ), which satisfies

|∆Hi| ≤ ϵmach |Hi|. Furthermore, let Z
(k)
i be an identity matrix whose size matches

the block of the matrix B(k) containing the interaction at level k of parent nodes of

i, j (i.e., B
(k)
i,j ), which satisfies |∆Z

(k)
i | ≤ ϵmach|Z(k)

i |.
Now, by a direct calculation,

∥∥∥∥(∆β1Hi

) (
∆β2U

(L)
i

)(
∆β3M

(k)
i

)(
∆β4Z

(k)
i

)(
∆β5B

(k)
i,j

)(
∆β6P

(k)
j

)T (
∆β7V

(L)
j

)T∥∥∥∥
max

(5.19)

≤
∥∥∥(∆β1Hi

) (
∆β2U

(L)
i

)∥∥∥
∞

∥∥∥∥(∆β3M
(k)
i

)(
∆β4Z

(k)
i

)(
∆β5B

(k)
i,j

)(
∆β6P

(k)
j

)T∥∥∥∥
max

·
∥∥∥∥(∆β7V

(L)
j

)T∥∥∥∥
1

≤
∥∥∥(∆β1Hi

) (
∆β2U

(L)
i

)∥∥∥
∞

∥∥∥(∆β3M
(k)
i

)(
∆β4Z

(k)
i

)∥∥∥
max

∥∥∥∆β5B
(k)
i,j

∥∥∥
1,1

·
∥∥∥∥(∆β6P

(k)
j

)T∥∥∥∥
max

∥∥∥∥(∆β7V
(L)
j

)T∥∥∥∥
1

≤
∥∥(∆β1Hi

)∥∥
∞

∥∥∥(∆β2U
(L)
i

)∥∥∥
∞

∥∥∥∆β3M
(k)
i

∥∥∥
1

∥∥∥∆β4Z
(k)
i

∥∥∥
1

∥∥∥∆β5B
(k)
i,j

∥∥∥
1,1

·
∥∥∥∥(∆β6P

(k)
j

)T∥∥∥∥
max

∥∥∥∥(∆β7V
(L)
j

)T∥∥∥∥
1

≤ ϵβ1

mach

(
γβ2
r rcU

)
(6γr log2(N))

β3 ϵβ4

mach

(
γβ5
r cBKmin

)
(2γr log2(N))β6(γβ7

N0
rcV )

≤ r2cUcV cBKminϵ
β1+β4

mach γβ2
r (6γr log2(N))

β3+β6 γβ5
r γβ7

N0
,

This manuscript is for review purposes only.



STABLE MATRIX VERSION 2D FMM 25

where we repeatedly applied (5.3) to the first two inequalities, and the bounds in
(5.11), (5.12) to the last inequality. We also observe that the inner summation of the

first term in (5.16) produces the same block structure as U (k)B(k)
(
V (k)

)T
. This means

that for different levels k = 2, . . . , L, the nonzero patterns of this inner summation do
not overlap. Therefore,

|∆K| ≤ |E|+
L∑

k=2

∣∣∣∣ 7∑
|βββ|=1

(
∆β1H

) (
∆β2U (L)

)(
∆β3M (k)

)(
∆β4Z(k)

)(
∆β5B(k)

)(5.20)

·
(
∆β6P (k)

)T (
∆β7V (L)

)T∣∣∣∣+ |∆K(0)|+ |∆HK(0)|+ |∆H∆K(0)|

≤ |E|+ max
k=2,...,L

∣∣∣∣ 7∑
|βββ|=1

(
∆β1H

) (
∆β2U (L)

)(
∆β3M (k)

)(
∆β4Z(k)

)(
∆β5B(k)

)
·
(
∆β6P (k)

)T (
∆β7V (L)

)T∣∣∣∣+ |∆K(0)|+ |∆HK(0)|+ |∆H∆K(0)|

≤ ε|K|+
7∑

|βββ|=1

(
7

|βββ|

)(
r2cUcV cBϵ

β1+β4

mach γβ2
r (6γr log2(N))

β3+β6 γβ5
r γβ7

N0

)
|K|

+ (γw + ϵmach + ϵmachγw)|K|
≤ (27)(6)r2cUcV cB max{γr, γN0

} log2(N)|K|+ (ε+ γw + ϵmach + ϵmachγw)|K|
≤ (768r2cUcV cB max{γr, γN0} log2(N) + 4max{ε, γw, ϵmach})|K|,

where we used the node-wise estimate in (5.19) to arrive at the third inequality. This
completes the proof.

The theorem shows that, with proper norm bounds of the generators, the FMM
is backward stable and the backward error depends logarithmically on the size of K.
This result clearly highlights an advantage of using a hierarchical structure matrix
method over the standard matrix-vector multiplication, where the backward error
depends linearly on N (see Lemma 5.2). Such a stability advantage has also been
observed in some other hierarchical structured matrix algorithms in [2, 33, 34].

The theorem does not rely on a specific kernel and instead only needs certain
norm bounds for the FMM generators. Our stabilization strategy essentially ensures
such norm bounds. The following corollary states the backward errors of the FMM
for the generalized Cauchy kernel and the logarithmic kernel discussed in section 2.
For the logarithmic kernel, even though the bounds of ∥Bi,j∥1,1 and |E| are slightly
different from items 5 and 7 of Assumption 5.1, respectively, we can follow the same
proof idea.

Corollary 5.9. Suppose all the conditions in Assumption 5.1 hold, except items
5 and 7. Let τ be the separation ratio in (2.1) and ε be a given error tolerance.

• If κ(x, y) = (x − y)−(1+d), d ∈ Z and the expansion order r is chosen such
that E in (4.3) satisfies |E| ≤ ε|K|, then the FMM matrix-vector product in
Algorithm 4.1 satisfies (5.17) with

|∆K| ≤
(
768r2 max{γr, γN0} log2(N)

(1− τ)2+2|d| + 4max{ε, γw, ϵmach}
)
|K|.
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• If κ(x, y) = − log |x−y| and the expansion order r is chosen such that |E| ≤ ε
in (4.3), then the FMM matrix-vector product in Algorithm 4.1 satisfies (5.17)
with

|∆K| ≤
(
768r2 max{γr, γN0

} log2(N) + 3max{γw, ϵmach}
)
|K|+ ε

− 1536r2 max{γr, γN0} log(1− τ).

Proof. If κ(x, y) = (x − y)−(1+d), d ∈ Z, by Theorem 2.3 and Theorem 3.1, we
have cU = cV = 1 and cB = (1− τ)−(2+2|d|) in Theorem 5.8. These yield the desired
result.

If κ(x, y) = − log |x− y|, by Theorem 2.5 and Theorem 3.1, we have cU = cV = 1
and ∥Bi,j∥1,1 ≤ |K|+2 log 1

1−τ , where lv(i) = l and j ∈ Li with l = 2, . . . , L. The ideas
used in proving Theorem 5.8 are still valid. We just need to appropriately replace |K|
in the second inequality of (5.20) with |K|+ 2 log 1

1−τ and use the bound |E| ≤ ε to
get the desired result.

The choices of the expansion order r in the above corollary are guaranteed by
Theorem 2.2 and Theorem 2.4. Note that the backward error for the logarithmic
kernel in Corollary 5.9 is not exactly a relative error bound, due to the bounds of the
error matrix in Theorem 2.4 and ∥B∥1,1 in Theorem 2.5.

6. Numerical experiments. We now present two sets of numerical experiments
to validate our theoretical findings. In the first set of numerical experiments, we verify
how the norms of the FMM generators are controlled as discussed in sections 2 and 3.
In the second set of numerical experiments, we validate the backward error bound
discussed in section 5.

6.1. Norm bounds of FMM generators. We randomly generate two sets X
and Y such that each set contains 1502 points. The real and imaginary parts of each
x ∈ X are independently sampled from the standard normal distribution, shift, and
scale them so that ℜ(x),ℑ(x) ∈ [0, 400]. Each point in Y is generated the same way.
Afterwards, we further scale both sets in various ways to simulate situations that lead
to instabilities (see Tables 6.1 to 6.3). The first situation is when there is a small
distance between the centers (Table 6.1), while the second situation is when there is
a large distance between the points and its center (Table 6.2). Both situations may
also simultaneously arise as in Table 6.3. Our goal is to observe how the scaled sets
affect the magnitude of the far-field FMM generators and consequently the result of
the matrix-vector multiplication.

We set each partition at the leaf level to contain at most N0 = 25 points. For
each test below, we report the expansion order (numerical rank) r, the accuracy of
the FMM matrix-vector multiplication, and the following maximum norms:

U := max(max
i∈T
∥Ui∥max,max

i∈T
∥Vi∥max), B := max

i∈T
∥Bi∥max, R := max

i∈T
∥Ti∥max.

For a given vector q, recall that ϕ is the direct dense matrix-vector product in (1.1) and
ϕ̃ is the result from the FMM as described in Algorithm 4.1. To assess the accuracy

of the FMM matrix-vector multiplication, we record the relative error ∥ϕ̃−ϕ∥2

∥ϕ∥2
with

q being a vector of randomly generated numbers sampled from the standard normal
distribution.

We conduct three representative tests for the generalized Cauchy kernel (see Ta-
ble 6.1 for d = 0 and Table 6.3 for d = 1) and the logarithmic kernel (see Table 6.2).

This manuscript is for review purposes only.



STABLE MATRIX VERSION 2D FMM 27

Even though we only present tests for the generalized Cauchy kernel with d = 0, 1,
similar stability issues are encountered for other choices of d. All the computations
are done in Matlab. Each of the tables has two columns that are labeled as ‘Balanced’
and ‘Original’. The results reported in the ‘Balanced’ column correspond to the case,
where the far-field FMM generators take the forms of (2.4) and (2.5) for the gen-
eralized Cauchy kernel and the forms of (2.4) and (2.18) for the logarithmic kernel.
Meanwhile, the results reported in the ‘Original’ column correspond to the case, where
the far-field FMM generators take the forms of (2.13) and (2.14) for the generalized
Cauchy kernel and the forms of (2.13) and (2.19) for the logarithmic kernel.

Table 6.1
Comparison of the balanced and the original versions of the FMM for the generalized Cauchy

kernel with the sets 10−4X and 10−4Y (i.e., we multiply the randomly generated sets X and Y by
a factor of 10−4), where d = 0, τ = 0.6, N0 = 25, and L = 8. See Figure 6.1 for a hierarchical
partitioning of a square domain containing 10−4X and 10−4Y.

Balanced Original

r U R B ∥ϕ̃−ϕ∥2

∥ϕ∥2
U R B ∥ϕ̃−ϕ∥2

∥ϕ∥2

10 1 1 1.1E+3 5.9E-6 1 1 1.1E+36 5.9E-6
20 1 1 1.1E+3 5.6E-9 1 1 1.2E+78 5.6E-9
30 1 1 1.1E+3 1.7E-11 1 1 2.7E+122 1.7E-11
40 1 1 1.1E+3 4.4E-14 1 1 1.9E+168 4.5E-14
50 1 1 1.1E+3 4.6E-15 1 1 1.8E+215 4.6E-15
60 1 1 1.1E+3 4.6E-15 1 1 1.3E+263 4.6E-15
70 1 1 1.1E+3 4.6E-15 1 1 Inf NaN
80 1 1 1.1E+3 4.6E-15 1 1 Inf NaN
90 1 1 1.1E+3 4.6E-15 1 1 Inf NaN
100 1 1 1.1E+3 4.6E-15 1 1 Inf NaN

Fig. 6.1. A hierarchical partitioning of a square domain, which contains points from X (in red)
and points from Y (in red) that are scaled differently as described in Table 6.1.

Recall that the entries (2.14) and (2.19) may become very large if the distance
between the centers is small and/or r is large. Hence, it is not surprising that some

results of B and ∥ϕ̃−ϕ∥2

∥ϕ∥2
in the ‘Original’ column of Tables 6.1 to 6.3 appear as Inf and

NaN in Matlab. This is because Matlab encounters overflow. A similar problem is
encountered for the ‘Original’ column if the distance between some points in a set and
the center of this set is very large. From Tables 6.2 and 6.3, we see that the entries of
(2.13) and translation matrices reported in the ‘Original’ column become very large
that we run into the same overflow issue.
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Table 6.2
Comparison of the balanced and the original versions of the FMM for the logarithmic kernel

with randomly generated sets 102X and 102Y (i.e, we multiply the randomly generated sets X and
Y by a factor of 102), where τ = 0.6, N0 = 25, and L = 8. The hierarchical partitioning of a square
domain containing 102X and 102Y looks the same as Figure 6.1 except the scales of the axes are
different.

Balanced Original

r U R B ∥ϕ̃−ϕ∥2

∥ϕ∥2
U R B ∥ϕ̃−ϕ∥2

∥ϕ∥2

10 1 1 1.1E+1 2.5E-7 1.1E+29 1.3E+29 1.1E+1 2.5E-7
20 1 1 1.1E+1 1.2E-10 9.2E+55 1.4E+56 1.1E+1 1.2E-10
30 1 1 1.1E+1 6.1E-13 3.6E+80 6.5E+80 1.1E+1 6.1E-13
40 1 1 1.1E+1 1.3E-14 4.3E+103 9.7E+103 1.1E+1 1.3E-14
50 1 1 1.1E+1 1.3E-14 4.08E+125 1.1E+126 1.1E+1 1.3E-14
60 1 1 1.1E+1 1.3E-14 5.0E+146 1.7E+147 1.1E+1 1.3E-14
70 1 1 1.1E+1 1.3E-14 1.1E+167 4.8E+167 1.1E+1 1.3E-14
80 1 1 1.1E+1 1.3E-14 9.1E+182 3.2E+187 1.1E+1 1.3E-14
90 1 1 1.1E+1 1.3E-14 Inf Inf 1.1E+1 NaN
100 1 1 1.1E+1 1.3E-14 Inf Inf 1.1E+1 NaN
110 1 1 1.1E+1 1.3E-14 Inf Inf 1.1E+1 NaN

Table 6.3
Comparison of the balanced and the original versions of the FMM for the generalized Cauchy

kernel with points in sets X and Y scaled differently so that some points are tightly clustered, where
d = 1, τ = 0.6, N0 = 25, and L = 26. See Figure 6.2 for a hierarchical partitioning of a square
domain containing points from sets X and Y that are scaled differently.

Balanced Original

r U R B ∥ϕ̃−ϕ∥2

∥ϕ∥2
U R B ∥ϕ̃−ϕ∥2

∥ϕ∥2

10 1 1 6.3E+4 7.3E-8 2.7E+28 7.5E+28 8.8E+32 7.3E-8
20 1 1 6.3E+4 1.7E-10 4.7E+54 4.1E+55 5.7E+68 1.7E-10
30 1 1 6.3E+4 5.3E-13 3.8E+78 1.0E+80 6.0E+106 5.3E-13
40 1 1 6.3E+4 2.1E-15 9.6E+100 8.2E+102 1.8E+146 2.1E-15
50 1 1 6.3E+4 1.3E-15 1.9E+122 5.0E+124 6.4E+186 1.3E-15
60 1 1 6.3E+4 1.3E-15 4.8E+142 4.0E+145 1.7E+228 1.3E-15
70 1 1 6.3E+4 1.3E-15 2.3E+162 6.0E+165 2.3E+270 1.3E-15
80 1 1 6.3E+4 1.3E-15 2.5E+181 2.1E+185 Inf NaN
90 1 1 6.3E+4 1.3E-15 Inf Inf Inf NaN
100 1 1 6.3E+4 1.8E-15 Inf Inf Inf NaN
110 1 1 6.3E+4 1.8E-15 Inf Inf Inf NaN

In particular, Table 6.3 describes a situation where the ‘Original’ version simul-
taneously encounters two of the foregoing issues. The corresponding point sets X and
Y are shown in Figure 6.2 together with the adaptive hierarchical partitioning of the
domain.

In comparison, regardless how the sets are scaled, the FMM that uses our stabi-
lization strategy in section 2 (see the ‘Balanced’ column) automatically handles the
scaling effects and overcomes these instability/overflow issues.

We also comment that, before the ‘Original’ version encounters overflow (when r
is not very large) in these tests, it is indeed able to achieve good accuracies. However,
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Fig. 6.2. A hierarchical partitioning of a square domain, which contains points from X (in red)
and points from Y (in red) that are scaled differently (with the aid of nonlinear transformations) as
described in Table 6.3.

like shown in [6], the corresponding FMM matrix is still susceptible to stability issues.
If some other operations (like reorthogonalization and recompression) are applied to
the generators produced by the ‘Original’ version, then the accuracy of the FMM can
be quite poor.

6.2. Backward errors. Our next goal is to observe how the backward errors
behave as the level changes. We first describe the setup and provide more explanations
after. We randomly generate two new sets X and Y such that each set contains 210

points. The real and imaginary parts of each point in X and Y are randomly sampled
from the uniform distribution defined on the unit interval. Then, we define

Xl := 2−lX and Yl := 2−lY +

(
2l − 1

2l
+

2l − 1

2l
i

)
, l = 3, . . . , 21,

where i stands for the imaginary number. Clearly, Xl ∪Yl, is contained in S := {z ∈
C : ℜ(z),ℑ(z) ∈ [0, 1]}. Next, we define ik := {z ∈ S : ℜ(z),ℑ(z) ∈ [0, 2−k]} and
jk := {z ∈ S : ℜ(z),ℑ(z) ∈ [1− 2−k, 1]} for k ≥ 3. As before, oik and δik respectively
denote the center and radius of the node ik. A similar thing holds for ojk and δjk . We
can directly see that Xl is contained in the node il, while Yl is contained in the node
jl.

To compute the backward errors, we follow the formula stated in [21, (3.6)]. That
is, given a randomly generated vector q, we compute
(6.1)

El := max
1≤i≤210

|(UXl,i3Bi3,j3V
T
Yl,j3

q − UXl
Til,il−1

. . . Ti4,i3Bi3,j3T
T
j4,j3

. . . TT
jl,jl−1

V T
Yl

q)i|
(|UXl,i3Bi3,j3V

T
Yl,j3
||q|)i

,

where

UXl,i3 :=

[(
x− oi3
δi3

)j
]
x∈Xl,0≤j≤r−1

, UXl
:=

[(
x− oil
δil

)j
]
x∈Xl,0≤j≤r−1

,

VYl,j3 , VYl
are defined similarly, Bi3,j3 takes the form of (2.5) or (2.18) (its entries

depend on the radii and centers of the nodes i3 and j3), Til,il−1
takes the form of (3.3)

(its entries also depend on the radii and centers of the nodes il and il−1), and the
subscript i denotes the i-th component of a vector. By convention, we set E3:=0.

This setup aims to simulate the case where we deal with a kernel matrix that is
increasing in size by fixing the number of points in the leaf nodes and consequently
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letting the number of levels grow. We focus on a single block of the kernel matrix
and compute the product of this block with a vector. To eliminate the influence of
the approximation error, we treat the low-rank approximation to this block at the top
level, l = 3, as the exact form. We then compare this product against the product of
the low-approximation of this block obtained via the nested relation with the same
vector. For simplicity, we assume that all points are contained in the unit square. So,
to allow the growing number of levels in the experiment, we make the leaf nodes sets
Xl and Yl to be increasingly clustered at the bottom left and top right corners of the
domain.
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Fig. 6.3. Illustrations of the behaviors of the backward errors as the number of levels l increases.
We fix the rank to be r = 128.

7. Conclusions. This work gives a stabilization strategy to overcome a stability
issue in the FMM and then justify the backward stability in terms of an intuitive
matrix version FMM. This stabilization strategy amounts to balancing relevant low-
rank factors. Even though we focus on two types of important kernels, the techniques
are applicable to other kernels whose degenerate expansions are based on Taylor
expansions. We have proved that the resulting low-rank factors have bounded norms
and entries. Additionally, the entries of these low-rank factors can be computed
conveniently by recurrence relations. We have also presented a matrix version of the
2D in an intuitive manner in hopes of making the FMM more accessible to a larger
scientific computing community. The long-overdue rigorous analysis on the backward
stability of the FMM is then performed and demonstrates the stability advantage
of such hierarchical structured algorithms. In our forthcoming work [24], we shall
rigorously study a stable low-rank approximation for an oscillating kernel such as the
2D Helmholtz kernel.
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