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a b s t r a c t

We present a joint acoustic/seismic inverse scattering and finite-frequency (reflection)
tomography program, formulated as a coupled set of optimization problems, in terms of
inhomogeneous Helmholtz equations. We use a higher order finite difference scheme for
these Helmholtz equations to guarantee sufficient accuracy. We adapt a structured approx-
imate direct solver for the relevant systems of algebraic equations, which addresses storage
requirements through compression, to yield a complexity for computing the gradients or
images in the optimization problems that consists of two parts, viz., the cost for all the
matrix factorizations which is roughly OðrNÞ (for example OðrN log NÞ when d = 2) times
the number of frequencies, and the cost for all solutions by substitution which is roughly
OðNÞ (for example OðN logðr log NÞÞ when d = 2) times the number of frequencies times the
number of sources (events), where N = nd if n is the number of grid samples in any direc-
tion, and r is a parameter depending on the preset accuracy and the problem at hand. With
this complexity, the multi-frequency approach to inverse scattering and finite-frequency
tomography becomes computationally feasible with large data sets, in dimensions d = 2
and 3.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Computational ‘‘full-wave” seismic inverse scattering and reflection tomography are driven by solving the wave-equation
in large subdomains of Rd; d ¼ 2;3, representing Earth’s subsurface, while accounting for the broad bandwidth of the avail-
able data. Following a multi-frequency approach, the wave-equation is transformed to the Helmholtz equation. One can ob-
tain similar equations, with the Laplace operator replaced by a pseudodifferential operator, for polarized elastic waves in
anisotropic media. Subject to certain approximations, one can cast these into the form of coupled Helmholtz equations. Com-
putationally, upon discretization, solving the Helmholtz equation amounts to solving a large linear system of algebraic equa-
tions. This has to be repeated for a significant number of frequencies (in the mentioned bandwidth) as well as for a large
number of different right-hand sides corresponding with the large number of sources generating a seismic data set. Current
seismic data sets consist of observations of the wave fields in large arrays of receivers at Earth’s surface generated by a large
number of sources indeed. The multi-frequency approach, in the context of seismic imaging, was already discussed by Mar-
furt [1].

The nature of the multi-frequency formulation of the inverse scattering and reflection tomography problem leads one to
explore the use of the LU decomposition or factorization (once per frequency) of the coefficient matrix defining the above
. All rights reserved.
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mentioned linear system of algebraic equations and a direct solver. However, the system is so large in applications (in par-
ticular, in dimension d = 3) that the associated memory requirements become unsurmountable. Here, we introduce an alter-
native approach based on the structured approximate direct solver in [2], which addresses the memory requirements through
compression.

For different frequencies, the coefficient matrices representing the linear systems share the same nonzero pattern. Thus,
an efficient sparse direct solver remains a natural choice for the inverse problem at hand. Sparse direct solvers commonly
involve four stages: mesh ordering, symbolic factorization, numerical factorization, and system solution. For all the systems
that need to be solved, the mesh ordering and symbolic factorization stages need to be carried out only once. For each fre-
quency, one numerical factorization is needed. However, sparse direct solvers are often considered expensive due to the
problem of ‘‘fill-in”. That is, even if the original matrix is sparse, the factorization generally introduces many new nonzero
entries into the factors. Moreover, the accuracy of traditional direct solvers is generally not explicitly controllable. Also,
methods used as preconditioners such as incomplete factorizations often suffer from the problem of ‘‘breakdown”.

The structured approximate direct method in [2] is a black-box solver based on structured approximations of dense fill-in
in the direct factorization of the coefficient matrix. The accuracy is controllable. A robustness strategy is used to avoid break-
down. The full integration of graph-based sparse matrix techniques and structured matrix computations makes the method
efficient. The cost for the factorization is only OðrN log NÞ for d = 2 (roughly OðrNÞ for d = 3), where N is the matrix size and r
is a parameter depending on the preset accuracy and the problem at hand. The storage is OðN logðr log NÞÞ for d = 2 (roughly
OðNÞ for d = 3).

The solver uses a structured supernodal multifrontal method with nested dissection ordering of the mesh points. It has
been observed that in the factorization of some discretized problems, the off-diagonal blocks of these dense matrices have
small numerical ranks because the Green’s functions of these problems are smooth away from the ‘‘diagonal” singularity. For
problems such as the one defined by a discrete Helmholtz equation, the off-diagonal numerical ranks may not be small en-
ough. However, [3] and [2] show that the method in [2] can still be satisfactory if only modest accuracy is needed. Dense
intermediate matrices are factorized into data-sparse semiseparable matrices. Operations of compact semiseparable matri-
ces are usually fast, such as linear complexity matrix multiplications and system solutions. Fast operations for semiseparable
matrices lead to the efficiency of the structured sparse solver exploited here.

Various alternative strategies to solving the discrete Helmholtz equation have been introduced in the past few years. We
mention the Krylov-based iterative solvers with preconditioners (Elman et al. [4], Plessix and Mulder [5], Erlangga et al. [6,7]
and Riyanti et al. [8]). Operto et al. [9] discuss a (massively parallel) direct solver based on domain decomposition (Larsson
[10]).

The space-frequency domain approach has many advantages over the space-time one. In [11] [12], a frequency selection
strategy is proposed for seismic inversion based on data redundancy in the frequency domain. It is demonstrated in [8] that
in 2D, the frequency domain approach is an order of magnitude faster than the time domain one. However in 3D, the fre-
quency domain approach with LU factorization yields a storage problem. We address this problem in this paper. Moreover,
the frequency domain approach plays a key role in FWI (Full Waveform Inversion [13] [14]), in as much as yielding control
over convergence of the relevant iteration. In this paper, we consider linearized inversion and demonstrate the accuracy of
our approach.

We integrate our discrete Helmholtz equation solver with the optimization formulations of ‘‘full-wave” seismic inverse
scattering and reflection tomography through the adjoint state method (Section 2). The gradient computation coincides with
imaging. In the case of inverse scattering, such a formulation, based on a least-squares misfit, can be found in Lailly [15] and
Tarantola [16], while a computational realization using the Helmholtz equation can be found in Mulder and Plessix [12]. We
further mention the work of Kühl and Sacchi [17] on least-squares wave-equation migration. Multi-frequency waveform
tomography has been developed, also, using a least-squares misfit (see Pratt [18] and Operto et al. [19]). Here, we follow
an approach to reflection tomography reminiscent of the one based on annihilators of the data (see Stolk and De Hoop
[20]). One class of such annihilators can be constructed from the so-called angle transform in the ‘‘downward continuation”
approach (derived using a wavefield splitting technique) to seismic imaging; the corresponding adjoint states equations can
be found in De Hoop et al. [21]. Under certain conditions, another class of annihilators can be constructed reflecting data
redundancy in the source coordinates, following an approach known as ‘‘reverse time migration”. As in Xie and Yang [22],
we use this redundancy in combination with the notion of image continuation [23] to arrive at a misfit criterion and opti-
mization scheme for wave-equation reflection tomography.

In Section 3 we give the discretization of the Helmholtz operator. In Section 4 we discuss the structured approximate di-
rect solver tailored to the discrete Helmholtz equation. We present some comparisons with the direct LU, multilevel Krylov-
multigrid and multifrontal methods in terms of computational complexity and storage requirements. The overall complexity
for solving all the instances of the discrete Helmholtz equations in our problem has two parts, viz., the cost for all the matrix
factorizations which is roughly OðrNÞ (for example OðrN log NÞwhen d = 2) times the number of frequencies, and the cost for
all solutions by substitution which is roughly OðNÞ (for example OðN logðr log NÞÞ when d = 2) times the number of frequen-
cies times the number of sources. In Section 5 we present the computational performance of our method through a numer-
ical example (d = 2) with a model containing a smoothed, low wavespeed lens leading to the formation of caustics and a flat
discontinuity. We give some conclusions in Section 6. On how to connect the inverse scattering program developed here to a
multi-scale approach, see Wang et al. [24], and Brytik et al. [25] concerning the tomographic aspects.
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2. Inverse scattering program

The causal acoustic-wave Green’s function G(x, t;xs) for a point source at x = xs is the solution of
cðxÞ�2
@2

t � D
h i

Gðx; t; xsÞ ¼ dðtÞdðx� xsÞ; ð1Þ
with G = 0, t < 0. Here, c = c(x) is the wavespeed of the medium. The partial differential equation is considered on a set
X � Rd ðd P 2Þ. Upon applying the Fourier transform, with
bGðx;x; xsÞ ¼
Z

Gðx; t; xsÞ expð�ixtÞdt;
we obtain the corresponding Helmholtz equation,
Dþx2cðxÞ�2
h ibGðx;x; xsÞ ¼ �dðx� xsÞ; ð2Þ
with the Sommerfeld radiation condition
R
@bG
@R
þ ix

c
bG" #
! 0 as R!1; R ¼ jxj:
In the following subsections, the inverse scattering scheme is described in terms of the associated Helmholtz operator.

2.1. Linearized modeling

In the development of seismic scattering, imaging and inverse scattering theory, it is common practice to invoke the Born
or single scattering approximation. We introduce r(x) = dc(x)/c(x), which is a relative perturbation of the wavespeed and can
be thought of as a reflectivity. Linearization of the wave-equation yields for the corresponding perturbation of the Green’s
function,
Dþx2cðxÞ�2
h i

dbGðx;x; xsÞ ¼ 2x2cðxÞ�2rðxÞbGðx;x; xsÞ; ð3Þ
using the solution of (2) in the right-hand side. It is, here, assumed that c = c(x) is a smooth function, while r = r(x) is of low
regularity. Essentially, the justification of the Born approximation is based on a separation of scales distinguishing a back-
ground from a contrast [26].

Frequency-domain seismic data, d̂ðxs; xr ;xÞ say, are modeled as dbGðx;x; xsÞ, by solving (3) after solving (2), upon restrict-
ing x to points xr 2Rr and xs to Rs with Rs, Rr � @X. Moreover, the data are measured in a finite-frequency bandwidth,
x 2X = [x1,x2] with 0 < x1 < x2, only. This then defines a so-called single-scattering operator, bF ¼ bF ½c� : rðxÞ !
dbGðxr;x; xsÞ, mapping subsurface reflectors to surface reflections. In the further development, we will assume that X is a rect-
angular domain, and that Rs, Rr are subsets of its ‘‘top” side, representing part of the earth’s surface; also, we will assume
that the dimension of Rr is d � 1. The results presented here are straightforwardly extended to more generally shaped do-
mains and boundaries upon introducing curvilinear coordinates, as in Stolk et al. [27].

In the seismic inverse problem, the objective is to reconstruct c (referred to as the background) and r (referred to as the
reflectivity) from the data, d. The imaging and reconstruction of r is referred to as the inverse scattering problem, while the
imaging and reconstruction of c is referred to as the (wave-equation) reflection tomography problem. In the next subsec-
tions, we summarize the optimization formulations of these problems in terms of adjoint states equations.

2.2. Imaging of the (relative) contrast: Optimization and gradient

Inverse scattering has been formulated as an optimization problem, that is,
hri ¼ arg min
1
2

d̂� bF ½c�r��� ���2

Rs�Rr�X
;

where hri is the estimate of r. The gradient of the underlying mismatch criterion is the image, I ¼ bF ½c��d̂, given by
IðxÞ ¼
Z

Rs

1
2p

Z
ŵsðx;x; xsÞû�ðx;x; xsÞdxdxs ¼

Z
Rs

Re
1
p

Z
X

ŵsðx;x; xsÞû�ðx;x; xsÞdxdxs; ð4Þ
and obtained by solving
Dþx2cðxÞ�2
h i

ŵsðx;x; xsÞ ¼ �dðx� xsÞ; ð5Þ
referred to as ‘‘pde”, and
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Dþx2cðxÞ�2
h i

û�ðx;x; xsÞ ¼ x2
Z

Rr

d̂ðxs; xr ;xÞdðx� xrÞdxr; ð6Þ
referred to as ‘‘pde*” in the diagram,
ð7Þ
summarizing the data-field flow in the gradient computation for each source. The integration over frequency in (4) signifies
the imaging condition, that is, a cross correlation in time, see Tarantola [16] and others.

We introduce the kernel, K = K(x;xs,xr, t), of the imaging operator, F[c]*, that is,
IðxÞ ¼
Z

Rs

Z
Rr

Z
Kðx; xs; xr; tÞdðxs; xr; tÞdtdxrdxs ¼

Z
Rs

Z
Rr

1
2p

Z bK ðx; xs; xr;xÞd̂ðxs; xr ;xÞdxdxrdxs: ð8Þ
This kernel integral representation expresses that each data sample, at (xs0,xr0, t0) say, is being ‘‘smeared” over the support of
K(x;xs0,xr0, t0) viewed as a function of x. Accounting for the data frequency bandwidth, this function is referred to as the finite-
frequency isochron corresponding with (xs0,xr0, t0). It is computed by solving
Dþx2cðxÞ�2
h i

ŵsðx;x; xs0Þ ¼ �dðx� xs0Þ;

Dþx2cðxÞ�2
h i

û�ðx;x; xs0Þ ¼ x2 expð�ixt0Þdðx� xr0Þ;
followed by the cross correlation, Re 1
p

R
X ŵsðx;x; xs0Þû�ðx;x; xs0Þdx, cf. (4).

We briefly mention that the action of the normal operator F[c]* F[c] on r, is obtained by substituting the restricted solution
dbGðxr;x; xsÞ of (3) for d̂ðxs; xr ;xÞ in (6). Essentially, the optimization results in compensating the image for this normal oper-
ator, while requiring that the so-called Bolker condition is satisfied [20, p.**].

The imaging described by (4)–(6) is a multi-source, multi-frequency operation. Upon invoking standard quadratures, and
an FFT for the (inverse) Fourier transform, we obtain a discretization with ns sources, nx frequencies and nr receivers. In the
next section, we will introduce the discretization of the Helmholtz operator, on a box of OðndÞ samples; we have nr � nd�1.
For seismic data sets, ns, nr and nx are large. To generate an image, or inverse scattering gradient, one has to solve a couple of
Helmholtz equations ns�nx times. This motivates the factorization of the (discretized) Helmholtz operator common to all
sources, thus leading to fast solvers once the factorization is completed. We will develop and analyze the performance of
such a solution method for frequency-domain imaging and inverse scattering in dimension d = 2, and compare it with the
performance of iterative methods with preconditioners (such as the one developed by Erlangga et al. [7]), in Sections 4
and 5 of this paper.

2.3. Single-source inverse scattering transform

If the incident field (ws in (5)) does not form caustics, it is possible to generate an (artifact-free) image using a single
source (see Nolan and Symes [28]), with Rs = {xs0} say. By incorporating judiciously chosen operators in the right-hand side
of the adjoint equation (cf. (6)) and the imaging integral (cf. (4)), the imaging operator (F[c]*) can be turned into an inverse
scattering transform thus bypassing the optimization. We summarize this transform for dimension d = 2, see Levy and
Esmersoy [29]: Let n denote the outward normal to @X. The adjoint equation becomes
Dþx2cðxÞ�2
h i

û�ðx;x; xs0Þ ¼ �
Z

Rr

d̂ðxs0; xr;xÞ 2nðxrÞ � rdðx� xrÞdxr : ð9Þ
The imaging integral is adjusted according to
I s0ðxÞ ¼
1

jXj�1 R
X jŵsðx;x0; xs0Þj2dx0

Re
1
p

Z
X

2i
x3 x2cðxÞ�2ŵsðx;x; xs0Þû�ðx;x; xs0Þ
h

þ rŵsðx;x; xs0Þ
� �

� rû�ðx;x; xs0Þð Þ�dx; ð10Þ
which becomes, locally, a direct estimate, hr(x)i, of r(x), that is, where there is illumination. The general development and
analysis of the ‘‘common-source” class of inverse scattering transforms, and their relation to interferometry, can be found
in Stolk et al. [30].

2.4. Imaging of the background: Optimization and gradient

We consider the imaging of common-source data and assume that the incident field does not form caustics as before:
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I s0ðxÞ ¼
1

2p

Z
ŵsðx;x; xs0Þû�ðx;x; xs0Þdx;
cf. (4). We develop a method for wave-equation reflection from the continuation [23] of this image at a point x0 under a
smooth perturbation, dc, of c, which is described by a complex phase multiplier exp[i dU(x0,x;xs0)] applied to
ŵsðx0;x; xs0Þû�ðx0;x; xs0Þ evaluated in the original background. Let

d/(x0,x;xs0) = RedU(x0,x;xs0). We follow Xie and Yang [22] and apply the Rytov approximation, when
d/ðx0;x; xs0Þ ¼ Im
dŵsðx0;x; xs0Þ
ŵsðx0;x; xs0Þ

þ dû�ðx0;x; xs0Þ
û�ðx0;x; xs0Þ

( )
: ð11Þ
Here, dŵsðx0;x; xs0Þ satisfies
Dþx2cðxÞ�2
h i

dŵsðx;x; xs0Þ ¼ 2x2cðxÞ�2 dcðxÞ
cðxÞ ŵsðx;x; xs0Þ;
cf. (3) and (5), while dû�ðx0;x; xs0Þ satisfies
Dþx2cðxÞ�2
h i

dû�ðx;x; xs0Þ ¼ 2x2cðxÞ�2 dcðxÞ
cðxÞ û�ðx;x; xs0Þ;
cf. (3) and (6). We identify cwsðx;x; xsÞ with bGðx;x; xsÞ and note that the oscillatory integral representations of û�ðx;x; xs0Þ
and dbGðx;x; xs0Þ (non-smooth perturbation r) share the same phase function [30].

Upon dividing the phase perturbation by frequency, we identify the source-field and scattered-field finite-frequency trav-
eltime functions:
Z

1
x

d/ðx0;x; xs0Þdx ¼ dtws ðx0; xs0Þ þ dtu� ðx0; xs0Þ; ð12Þ
where
dtws ðx0; xs0Þ ¼
Z

1
x

Im
dŵsðx0;x; xs0Þ
ŵsðx0;x; xs0Þ

( )
dx ¼

Z
X

Ksðx0; x0; xs0Þ
dcðx0Þ
cðx0Þ dx0 ð13Þ
and
dtu� ðx0; xs0Þ ¼
Z

1
x

Im
dû�ðx0;x; xs0Þ
û�ðx0;x; xs0Þ

� �
dx ¼

Z
X

K�ðx0; x0; xs0Þ
dcðx0Þ
cðx0Þ dx0; ð14Þ
in which
Ksðx0; x0; xs0Þ ¼
Z

1
x

Im 2x2cðx0Þ�2
bGðx0;x; x0Þŵsðx0;x; xs0Þ

ŵsðx0;x; xs0Þ

( )
dx ð15Þ
and
K�ðx0; x0; xs0Þ ¼
Z

1
x

Im 2x2cðx0Þ�2
bGðx0;x; x0Þû�ðx0;x; xs0Þ

û�ðx0;x; xs0Þ

( )
dx: ð16Þ
We let the kernel Ks define the integral operator Hs and the kernel K* define the integral operator H*.
The natural formulation of the optimization problem for wave-equation reflection tomography follows to be
hdci ¼ arg min
1
2

Z
1
x

d/ð:;x; xs0Þdx� H
dc
c

� �
ð:; xs0Þ

���� ����2

X0

; H ¼ Hs þ H�:
Here, X0 � X denotes the part of X illuminated by the data. The quantity 1
x d/ð:;x; xs0Þ (‘‘data”) is to be measured by intercept-

ing the imaging process for inverse scattering. The phase perturbation criterion used here also appears in wave-equation
transmission tomography, see Zhao et al. [31]; for an analysis of the relevant integral operator kernel, see De Hoop and
Van der Hilst [32]. The gradient of the mismatch criterion is the composite tomographic image, I ¼ I s þ I�, with
I s ¼ H�s

R
1
x d/ð:;x; xs0Þdx and I� ¼ H��

R
1
x d/ð:;x; xs0Þdx. We have
I sðxÞ ¼
Z

Im2xcðxÞ�2ŵsðx;x; xs0ÞbU�s ðx;x; xs0Þdx; ð17Þ
obtained by solving (5), referred to as ‘‘pde” as before, and
Dþx2cðxÞ�2
h ibU�s ðx;x; xs0Þ ¼ �

1

ŵsðx;x; xs0Þ

Z
1
x0

d/ðx;x0; xs0Þdx0; ð18Þ
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referred to as ‘‘pde*” in the diagram,
ð19Þ
We note the difference in data-field flow between this diagram for reflection tomography and the diagram in (7) for inverse
scattering. Similar adjoint states equations appear in the work of Liu and Tromp [33]. Likewise,
I�ðxÞ ¼
Z

Im2xcðxÞ�2û�ðx;x; xs0ÞbU��ðx;x; xs0Þdx; ð20Þ
obtained by solving (6) and
Dþx2cðxÞ�2
h ibU��ðx;x; xs0Þ ¼ �

1
û�ðx;x; xs0Þ

Z
1
x0

d/ðx;x0; xs0Þdx0: ð21Þ
The kernel, Ks(x0,x;xs0) + K*(x0,x;xs0), viewed as a function of x for x0 fixed (expressing how a unit ‘‘data” sample at x0 contrib-
utes to the tomographic image) is computed following this scheme, upon replacing (21) by
Dþx2cðxÞ�2
h ibU��ðx;x; xs0Þ ¼ �

1
û�ðx0;x; xs0Þ

dðx� x0Þ:
3. Discretization of the Helmholtz equation

Here, we discuss an approximation of the Helmholtz equation based on a centered compact finite-difference discretiza-
tion. We treat its different appearances in the previous section jointly by considering a general right-hand side, that is,
�D�x2cðxÞ�2
h i

ûðx;xÞ ¼ ŝðx;xÞ; ð22Þ
while restricting the computations to the finite domain, X, introduced before. Thus, the original unbounded domain has been
truncated, whence the outgoing Sommerfeld radiation condition has to be approximated at @X. Though the perfect matched
layer (PML) approach (see, for example, [34,35]) could be applied, we choose, here, to use an absorbing boundary condition
(ABC, see [36]) on @X. We take the second-order one:
n � rû ¼ �ikû� i
2k

Dsû on@X; ð23Þ
with k(x) = xc(x)�1 the wavenumber, n the outward normal direction to the boundary, and s representing the boundary
components of boundary normal coordinates. For the corners of the domain, we implement a specific corner boundary
condition:
Xd

i¼1

@û
@ni
¼ �ikû d� 1

2

� �
; d ¼ 2;3: ð24Þ
A centered compact finite-difference discretization with a 2J order scheme gives:
XJ

j¼1

cd;J
1;j

h2 ðûi1�j;i2 ;...;id þ ûi1þj;i2 ;...;id Þ þ � � � þ
cd;J

d;j

h2 ðûi1 ;i2 ;...;id�j þ ûi1 ;i2 ;...;idþjÞ
" #

þ cJ

h2 �
x2

c2
i1 ;i2 ;...;id

 !
ûi1 ;i2 ;...;id ¼ ŝi1 ;i2 ;...;id ; ð25Þ
where h is the grid stepsize, 2J is the discretization order, and cd;J
k;jðk ¼ 1;2; . . . ; dÞ and cJ are the coefficients of the scheme,

which is displayed in Fig. 1 in terms of stencils. To guarantee sufficient accuracy required in seismic imaging with typical
wavefield sampling, we use a nine point, fourth (J = 2) order, finite difference scheme ([37,38]) to discretize (22)–(24).
Fig. 1(a) shows the nine point stencil that we use to discretize the Laplace operator (�D). The Helmholtz operator adds an-
other, variable, wavenumber term to the Laplacian (�D �x2c(x)�2). (Since this term is variable, the use of the classical, for
d = 2, nine point stencil the grid points of which are distributed over a 3 � 3 square, does not provide the desired fourth order
accuracy.)

The fourth order finite difference scheme described above, leads to the linear system of equations,
AðxÞu ¼ s; ð26Þ
where A(x) is a sparse complex matrix depending on the frequency, s denotes the vector of samples ûi1 ;i2 ;...;id of the source ŝ,
and u denotes the vector of samples ûi1 ;i2 ;...;id of û. Although the original Helmholtz operator is self adjoint, in view of the
absorbing boundary conditions, the A(x) is neither Hermitian nor positive definite.
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Fig. 1. Fourth-order nine point stencils for d = 2; (a) inner grid point stencil, (b) a near-boundary point stencil, and (c) a corner point stencil.
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For each fixed x, the system needs to be solved for multiple right-hand sides, s. For different x, the matrix A(x) main-
tains the same nonzero pattern. Thus, a robust and efficient direct factorization of A(x) can be attractive. A direct method
typically involves four stages [39,40]: Node ordering, symbolic factorization, numerical factorization, and solution. The first
and second stages only need to be done once for all frequencies, sources, and receivers. The third stage needs to be done once
for each frequency. However, direct solvers are often considered expensive because of the problems of fill-in or loss of
sparsity.

Here, we use a recently developed robust approximate structured factorization method [2,3,41]. The main idea of the sol-
ver is to fully integrate graph-based sparse matrix techniques, structured matrix compressions, and robust enhancements.
The dense fill-in will be approximated by structured matrices and are thus data sparse. Dense off-diagonal blocks are com-
pressed in the direct factorization of the matrix. These compressions improve both the efficiency and the robustness. The
approximate factorization can be carried out to any specified accuracy. Moreover, the factorization appears to be relatively
insensitive to frequency, or wavelength, in various test problems using the elasticity, Helmholtz, and Maxwell equations
[2,3].

Since the current robust structured solver in [2] is designed for symmetric positive definite matrices, we consider the fol-
lowing normal system for (26):
MðxÞu ¼ b; ð27Þ
where M(x) = A(x)HA(x) and b = A(x)Hs. Matrix A(x) is sparse, and it is not expensive to form (27). It is well known that, in
Helmholtz equation problems, the condition number of this M(x) becomes very large for high frequencies. However, we will
demonstrate in the next section that our new Helmholtz solver remains numerically stable, which is rarely the case in iter-
ative methods. In addition, M(x) will be denser than A(x). Both A(x) and M(x) have order N = nd, and their half bandwidths
are Jnd�1 and 2Jnd�1, respectively, with J = 2. On the other hand, our structured solver remains efficient.

4. Robust and efficient solution of the discretized system

In this section, we briefly review the structured solver in [2] specifically for solving (27).

4.1. Nested dissection ordering

During the factorization of M, new nonzero entries will be introduced into the factors which causes fill-in. The ordering of
the mesh points can highly affect the fill-in and thus the performance of the factorization. For 2D problems, the nested dis-
section ordering [42] and its generalizations enable O(N3/2) complexity factorizations with O(NlogN) storage which are opti-
mal in exact arithmetic, in general [43].

Without loss of generality, assume the mesh is regular and with size n � n, where n ¼
ffiffiffiffi
N
p

(M is thus N � N). Nested dis-
section recursively divides the mesh into subregions with separators. At the first level, a separator divides the entire grid into
three pieces, including two subregions and the separator itself. The two subregions are further divided recursively. See Fig. 2.
Lower level separators and mesh points are ordered before upper level ones. After reordering, the matrix looks like the one in
Fig. 3. Later, we assume M is already reordered by nested dissection. During the factorization of M, the elimination of a mesh
point mutually connects points which are previously connected to it. This creates fill-in. Thus, in standard factorization of M,
its factor is generally much denser.

4.2. Supernodal multifrontal method

The factorization of M is organized by the multifrontal method [44,45]. The basic idea of the method is to reorganize the
overall factorization of a large sparse matrix into partial updates and factorizations of small dense matrices. The method
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Fig. 3. Block form of M corresponding to the third graph of Fig. 2 after nested dissection ordering of the rows and columns.
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eliminates variables and accumulates updates according to an assembly tree [46–49] where each variable (or matrix row or
column) corresponds to a node in the elimination tree.

Here we use a supernodal version, that is, each separator in nested dissection is treated as a supernode in the assembly
tree. See Fig. 4 for an example. Variables are eliminated along the postordering of the assembly tree. Information from a child
tree node is passed to its parent only. Two types of matrices are considered in the multifrontal method: update matrices, cor-
responding to the information contributed to parents, and frontal matrices, corresponding to the collection of information of
nodes themselves and related upper level nodes. Update matrices from children are assembled into frontal matrices with an
operation called extend-add, which aligns indices, expands matrices, and adds entries.

The multifrontal method is a powerful tool for solving large sparse linear systems [50,51], and has been widely used in
numerical methods for partial differential equations, optimization, fluid dynamics, and other areas. It takes good advantage
of dense block matrix operations in factorizing sparse problems, and is also good for parallelization.

4.3. Rank property and robust structured factorization

It has been shown that during the factorization of the discretized matrices arising from some problems such as elliptic
partial differential equations, the off-diagonal of certain Schur complements have bounded numerical ranks independent
of mesh sizes [52–54]. (A numerical rank is the number of singular values greater than a given absolute tolerance or a rel-
ative tolerance times the largest singular value.) The Green’s functions for these problems are smooth away from the diag-
onal singularity. In the factorization of M, we notice that the frontal and update matrices in the supernodal multifrontal
1 2 4 5 8 9 11 12

3 6 10 13
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15
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0
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14

Fig. 4. Elimination tree for the third graph in Fig. 2.
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method also have relatively small off-diagonal numerical ranks. This means, the dense frontal and update matrices are com-
pressible. Thus, the method in [2] forms each dense frontal matrix first and then partially factorize it. The leading block is
directly factorized into triangular structured factors. The Schur complement remains dense and is used to form the upper
level frontal matrix. The solver can still perform well even if the off-diagonal numerical ranks are not extremely small.
See [2,3] for some numerical examples.

The solver in [2] integrates a robustness technique using an implicit Schur compensation. During this factorization, off-
diagonal blocks are compressed to increase efficiency. In the meantime, the Schur complements are automatically compen-
sated with the information dropped in the compression. No extra cost or stabilization step is needed.

The structured matrices used in the solver are called hierarchically semiseparable (HSS) matrices [55–57]. Fig. 5 shows an
example. An off-diagonal block of an HSS structure is defined to be a block row (column) excluding the diagonal block. Off-
diagonal blocks are defined recursively for all levels of the partition of the matrix. These off-diagonal blocks are compressed
and the compressed representations actually appear in the HSS representation. If the maximum numerical rank of the off-
diagonal blocks at all levels is small as compared with the matrix size, we say the matrix has a low-rank property. For HSS
matrices with the low-rank property, standard matrix operations such as matrix multiplication, system solution, etc. can be
done efficiently in nearly linear time [55–57].

As an example, for the discretized matrix M in our problem, we consider a frontal matrix H corresponding to the top level
separator in nested dissection. For different frequencies and different tolerances in the approximation, the maximum off-
diagonal numerical ranks for H are given in Table 1.

After applying the structured factorization algorithm in [2] to M, we obtain an approximate triangular factor L which is struc-
tured. Fig. 6 shows an example with 3 blocks. A traditional factorization generates a factor which is much denser than the ori-
ginal matrix. On the other hand, the structured factorization in [2] gives a data-sparse factor in compressed form.
4.4. Efficiency, robustness, and frequency insensitivity

The algorithm in [2] works as a black-box solver. For d = 2, it costs O(rNlogN) flops to approximately factorize M, where r
is the maximum numerical rank in all off-diagonal block compressions. The storage requirement is O(Nlog (rlogN)). The cost
Fig. 5. A Pictorial representation of an HSS matrix showing its partition and the compressed form of the off-diagonal blocks.

Table 1
Maximum off-diagonal numerical ranks of an order 2204 frontal matrix in the supernodal multifrontal method for our problem with different relative
tolerances s.

s 10�1 10�2 10�4 10�6 10�8 10�10 10�12

x
2p 10 29 45 64 90 136 164 182

20 29 46 67 139 196 233 254
30 29 46 79 199 272 313 329
40 29 46 122 269 368 389 404

1

2

3

2

3

1 1

2

3

Leading blocks in Figure 3 Traditional factor Structured approximate factor

Fig. 6. A matrix after nested dissection ordering, its traditional factor, and its approximate structured factor.



Table 2
Statistics of solving (27) on a 1001 � 551 mesh with different frequencies (from the lens model example described in Sub Section 5.4) which shows the
frequency insensitivity of the structured solver in [2].

x
2p 5 10 20 30 40

Factorization cost (�1011 flops) 2.931 2.957 3.305 3.146 3.290
Solution (�109 flops) 1.468 1.511 1.625 1.766 1.922
Storage (�109) 2.583 2.719 3.081 3.528 4.038
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for solving (27) using the approximate factor is O(Nlog (rlogN)) flops. The parameter r depends on the tolerance and is rel-
atively small as compared to N especially when only modest accuracy is desired. Thus, the storage and solution cost are
nearly linear in N.

Due to the robustness technique, the approximate factorization LLT is guaranteed to exist for any tolerance. LLT has en-
hanced positive definiteness and no breakdown will occur like in many other approximate or incomplete factorizations.

Unlike methods such as multigrid where coarse mesh information is used to approximate fine meshes, this structured
factorization uses a reasonable amount of information at all mesh points to approximate the exact matrix. Our numerical
tests indicate that the factorization is relatively insensitive to a large range of frequencies, which is different from many
other algorithms that are not numerically stable in high frequencies. Table 2 shows the complexity and storage for solving
(27) with different x for a fixed mesh.
5. Numerical tests

5.1. Algorithm summary

We use the approximate factorization algorithm in [2] to directly solve (27) for different frequencies, sources, and receiv-
ers. The overall procedure is as follows, in contrast with the standard sparse direct solution process in [39,40].

1. Node ordering. Use nested dissection to order mesh points. Organize mesh points into separators. This is done once for all x.
2. Symbolic factorization. Approximately predict fill-in and storage for HSS matrices based on numerical rank estimation

with given tolerances. Decide optimal total factorization levels and structured factorization levels. When only modest
accuracy is desired, this also only needs to be done once for all x.

3. Numerical factorization. For each x, factorize M once. Separators are eliminated with the supernodal multifrontal method.
Each current separator is eliminated, or dense frontal matrices are partially factorized into HSS factors. Schur comple-
ments or update matrices are formed. Structured factors are generated following the assembly tree.

4. System solution. Use the structured factors to solve the system for each s. Traverse the assembly tree to solve the overall
system. Solve intermediate structured systems with triangular HSS solvers.

Since the complexity for the solution step is almost linear in N, we can also include few steps of iterative refinements or
CG iterations to further improve the solution.

Based on the cost of the structured solver in the previous section, we have the complexity for solving all the systems as
shown in Table 3. For comparison, we also included the cost for the classical multifrontal direct factorization with nested
dissection whose cost is optimal for exact factorizations for 2D problems. The structured approximate solver with modest
accuracy is generally much faster than both the classical direct factorization and the multilevel Krylov-multigrid method
(MKMG)[58]. The structured solver for d = 3 in Table 3 is still in progress, and its complexity is derived based on a prelimin-
ary version without robustness enhancement. We expect to obtain a similar complexity count when robustness enhance-
ment is integrated.

5.2. Accuracy tests

In this subsection, we verify that our discretization scheme does achieve a fourth-order accuracy. We conducted our test in a
1000 m � 1000 m homogeneous medium with wavespeed 1500 m/s at a fixed relatively high frequency, x

2p ¼ 30 Hz. We take
Table 3
Complexity comparison of the multilevel Krylov-multigrid method (MKMG)[58], classical direct factorization with nested dissection ordering, and the new
structured approximate factorization with nested dissection, where nf is the number of frequencies, ns is the number of sources, nit is the number of iterations
for convergence (usually quite large in high frequencies), and nd(=N) is the matrix size.

Algorithm Complexity

d = 2 d = 3

Multilevel Krylov-multigrid method nfnsnitO(n2) nfnsnitO(n3)
Classical direct factorization nf[O(n3) + nsO(n2logn)] nf[O(n6) + nsO(n4)]
Structured approximate factorization nf[O(rn2logn) + ns O(n2log (rlogn))] nf[O(rn3) + nsO(n3)]
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step sizes h according to h = 10 m, 5 m, 2.5 m, 1.25 m, 0.625 m. We use the solution computed in the finest mesh (h = 0.625 m) as
our reference and calculate relative residuals for the four coarser meshes. The results are listed in Table 4 and illustrated in Fig. 7.
We observe, for example, an accuracy of 3 digits at a sampling rate of 10 points per (minimum) wavelength.
5.3. Performance tests for linear system solutions

Here, we demonstrate the complexity and storage of the structured approximate solver for problems with dimension
d = 2. (Numerical results for d = 3 are expected to appear in future work.) For M with different sizes, the costs and storage
are listed in Table 5. Every time the mesh dimension n doubles, the matrix size quadruples, and the cost and storage of
the method increase. The ratios of increase in the solution cost and storage reduce for large n and approach 4, which indi-
cates nearly linear solution cost and storage. The ratio of increase in the factorization cost reduces slower, but is also ex-
pected to be close to 4 when n is sufficiently large.

We also compare this structured factorization with the classical multifrontal direct factorization. See Table 6 and
Figs. 8–10. When N quadruples, the factorization cost increases with a factor close to 8, especially when n is large.
Clearly, although the classical factorization has optimal complexity for 2D problems, it is still not practical for large
problems.
Table 4
Statistics of fourth order accuracy test on a 1000 m � 1000 m model with wavespeed 1500 m/s at fixed frequency 30 Hz from coarser to finer meshes.

Mesh step size h(m) 10 5 2.5 1.25

Grid points per wavelength 5 10 20 40
Relative error (�10�4) 141.45 8.67 0.51 0.03
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Fig. 7. Computational test of fourth order numerical accuracy in step size.

Table 5
Computational costs and storage for the approximate structured direct solver with relative tolerance s = 10�6 and x

2p ¼ 30 Hz.

Mesh dimension n 128 256 512 1024 4096

Factorization cost (flops) 2.25E9 1.47E10 9.77E10 6.33E11 3.77E12
Solution cost (flops) 1.92E7 8.95E7 4.12E8 1.78E9 7.40E9
Storage 8.69E6 3.41E7 1.43E8 5.94E8 2.33E9

Table 6
Computational costs and storage for the classical multifrontal direct factorization with x

2p ¼ 30 Hz.

Mesh dimension n 128 256 512 1024 4096

Factorization cost (flops) 2.22E9 1.81E10 1.44E11 1.21E12 8.98E12
Solution cost (flops) 1.97E7 1.03E8 5.06E8 2.46E9 1.10E10
Storage 9.21E6 4.58E7 2.14E8 1.00E9 4.27E9
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Fig. 11. Original model, containing a low velocity lens (background) and a horizontal reflector (contrast) at a depth of 2 km. The model is sampled on a
Cartesian grid with a 5 m stepsize.

Fig. 12. The reflectivity r(x) = dc(x)/c(x) of the lens velocity model displayed in Fig. 11.

Fig. 13. Snapshot (early time) of an incident wavefield using the model illustrated in Fig. 11; the location of the source is indicated by the solid triangle. The
frequency bandwidth is 5–40 Hz.

Fig. 14. Snapshot (later time) of the linearized scattered field using the model illustrated in Fig. 11; the location of the source is indicated by the solid
triangle. The frequency bandwidth is 5–40 Hz.
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5.4. Example: Lens model

Using the structured approximate direct solver for the discrete Helmholtz equation, we illustrate, in dimension d = 2, the
different components that make up the inverse scattering program presented in Section 2. Throughout, the spatial sampling
rate has been set to 10 points per minimum wave length. The original model, shown in Fig. 11, consists of a smooth low
Fig. 15. Image of the reflector in Fig. 11, or inverse scattering gradient, using all the data (multi-source adjoint states computation.)

Fig. 16. Top: Single-source image (adjoint states computation using common source data), or inverse scattering gradient, with xs0 = (�1.98,0) km indicated
by the solid triangle. Middle: Single-source image obtained after applying a pseudo-differential cutoff removing constituents corresponding with scattering
over p; the low-frequency artifact has disappeared. Bottom left: Single-source reconstruction; we note the reduction of limited illumination effects. Bottom
right: Reconstructed (left) and imaged (right) regularizations of r below the surface location x = (�0.1,0) km (with the source at xs0 = (�1.98,0) km); we note
that the reconstruction is close zero phase. The incident field does not develop caustics.
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wavespeed lens (c) and a flat discontinuity (r), which is displayed in Fig. 12. Using this model, we generated a multi-source
synthetic data set.

We begin with illustrating the incident (ws) and linearized scattered (dG) fields; snapshots are shown in Fig. 13 (incident)
and Fig. 14 (linearized scattered). We note the formation of caustics due to the presence of the lens. An image, that is, the
inverse scattering gradient (initial iteration, with r 	 0), using the multi-source synthetic data and the lens (c) as background,
is plotted in Fig. 15.

We focus then on images generated from single source data, that is, common-source subsets of the full synthetic data set.
If the source position is such that the incident field does not form caustics, the image is artifact-free (Fig. 16 middle); if the
incident field does form caustics, the image contains artifacts (Fig. 18) due to violation of the Bolker condition. Also, in Fig. 16
top we show the generation of artifacts from wave constituents corresponding with scattering over p.

The inverse scattering transform yields a direct estimate of r in Fig. 16 bottom, using the single source data used to gen-
erate the image of r in Fig. 16 middle. We show the functions representing the reconstructed and imaged regularizations of r
below a central surface location.

In Fig. 17, we generate a shot record associated with the source xs0 = (�1.98,0) km to further investigate the artifacts due
to the scattering over p.

The anatomy of the inverse scattering gradient is best illustrated by the associated finite-frequency isochrons. We choose
two different data points, all asymptotically corresponding with reflections off the flat discontinuity in the original model,
Fig. 17. Top left: shot record (generated by the Helmholtz solver) corresponding with the source xs0 = (�1.98,0) km; note the occurrence of a caustic
shadow (indicated by an arrow) associated with turning rays (representing scattering over p). Top right: travel time curve showing the (tip) of the cusped
caustic. Bottom: geometrical rays showing the turning rays and the caustic. The triangle indicates the receiver nearest the source where a turning ray
reaches the (acquisition) surface.

Fig. 18. Single-source image (adjoint states computation using common source data), or inverse scattering gradient, with xs0 = (0,0) km indicated by the
solid triangle. The incident field develops caustics, and, hence, the image contains artifacts.
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see Figs. 19 and 20; for comparison, we also plot the singular supports derived from (high frequency) asymptotic consider-
ations. The image of the discontinuity follows the envelope of such isochrons.

Finally, we illustrate the gradient for wave-equation reflection tomography (final iteration), using single-source data. The
associated kernel, for image point x0 (and xs0) fixed, is shown in Fig. 21. We choose x0 to lie on the discontinuity and super-
impose an associated finite-frequency isochron. High frequency asymptotic considerations lead to the (broken) ray geomet-
rical counterpart of the finite frequency reflection tomography kernel, which can still be recognized in Fig. 21.
Fig. 19. Top: finite-frequency isochron, or kernel of the inverse scattering gradient, for xr0 = (0,0) km, t0 = 4.486 s and xs0 = (�1.98,0) km. Bottom: singular
support obtained by methods of geometrical acoustics.

Fig. 20. Top: finite-frequency isochron, or kernel of the inverse scattering gradient, for xr0 = (1.5,0) km, t0 = 5.082 s and xs0 = (�1,0) km. Bottom: singular
support obtained by methods of geometrical acoustics.



Fig. 21. Kernel of the reflection tomography gradient (xs0 = (�1,0) km, x0 = (0.38,2) km), superimposed on the kernel of an inverse scattering gradient
(xr0 = (1,0) km and t0 = 4.932 s), illustrating their interplay of sensitivities in the inverse scattering program.
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6. Conclusions

We presented a joint acoustic/seismic inverse scattering and finite-frequency (reflection) tomography program, formu-
lated as a coupled set of optimization problems, in terms of inhomogeneous Helmholtz equations. We used a higher
(fourth-) order finite difference scheme for these Helmholtz equations to guarantee 3 digits of accuracy at a sampling rate
of 10 points per minimum wave length. We applied the second-order absorbing boundary condition, and subjected it to a
finite difference approximation of the same order. This yields no complication, since our solution approach does not use
the explicit structure of the coefficient matrix defining the resulting system of algebraic equations. The overall complexity
for computing the gradients or images in our optimization problems has two parts, viz., the cost for all the matrix factoriza-
tions which is roughly OðrNÞ (for example OðrN log NÞwhen d = 2) times the number of frequencies, and the cost for all solu-
tions by substitution which is roughly OðNÞ (for example OðN logðr log NÞÞ when d = 2) times the number of frequencies
times the number of sources, where N = nd if n is the number of grid samples in any direction. With this complexity, the mul-
ti-frequency approach to inverse scattering and finite-frequency tomography becomes computationally feasible for dimen-
sions d = 2 and 3.
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