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SUPERFAST DIVIDE-AND-CONQUER METHOD
AND PERTURBATION ANALYSIS

FOR STRUCTURED EIGENVALUE SOLUTIONS∗
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Abstract. We present a superfast divide-and-conquer method for finding all the eigenvalues as
well as all the eigenvectors (in a structured form) of a class of symmetric matrices with off-diagonal
ranks or numerical ranks bounded by r, as well as the approximation accuracy of the eigenvalues due
to off-diagonal compression. More specifically, the complexity is O(r2n logn) + O(rn log2 n), where
n is the order of the matrix. Such matrices are often encountered in practical computations with
banded matrices, Toeplitz matrices (in Fourier space), and certain discretized problems. They can
be represented or approximated by hierarchically semiseparable (HSS) matrices. We show how to
preserve the HSS structure throughout the dividing process that involves recursive updates and how
to quickly perform stable eigendecompositions of the structured forms. Various other numerical issues
are discussed, such as computation reuse and deflation. The structure of the eigenvector matrix is
also shown. We further analyze the structured perturbation, i.e., how compression of the off-diagonal
blocks impacts the accuracy of the eigenvalues. They show that rank structured methods can serve
as an effective and efficient tool for approximate eigenvalue solutions with controllable accuracy. The
algorithm and analysis are very useful for finding the eigendecomposition of matrices arising from
some important applications and can be modified to find SVDs of nonsymmetric matrices. The
efficiency and accuracy are illustrated in terms of Toeplitz and discretized matrices. Our method
requires significantly fewer operations than a recent structured eigensolver, by nearly an order of
magnitude.
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1. Introduction. In this paper, we consider the eigenvalue decomposition of an
n× n Hermitian matrix A:

(1.1) A = QΛQ∗,

where A is rank structured, i.e., A has off-diagonal ranks or numerical ranks bounded
by r, Q is the eigenmatrix or matrix of eigenvectors, and Λ is a diagonal matrix
for the eigenvalues λi. Here, r may be a constant or may even depend on n, e.g.,
in the form of a low order power of log n. Such matrices A have been frequently
encountered in structured matrix computations in recent years. Examples include
banded matrices, certain discretized kernel functions, Schur complements in the direct
factorizations of some discretized PDEs, Toeplitz matrices in Fourier space [13, 33],
and some other types of structured matrices (Toeplitz-like, Hankel, and Hankel-like)
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after transformations of structures via displacement equations [18, 22, 26, 30, 35].
Effective structured representations have been proposed for such problems, such as
quasi-separable, sequentially semiseparable, hierarchically semiseparable (HSS), and
hierarchical matrices [5, 9, 12, 17, 24, 45]. Here for convenience, assume A is real and
is in an HSS form or can be approximated by one.

Existing work on such structured matrices is usually concerned with the fast
solutions of linear systems. In particular, many fast direct solvers have been devel-
oped. For eigenvalue problems, most work focuses on iterative solutions. Structured
QR iterations for special matrices such as companion forms are studied by many re-
searchers. For symmetric HSS forms, fast iterative methods based on bisection have
been designed recently [3, 41]. They cost about O(n2) flops to find all the eigenval-
ues. Additional costs are needed to extract the eigenvectors. Moreover, it is not clear
previously how the HSS approximation affects the accuracy of the eigenvalues.

Here, we focus on the direct eigendecomposition of symmetric HSS matrices using
the divide-and-conquer (DC) method. We also study the impact of the off-diagonal
compression on the accuracy of the eigenvalues when a matrix is approximated by an
HSS form.

1.1. Brief review of the tridiagonal DC method. In dense symmetric eigen-
value solutions, a typical approach is to first reduce a matrix to a tridiagonal form
through orthogonal transformations. DC is a very efficient scheme for finding all the
eigenvalues of a symmetric tridiagonal form. The scheme was first introduced by Cup-
pen in [14], built upon several previous results for a rank-1 update to the symmetric
eigenvalue problem [6, 19, 39]. The basic idea is to recursively divide a tridiagonal
matrix into a block diagonal form plus a rank-1 update as follows:

T =


a1 b1

b1
. . .

. . .

. . . an−1 bn−1

bn−1 an

 =


T̃1

T̃2

+


0

β β
β β

0


≡
(
T̃1

T̃2

)
+ βzzT .

Suppose T̃j = Q̃jΛ̃jQ̃
T
j is the eigendecomposition of T̃j for j = 1, 2, as obtained by

recursion. Then

T =

(
Q̃1

Q̃2

)(
Λ̃1

Λ̃2

)(
Q̃T1

Q̃T2

)
+ βzzT

= diag(Q̃1, Q̃2)(Λ̃ + βvvT ) diag(Q̃T1 , Q̃
T
2 ),

where Λ̃ = diag(Λ̃1, Λ̃2) denotes a block diagonal matrix with diagonal blocks Λ̃1, Λ̃2

and with diagonal entries λ̃i, i = 1, . . . , n, and v = diag(Q̃T1 , Q̃
T
2 )z.

It is known that solving for all the eigenvalues λi of Λ̃ + βvvT is equivalent to

finding all the zeros of the secular equation f(λ) = 1 − β
∑n
j=1

v2j
λ̃j−λ

= 0 [19]. The

eigenvectors qi of Λ̃ + βvvT also take a simple form: qi = (Λ̃ − λiI)−1v. Computing
all the eigenvectors explicitly is an O(n2) complexity operation, so the eigenmatrix is
seldom formed explicitly in efficient implementations of the DC algorithm.

Cuppen’s algorithm is later shown to suffer from instability [37], and while faster
than many previous methods, it still has O(n2) complexity for finding all the eigen-
values and O(n3) for all the eigenvectors. It is nonetheless of great theoretical and
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historical importance. A more efficient and stable DC scheme is proposed by Gu
and Eisenstat in [23]. They resolve the stability issue by solving for the eigenvectors
of a perturbed eigenvalue problem. The overall complexity for finding all the eigen-
values and eigenvectors is reduced to O(n2), with the potential to be accelerated to
O(n logp n) by the fast multipole method (FMM) [8, 21], where p is a small integer.
It should be noted that the algorithm in [4] can already extract all the eigenvalues of
T in nearly linear complexity and optimal parallel performance without using FMM.

More recently, Gu and Eisenstat’s algorithm was extended to symmetric block
diagonal plus semiseparable matrices (with off-diagonal rank 1) in [10]. For this case,
the efficiency relies entirely on rank structures instead of sparsity patterns. The
method also costs O(n2) for finding all the eigenvalues and eigenvectors, similarly
with the potential to be accelerated by FMM.

1.2. Main contributions. This work focuses on two major aspects:
1. The design of a structured DC algorithm for a more general class of prob-

lems, i.e., symmetric and possibly dense matrices A with off-diagonal ranks
or numerical ranks bounded by r, and the achievement of O(r2n log n) +
O(rn log2 n) complexity for finding all the eigenvalues and all the eigenvec-
tors (in a structured form).

2. The structured perturbation analysis, i.e., the study of the approximation
accuracy of the eigenvalues when hierarchical rank structures are used to
approximate the original matrix, and the justification of the effectiveness and
reliability of such structured methods for fast eigenvalue solution.

The first contribution is to generalize the algorithms in [23] and [10] to problems
that can be represented or approximated by HSS forms. The matrices in [23] and [10]
can be considered as special cases of ours with r = 1. To our knowledge, even for
such special cases, the FMM acceleration is not actually implemented or verified in
[10, 23].

To apply DC to a symmetric HSS matrix A, there are some major differences
from the tridiagonal case. For the tridiagonal case, the dividing stage is straight-
forward due to the sparsity. For the HSS case, which is usually dense, an obvious
strategy would result in a block diagonal form plus a rank-2r update. Here instead,
we design a scheme to write A as a block diagonal matrix plus a rank-r update. The
diagonal blocks are updated recursively. Special care is taken to preserve the HSS
structures of the diagonal blocks throughout the recursive division. Strategies for
reusing computations are shown. In the conquering stage, a strategy similar to the
tridiagonal case is used, but by multiple times. Moreover, we use FMM to accelerate
all the major computations. They include the solution of the secular equations for
the eigenvalues, the stable computation of the eigenvectors, the normalization of the
eigenvectors, and the multiplication of the intermediate eigenmatrices and vectors.
Furthermore, deflation is also incorporated into the structured algorithm.

After the DC algorithm, we obtain all the eigenvalues, as well as the eigenmatrix
Q in (1.1) represented by a sequence of structured intermediate eigenmatrices. Such
eigenmatrices appear as block diagonal forms with Cauchy-like and/or Householder
diagonal blocks. Each intermediate eigenmatrix is thus defined by few vectors that
can be conveniently used in a tree scheme to quickly compute the product of Q and
vectors. The rank structure of Q is also mentioned. In fact, Q has off-diagonal
numerical ranks at most O(r log2 n).

The algorithm is applicable to general symmetric HSS problems and further has
O(r2n log n) +O(rn log2 n) complexity for finding the structured eigendecomposition



SUPERFAST DIVIDE-AND-CONQUER A1361

(1.1). This is significantly lower than those of the hierarchical/HSS eigensolvers in
[3, 41], by almost an order of magnitude. The cost to apply the eigenmatrix Q to
a vector is O(rn log n). The algorithm is thus said to be superfast, following the
terminology in [15, section 5.3]. The storage for Q is O(rn log n).

Our second contribution is to further analyze the structured perturbation or ap-
proximation accuracy of the eigenvalues due to off-diagonal compression. We show
that the impact of off-diagonal compression on the accuracy of the eigenvalues can be
well controlled, even if such compression is hierarchical as needed in HSS and other hi-
erarchical structured methods. The results can be viewed as structured perturbation
analysis that extends the traditional studies. The tightness of an HSS approximation
error bound is shown. For some cases, we also discuss the potential to accurately
compute some eigenvalues even if the off-diagonal approximation accuracy is not very
high.

All the analysis confirms that our structured DC method can indeed serve as an
effective tool for finding the eigenvalues of problems with small off-diagonal ranks
or numerical ranks. Its significance lies in both the efficiency and the reliability.
Thus, it is also natural to approximate more general matrices (with high off-diagonal
ranks) by low-accuracy HSS forms, so as to use our method to roughly estimate the
eigenvalues and their distribution. This is very useful in preconditioning. The method
and analysis can also be modified for the computation of SVDs of nonsymmetric HSS
matrices.

We show the complexity, storage, and accuracy for some useful applications, in-
cluding Toeplitz matrices and discretized problems. As compared with the symmetric
HSS eigensolver in [41], our DC method needs significantly fewer operations for even
relatively small n. In a test for a discretized matrix with n = 4000 (Table 5), the cost
of the new method is already over 23 times lower than that of the eigensolver in [41].
Satisfactory eigenvalue accuracy and eigenvector orthogonality are also achieved. As
expected, the accuracy is controlled by the approximation tolerance.

The remaining sections are organized as follows. Section 2 presents the superfast
DC method, including the major steps and how they generalize from the tridiagonal
case. The algorithm, its complete complexity analysis, and some applications are
discussed in section 3. The approximation error analysis for the eigenvalues due to
off-diagonal compression is presented in section 4, followed by tests for the efficiency
and accuracy in section 5. We give some concluding remarks in section 6.

Throughout the paper, we use the following notation:
• for a matrix A and two index sets I and J, we use A|I×J to denote a submatrix

of A selected by the row index set I and the column index set J;
• diag(ai|ni=1) or diag(ai, i = 1, 2, . . . , ) represents a diagonal matrix with diag-

onal entries a1, a2, . . ., and it represents a block diagonal matrix if ai’s are
matrices;

• for a postordered full binary tree T , we label its nodes as

(1.2) i = 1, 2, . . . ,k ≡ root(T ),

where root(T ) represents the root;
• for each node i 6= root(T ) of T , par(i) denotes its parent and sib(i) denotes

its sibling.

2. Superfast divide-and-conquer method. In this section, we detail our al-
gorithm for computing the eigendecomposition (1.1). In the algorithm presentation,
we suppose A is already in an HSS form. How such an HSS form is obtained will be



A1362 VOGEL, XIA, CAULEY, AND BALAKRISHNAN

discussed in section 3.2, and the impact of the approximation on the accuracy of the
eigenvalues will be shown in section 4.

Before reviewing the formal definition of an HSS matrix, we give a simple example
of a block 4×4 symmetric HSS matrix that corresponds to a tree (called an HSS tree)
with 7 nodes (see Figure 1):

A ≡ D7 =

(
D3 U3B3U

T
6

U6B
T
3 U

T
3 D6

)
, U3 =

(
U1R1

U2R2

)
, U6 =

(
U4R4

U5R5

)
,

(2.1)

D3 =

(
D1 U1B1U

T
2

U2B
T
1 U

T
1 D2

)
, D6 =

(
D4 U4B4U

T
5

U5B
T
4 U

T
4 D5

)
.(2.2)

The matrix is defined via two levels of recursions, matching the two levels of parent-
child relationship among the nodes in Figure 1. The D matrices are the diagonal
blocks, and the U matrices are the off-diagonal basis matrices (where we assume each
U has full column rank).

7

1 2 4 5

63

7

1 2 4 5

63

Fig. 1. Two levels of HSS tree nodes (marked in gray) corresponding to (2.1) and (2.2),
respectively.

More generally, an n × n symmetric HSS matrix A is defined as follows [12, 45].
Let T be a postordered full binary tree with k nodes as introduced in (1.2). Each node
i corresponds to a contiguous index set ti ⊂ {1 : n} that satisfies tk ≡ {1 : n} and
ti = tc1 ∪ tc2 , tc1 ∩ tc2 = ∅ for a nonleaf node i with children c1 and c2 (c1 < c2 < i).
(Figure 1 above and Figure 2 later can assist in the understanding of this.) The
matrix A is in a symmetric HSS form if there exist matrices Di, Ui, Ri, Bi (called
generators) associated with i, such that

A|ti×ti ≡ Di =

(
Dc1

Uc1
Bc1

UTc2

Uc2B
T
c1
UTc1

Dc2

)
,(2.3)

Ui =

(
Uc1

Uc2

)(
Rc1

Rc2

)
.(2.4)

T is called an HSS tree. Clearly, Ui is a column basis matrix of the off-diagonal block
A|ti×(tk\ti). It is usually said to be a nested basis (matrix) due to (2.4).

For notational convenience, we make the following assumptions:
• c1 and c2 denote the left and right children of a nonleaf node i of T , respec-

tively;
• the rank of each off-diagonal block Uc1Bc1U

T
c2

is (bounded by) r; more specif-
ically, the order of Bc1

is (bounded by) r;
In our superfast DC method, the HSS matrix is recursively divided and updated.

The eigenvalues and eigenvectors are computed thereafter by recursion, with the major
computations accelerated by FMM.

2.1. Dividing the HSS matrix. In the “dividing” stage, we recursively write
the HSS matrix A as the sum of a block diagonal matrix (with two HSS diagonal
blocks) and a rank-r update.
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2.1.1. General procedure. Let i be a nonleaf node of T , and DC is applied to
Di. If i = k, then this is to divide the entire matrix A. It is clear that we can rewrite
(2.3) in the following form:

Di =

(
Dc1

Dc2

)
+

(
Uc1

Uc2

)(
Bc1

BTc1

)(
UTc1

UTc2

)
.

If we further compute an eigendecomposition of

(
Bc1

BTc1

)
, this would result in

a rank-2r update to diag(Dc1
, Dc2

). However, it turns out that we can write a more
compact low-rank update instead:

Di = diag(D̃c1 , D̃c2) + ZiZ
T
i with(2.5)

D̃c1
= Dc1

− Uc1
UTc1

, D̃c2
= Dc2

− Uc2
BTc1

Bc1
UTc2

, Zi =

(
Uc1

Uc2
BTc1

)
.(2.6)

(Here for consistency, BTc1
is associated with Uc2

for all such updates.) That is, by

modifying the diagonal blocks, we can write Di as a rank-r update to diag(D̃c1 , D̃c2).
Note that this is preferable, since the diagonal blocks can be quickly updated with
our scheme below. Furthermore, the later conquering stage is usually a much more
expensive process, and a rank-2r update would cause its cost to double.

A critical issue is then to preserve the HSS structure in the dividing step (2.5)–
(2.6), so that the off-diagonal ranks of D̃c1 and D̃c2 do not increase. In fact, the
HSS forms of D̃c1

and D̃c2
can be quickly updated based on those of Dc1

and Dc2
,

respectively. This follows from the property of the nested basis Ui as in (2.4). Similar
structure updates have been previously exploited in HSS factorization and inversion
[44, 45, 46]. Here, we show how to perform the HSS update (2.6) in a more intuitive
way as follows.

Lemma 2.1. For the nested basis Ui associated with node i, let H be a square
matrix with size equal to the column size of Ui, and let i1 be the smallest descendant
of i. Then UiHU

T
i is an HSS matrix with the HSS generators D̂j, Ûj, R̂j, B̂j for j =

i1, i1 + 1, . . . , i− 1:

Ûj = Uj, R̂j = Rj,(2.7)

B̂j = Rj(Rjl · · ·Rj1)H(Rjl · · ·Rj1)TRTsib(j),(2.8)

D̂j = UjRj(Rjl · · ·Rj1)H(Rjl · · ·Rj1)TRTj U
T
j , (j: leaf),(2.9)

where j→ jl → · · · → j1 → i is the path connecting the node j to i.

Proof. The proof of (2.7) is obvious. We use induction to show (2.8)–(2.9). That
is, let Ti be the subtree of T with root i. The induction is done on the number of
levels of Ti. For convenience, the nodes are illustrated in Figure 2.

If Ti has two levels, from (2.4), we have

(2.10) UiHU
T
i =

(
Uc1(Rc1HR

T
c1

)UTc1
Uc1(Rc1HR

T
c2

)UTc2

Uc2
(Rc2

HRTc1
)UTc1

Uc2
(Rc2

HRTc2
)UTc2

)
.

Then

B̂c1
= Rc1

HRTc2
, D̂c1

= Uc1
(Rc1

HRTc1
)UTc1

, D̂c2
= Uc2

(Rc2
HRTc2

)UTc2
.
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i

i1

c1 c2

Fig. 2. Node i in the HSS tree T and its descendants j (marked in gray), whose associated HSS
generators need to be updated.

The results follow immediately.
Assume the results are true for Ti with 2, 3, . . . , l−1 levels. We show they are also

true for Ti with l levels. In fact, we still have (2.10), and Tc1
and Tc2

has l− 1 levels.
By induction, Uc1

(Rc1
HRTc1

)UTc1
is an HSS matrix with generators Dj, Uj, R̂j, B̂j for

j = i1, i1 + 1, . . . , c1 − 1, where

B̂j = Rj(Rjl · · ·Rj2)(Rc1
HRTc1

)(Rjl · · ·Rj2)TRTsib(j)

= Rj(Rjl · · ·Rj2Rc1
)H(Rjl · · ·Rj2Rc1

)TRTsib(j).

This gives (2.8), since c1 = j1 is the child of i that is in the path from j to i. Similarly,
we get (2.9).

Analogously, applying induction to Uc2
(Rc2

HRTc2
)UTc2

yields (2.8)–(2.9) for j =

c1 + 1, c1 + 2, . . . , c2 − 1. For the node j = c1, (2.8) obviously holds since B̂c1 =
Rc1HR

T
c2

. To summarize, the results hold for all j = i1, i1 + 1, . . . , i− 1.

Thus, by setting i ≡ k in Lemma 2.1, we can see that UkHU
T
k and A have the

same U,R generators or are said to share common nested off-diagonal bases. For such
matrices, it is convenient to verify the following result.

Lemma 2.2. Assume two conformably partitioned symmetric HSS matrices A and
C have the same U,R generators, and the off-diagonal ranks of A and C are bounded
by r. Then A ± C can be written as an HSS form with the same U,R generators as
those of A and C, and with the D and B generators respectively added or subtracted.
Moreover, the off-diagonal ranks of A± C are bounded by r.

Combining the results in the two lemmas, we have the following theorem for the
fast HSS update in the dividing stage.

Theorem 2.3. Use the same notation as in Lemmas 2.1 and 2.2 and set i = k.
The matrix A−UkHU

T
k has the same U,R generators as A, and its D,B generators

can be obtained via the following updates:

Bj ← Bj −Rj(Rjl · · ·Rj1)H(Rjl · · ·Rj1)TRTsib(j),(2.11)

Dj ← Dj − UjRj(Rjl · · ·Rj1)H(Rjl · · ·Rj1)TRTj U
T
j (j : leaf),(2.12)

and the off-diagonal ranks of A− UkHU
T
k are bounded by r.

This process involves the updates of the generators associated with all the de-
scendants j of i. In the dividing process, H is determined based on whether the above
process is applied to the left or the right child branch in (2.6). Setting i to be c1 and
H to be I gives the HSS structure of D̃c1 . Setting i to be c2 and H to be BTc1

Bc1
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gives the HSS structure of D̃c2
. The dividing procedure can then be recursively ap-

plied to D̃c1
and D̃c2

. Theorem 2.3 guarantees that the HSS structures are preserved
throughout the recursive dividing procedure.

2.1.2. An example. As a simple example, consider the block 4× 4 symmetric
matrix given in (2.1) and (2.2). At the first level, the dividing scheme (2.5) works as

D7 = diag(D̃3, D̃6) + Z7Z
T
7 ,

where Z7 =
(
U3

U6BT
3

)
. The generators of A are updated as follows to get those of D̃3

and D̃6:
• B1 ← B1 −R1R

T
2 ,

• B4 ← B4 −R4B
T
3 B3R

T
5 .

• D1 ← D1 − U1R1R
T
1 U

T
1 ,

• D2 ← D2 − U2R2R
T
2 U

T
2 ,

• D4 ← D4 − U4R4B
T
3 B3R

T
4 U

T
4 ,

• D5 ← D5 − U5R5B
T
3 B3R

T
5 U

T
5 .

At the second level, the two subproblems D̃3 and D̃6 are further divided via the
following updates to the generators:

• D1 ← D1 − U1U
T
1 ,

• D2 ← D2 − U2B
T
1 B1U

T
2 ,

• D4 ← D4 − U4U
T
4 ,

• D5 ← D5 − U5B
T
4 B4U

T
5 .

2.1.3. Reusing computations. In general, to divide Di as in (2.5), we update
all the B generators associated with the left nodes in Ti, and the D generators as-
sociated with the leaves. The update of the B,D generators can follow a top-down
sweep, so as to reuse some computations. For example, once Bj for a nonleaf node j
has been updated as in (2.11), then the update of Bc for a child c of j looks like

Bc ← Bc −RcRj(Rjl · · ·Rj1)H(Rjl · · ·Rj1)TRTj R
T
sib(c),

where Rjl · · ·Rj1 has already been computed in (2.11). This thus can be performed
recursively as follows. Initially for node i, let

Si = I.

Then for j, the update of Bj in (2.11) becomes

Bj ← Bj −RjSpar(j)S
T
par(j)R

T
sib(j).

Then let
Sj = RjSpar(j),

which is used for later updates. After all the B generators are updated, Sj =
RjRjl · · ·Rj1 is already available. We further compute UjSj and use it in (2.12) to
update Dj as

Sj ← UjSj, Dj ← Dj − SjS
T
j (j: leaf).

In addition, further computational savings are possible. Clearly, the D,B gener-
ators may need to be updated multiple times, depending on the number of ancestor
nodes. As an improvement, we may accumulate the updates so as to save the interme-
diate multiplication costs for forming the updates. In practice, this may be skipped
to simplify the implementation, since the cost in the subsequent conquering stage
usually dominates the total cost (especially when r is very small).
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2.2. Computing the HSS eigendecomposition. In the “conquering” stage,
we compute the eigendecomposition of A from those of the subproblems. The rank-r
update in (2.5) is split into r rank-1 updates. We start with the following case with
a single rank-1 update:

(2.13) diag(D̃c1
, D̃c2

) + zzT .

Just like in the standard DC (section 1.1), suppose we have computed the eigende-
compositions D̃c1

= Q̃c1
Λ̃c1

Q̃Tc1
, D̃c2

= Q̃c2
Λ̃c2

Q̃Tc2
. Then

(2.14) diag(D̃c1 , D̃c2) + zzT = diag(Q̃c1 , Q̃c2)(Λ̃ + vvT ) diag(Q̃Tc1
, Q̃Tc2

),

where

(2.15) Λ̃ = diag(Λ̃c1
, Λ̃c2

) ≡ diag(λ̃j , j = 1, 2, . . .), v = diag(Q̃Tc1
, Q̃Tc2

)z.

Here, we can assume all λ̃j ’s are distinct, and v has no zero entry. Otherwise, the
deflation strategy in section 2.2.6 is applied. In the following, we discuss how to
quickly find the eigendecomposition of (2.13) with the aid of FMM.

Remark 2.1. We keep each part of this subsection compact, since much of the
technical detail can be generalized from [10, 23] (although the actual algorithm design
and implementation are far less trivial). We include only essential descriptions to
introduce necessary notation and to sketch the basic ideas. Some pseudocodes will be
included to assist in the understanding.

2.2.1. FMM in one dimension. FMM in one dimension will be used at mul-
tiple places in our algorithm. Here, we only briefly mention its basic idea. The reader
is referred to [2, 7, 8, 21] for more details.

Suppose we wish to evaluate the following function at multiple points λ:

(2.16) Φ(λ) =

N∑
j=1

αjφ(λ− λ̃j),

where {λ̃j}Nj=1 are given real points, {αj}Nj=1 are constants, and φ(x) is a specific

kernel function of interest. In our case, φ(x) is either 1/x, log(x), or 1/x2. FMM
is designed to quickly evaluate Φ(λ) at M points {λi}Mi=1 without using the dense
matrix-vector multiplication Kα, where K = (φ(λi − λ̃j))M×N .

The FMM implementation we use is based on [7], where explicit accuracy and
stability estimates are given. We briefly describe the results here. Suppose (a, b) and
(c, d) are two well-separated intervals and λi ∈ (a, b), i = 1, . . . ,M, λ̃j ∈ (c, d), j =
1, . . . , N . Compute a truncated Taylor series expansion of φ:

(2.17) φ(λ− λ̃) ≈
p∑
k=1

fk(λ)gk(λ̃),

where a proper scaling is applied to fk and gk. The relative approximation error is
[7, section 2.1]

(2.18) ε =
1 + η

1− η
ηp,
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where η ∈ (0, 1) depends on the separation between (a, b) and (c, d). Thus, p only
needs to be O(log τ) to reach a desired accuracy τ . Then, (2.17) enables us to write
a low-rank approximation

K = (φ(λi − λ̃j))M×N ≈ Û
M×p

· Ĉ
p×p
· V̂ T
p×N

,

where the elementwise relative approximation error is (2.18). Furthermore, the proper
scaling of the Taylor series expansion guarantees that the entries of Û and V̂ have
magnitudes bounded by 1, and the entries of Ĉ have magnitudes roughly proportional
to those of K [7, section 6.2]. This enables us to stably evaluate Kα to a desired
accuracy with complexity O(M +N) instead of O(MN).

When λi and λ̃j come from the same set of points, then the process is done
hierarchically as in the standard FMM so as to reach the overall linear complexity.
In our implementation, we make the separation parameter η ≤ 2

3 and the accuracy τ
to be around 10−10 or even smaller.

Note that when FMM is used in our DC algorithm, it implicitly approximates
the intermediate matrices. For example, an elementwise relative error ε is introduced
into the intermediate eigenmatrices. Such an error may be propagated to later com-
putations. Due to the hierarchical DC scheme, it is expected that the error may be
magnified by only up to about log n times, similar to the approximation error results
in [1, 20, 40]. Such error propagations are thus well controlled, and in practice, the
accuracy of the eigenvalues is consistent with the tolerance (see section 5). We can
similarly understand the behaviors of the numerical errors in the FMM matrix-vector
multiplication, just like the stability analysis for a hierarchical matrix factorization
in [40].

2.2.2. Computing the eigenvalues by solving the secular equation. As
in the tridiagonal DC scheme, the eigenvalues λ are the roots of the secular equation

(2.19) f(λ) = 1 +

n∑
j=1

v2
j

λ̃j − λ
= 0,

which can be solved with Newton’s method. To ensure the quick and stable solution of
(2.19), we follow the modified Newton’s method in [15], which is based on the Middle
Way in [32]. This modified Newton’s method involves the evaluation of functions of

the forms ϕ(λ) =
∑n
j=1

v2j
λ̃j−λ

and ϕ′(λ) for multiple λ. This can be accelerated by

FMM with φ(x) = 1/x or 1/x2 in (2.16).
Just as mentioned in [15], two or three Newton iterations are sufficient to reach

the machine precision. This strategy works for all the roots of the secular equation
except the largest one, for which we follow [23] and use basic rational interpolation
with several safeguards for stability based on the algorithm in [6].

2.2.3. Computing the eigenvectors stably. As has been extensively studied
[14, 16, 37], the computation of the eigenvectors via the simple formula qj = (Λ̃ −
λjI)−1v can have stability issues. In particular, if |λi−λj | is small for two eigenvalues
λi and λj , the corresponding eigenvectors qi and qj may be far from orthogonal [16].
A stable computational strategy [23] is to solve for the eigenvectors of a slightly
perturbed problem Λ̃ + v̂v̂T , which has the exact eigenvalues λj . The vector v̂ =
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(v̂i)
n
k=1 is computed based on Löwner’s formula [15]:

(2.20) v̂i =

√√√√ ∏i−1
j=1(λ̃i − λj)

∏n
j=i(λj − λ̃i)∏i−1

j=1(λ̃i − λ̃j)
∏n
j=i+1(λ̃j − λ̃i)

,

where the eigenvalues are ordered from the largest to the smallest. The vector v̂ can
be quickly evaluated with FMM applied to log v̂i [23]. That is, set φ(x) = log(x) in
(2.16).

The eigenvectors associated with all the eigenvalues λj can be assembled into a

matrix Q̂ ≡ ( v̂i
λ̃i−λj

)i,j . While we do not explicitly form this matrix, we still need to

normalize its columns to obtain orthonormal eigenvectors and to ensure the stability
of later calculations. Let sj be the inverse of the norm of column j of Q̂. It is used
to scale that column as in

(2.21) Q
(1)
i =

(
v̂isj

λ̃i − λj

)
i,j

with sj =

(
n∑
i=1

v2
i

(λ̃i − λj)2

)−1/2

,

where the superscript in Q
(1)
i is used to indicate that the result is from a single rank-1

update (2.13). Once again, the computation of sj can be accelerated by FMM, with

φ(x) = 1/x2 in (2.16). Note that Q̂ is now converted into the orthogonal Cauchy-like

matrix Q
(1)
i (a Cauchy-like matrix is a matrix whose (i, j) entry looks like

αiβj

di−fj for

four vectors α, β, d, f).

2.2.4. Rank-r updated eigendecomposition. The above process needs to be
repeated r times for the rank-r update in (2.5). We summarize the process in the
following lemma and skip the details.

Lemma 2.4. Suppose D̃c1
= Q̃c1

Λ̃c1
Q̃Tc1

and D̃c2
= Q̃c2

Λ̃c2
Q̃Tc2

are the eigende-

compositions of D̃c1 and D̃c2 in (2.5), respectively. Let

Zi = (z(1), . . . , z(r)), Q(0) = diag(Q̃c1
, Q̃c2

), v(0) = (Q(0))T z, λ
(0)
j = λ̃j .

Suppose the eigendecomposition of diag(λ
(i−1)
j |nj=1) + v(i)(v(i))T is

diag(λ
(i−1)
j |nj=1) + v(i)(v(i))T = Q

(i)
i diag(λ

(i)
j |

n
j=1)(Q

(i)
i )T ,

where Q
(i)
i is in a Cauchy-like form and v(i) = (Q

(i−1)
i )T z(i). Then the eigendecom-

position of Di in (2.5) is

Di = (Q
(0)
i Qi) diag(λ

(r)
j |

n
j=1)(Q

(0)
i Qi)

T ,

where

(2.22) Qi = Q
(1)
i · · ·Q

(r)
i .

That is, λ
(r)
j |nj=1 are the eigenvalues of Di in (2.5) and Q

(0)
i Qi is the eigenmatrix

of Di. For completeness, if i is a leaf node of the HSS tree, we set Q
(0)
i = I and

compute Qi directly via the eigendecomposition of the diagonal block Di.



SUPERFAST DIVIDE-AND-CONQUER A1369

2.2.5. Application of the eigenmatrix to vectors and structure of the

eigenmatrix. Note that we do not form the eigenmatrix Q
(0)
i (Q

(1)
i · · ·Q

(r)
i ) of Di or

the eigenmatrix Q of A explicitly. In practical applications, the eigenvectors of A are
often used under the following circumstance: applications of the eigenmatrix or its
transpose to vectors. In fact, such a process is already needed in the DC process for
computing v in (2.15). Thus, we illustrate this as part of the eigendecomposition.

For an individual matrix Q
(1)
i of the form (2.21), to multiply (Q

(1)
i )T and a vector

z, we have

(2.23)
(

(Q
(1)
i )T z

)
j

= sj

n∑
i=1

v̂izi

λ̃i − λj
.

Similarly to [10, 23], this can be accelerated by FMM with φ(x) = 1/x in (2.16). To
apply Qi to a vector, we just need to repeat this r times.

The overall strategy for applying Q or QT to a vector z is basically the one
in [10, 15]. For our case, this can be done with the aid of the HSS tree T . More
specifically, associate Qi in (2.22) with each node i of T . Then we use a multilevel
procedure to compute the eigenmatrix-vector product.

For convenience, Algorithm 1 shows how to apply QT to z, as needed in forming
v in (2.15). The multiplication of Q and z can be performed similarly and can be
used if we need to extract any specific column of Q.

Algorithm 1. Application of QT to a vector, where Q is the eigenmatrix of A.

1: procedure eigmv(Q1, . . . , Qk, z) Output: QT z, where Q is represented by
Q1, . . . , Qk

2: Partition z into pieces zi following the sizes of Di for all leaves i
3: for i = 1, . . . ,k do . k: root of T
4: if i is a nonleaf node then . c1, c2: children of i

5: zi ←
(
zc1

zc2

)
6: end if
7: for i = 1, 2, . . . , r do . r: column size of Zi in (2.5)

8: zi ← (Q
(i)
i )T zi (fast evaluation via FMM) . As in (2.23)

9: end for
10: end for
11: Output zk . zk = QT z
12: end procedure

Remark 2.2. Clearly, the data-sparse structure of Q defined by Q1, . . . , Qk in
their Cauchy-like forms is very useful for the fast application of Q or QT to a vector.
On the other hand, we may also understand the data sparsity of Q based on its
off-diagonal rank structure. It can be shown that the eigenmatrix of Λ̃ + v̂v̂T has
off-diagonal numerical ranks at most O(log n) for a given tolerance. (This is similar
to Lemma 3.2 below.) Thus, the off-diagonal numerical ranks of Q are at most
O(r log2 n). Since this rank structure of Q is not actually used in our algorithms, we
omit the details.

2.2.6. Deflation. If the vector v in (2.14) has a zero entry, or if Λ̃ has two equal
diagonal entries, deflation strategies can be applied. This is already shown in [16, 23].
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For example, if vj = 0, then Λ̃ + vvT has an eigenvalue

λj = λ̃j .

If Λ̃ has two (or more) identical diagonal entries λ̃i = λ̃j , then a Householder trans-
formation can be used to zero out vj so as to convert into the previous case. (In these

cases, the eigenmatrix of Λ̃ + vvT is then block diagonal and may involve Cauchy-like
or Householder diagonal blocks.) A similar strategy can be applied if vj is small or

if the difference between λ̃i and λ̃j is small, and the detailed perturbation analysis
is provided in [16, 23]. This step is standard but important for the efficiency of the
algorithm.

3. Algorithm, complexity, and applications. To facilitate understanding of
the algorithm, the framework of the algorithm is shown in Table 1, with the details
in Algorithm 2. Here, it is assumed that the HSS tree T is a complete binary tree
with lmax + 1 levels, with the root at level 0 and the leaves at level lmax. We do not
count cost reductions due to deflation.

Table 1
Major operations in the superfast DC algorithm, corresponding lines in Algorithm 2, and their

complexity (section 3.1).

Outermost Innermost Operation Lines in Complexity
loop loop Alg. 2 subtotal

l = 1 : lmax−1
Descendants j of i Updating Bj generators 6, 13 ξ1 = O(r2n logn)
Leaf descendants j of i Updating Dj generators 8, 15 ξ2 = O(r2n logn)

l = lmax Leaves i Eigendecomposition of Di 20 ξ3 = O(r2n)

l = lmax−1 : 0

Intermediate eigenmatrix- 25, 26 ξ4 = O(rn log2 n)
vector product

ith rank-1 update Root-finding 29 ξ5 = O(rn logn)
(i = 1, . . . , r) Finding perturbed 31 ξ6 = O(rn logn)

eigenproblem
Normalization 32 ξ7 = O(rn logn)

The dividing stage involves three nested loops. The outermost loop is a top-down
sweep through the levels l of the HSS tree T , the next loop is through the nodes i at
a given level l, and the innermost loop is through each descendent j of i.

The conquering stage is also done by three nested loops. The outermost loop is a
bottom-up sweep through the levels l of T , the next loop is through the nodes i at a
given level, and the innermost loop is through each of the r rank-1 updates. At each
step, we complete four tasks. The first is to form the vector v in Λ̃ + vvT as in (2.15).
The next task is to solve for the eigenvalues λ of Λ̃ + vvT by finding the roots of the
secular equation. The third task is to solve the perturbed eigenvalue problem to find
a vector v̂ such that λ is an exact eigenvalue of Λ̃ + v̂v̂T . Finally, find the orthogonal
eigenmatrix of Λ̃ + vvT . This eigenmatrix has a structured form.

3.1. Complexity. We now derive analytically the complexity of our algorithm.
The numerical results in section 5 give a view of how the algorithm scales in practice.
The results in this section and section 5 agree asymptotically. Table 1 has a summary
of the complexity of the major computations and introduces notation. As is often
done in HSS algorithms [43, 45], we assume that the leaf-level D generators have size
2r, all the R,B generators have size r, and the HSS tree has lmax ≈ log( n2r ) levels
(not counting the root level).
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Algorithm 2. Superfast DC method.

1: procedure sdc

Input: HSS generators Dj, Uj, Rj, Bj, HSS tree T
Output: Eigenvalues λ, and structured Qi as in Lemma 2.4

2: for level l = 0, 1, . . . , lmax − 1 do . Dividing stage
3: for each node i at level l do
4: i1 ← smallest descendent of c1, Sc1 ← I . Role of S section 2.1.3
5: for j = c1 − 1, c1 − 2, . . . , i1 do . Top-down—left child branch of i
6: Bj ← Bj −RjSpar(j)S

T
par(j)R

T
sib(j), Sj ← RjSpar(j) . Updating Bj

7: if j is a leaf then
8: Sj ← UjSj, Dj ← Dj − SjS

T
j . Updating Dj

9: end if
10: end for
11: i2 ← smallest descendent of c2, Sc2

← BTc1
. Role of S: section 2.1.3

12: for j = c2 − 1, c2 − 2, . . . , i2 do . Top-down—right child branch of i
13: Bj ← Bj −RjSpar(j)S

T
par(j)R

T
sib(j), Sj ← RjSpar(j) . Updating Bj

14: if j is a leaf then
15: Sj ← UjSj, Dj ← Dj − SjS

T
j . Updating Dj

16: end if
17: end for
18: end for
19: end for
20: Compute the eigendecomposition Di = QiΛ̃Q

T
i for each leaf i

21: for level l = lmax − 1, . . . , 1, 0 do . Conquering stage
22: for each node i at level l do
23: for i = 1, 2, . . . , r do . r: column size of Zi in (2.5)

24: z ≡
(
z1
z2

)
← column i of Zi . z: partitioned following (2.13)

25: i1 ← smallest descendent of c1, v1 ← eigmv(Qi1 , . . . , Qc1
, z1)

26: i2 ← smallest descendent of c2, v2 ← eigmv(Qi2 , . . . , Qc2
, z2)

27: v ←
(
v1
v2

)
28: Deflate if some previous-step eigenvalues λ̃j are close to each other

or if v has small entries . Deflation as in section 2.2.6
29: Solve (2.19) for λ by the Middle Way with FMM acceleration
30: Λ̃← diag(all such λ’s) . Current-step intermediate eigenvalues
31: Compute v̂ in (2.20) with FMM acceleration

. Such that λ is an exact eigenvalue of Λ̃ + v̂v̂T

32: Compute s in (2.21) with FMM acceleration

33: Determine structured Q
(i)
i as in (2.21) or section 2.2.6

. Q
(i)
i may be block diagonal due to deflation

34: end for
35: Output structured Qi as in Lemma 2.4 . Part of structured Q
36: end for
37: end for
38: Output diag(Λ̃) . diag(Λ̂) associated with level 0—eigenvalues of A
39: end procedure
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During the dividing stage, at each level l of the HSS tree, there are 2l nodes i.
For each i at level l, we update Bj generators associated with each descendant j of i.

There are 2l̃−l nodes j at level l̃ = l+ 1, . . . , lmax. As in lines 6 and 13 of Algorithm 2,
four matrix multiplications and one matrix subtraction is needed for each j. Thus,
the total cost to update all the Bj generators is

ξ1 =

lmax∑
l=1

2l
lmax∑
l̃=l+1

2l̃−l · (4 · 2r3) ≈ 16r3 · 2lmax lmax = O(r2n log n),

where the low order terms are dropped (this is done similarly later).
The update of the Dj generators at level lmax immediately follows the update of

all the Bj generators. See lines 8 and 15 of Algorithm 2. The cost is

ξ2 =

lmax∑
l=1

2l · 2lmax−l(2 · 2r3) = O(r2n log n).

At the leaf level, we compute the eigendecomposition of Di for each leaf i (line 20
of Algorithm 2). The total cost is

ξ3 =
n

2r

(
2 · (2r)3

)
= O(r2n).

During the conquering stage, for each node i at each level l of the HSS tree, a
sequence of operations are performed to find the eigenvectors.

One operation is to perform the intermediate eigenmatrix-vector multiplication
in terms of Qi1 , . . . , Qi associated with i and its descendants. Each FMM application
involved here has linear complexity O( n

2l̃
), where n

2l̃
is the size of Qj for j at level

l̃ = l, l + 1, . . . , lmax. Here, Qj is further given by r Cauchy-like matrices. This cost
of the intermediate eigenmatrix-vector multiplication associated with i is thus

(3.1)

lmax∑
l̃=l

2l̃−l · r ·O
(
n

2l̃

)
= O

(
r
n

2l
(lmax − l)

)
.

The subtotal for all i is

ξ4 =

lmax∑
l=1

2l
lmax∑
l̃=l

2l̃−l · r ·O
(
n

2l̃

)
= O(rn log2 n).

Another operation is to solve r secular equations associated with each node i
(line 29 of Algorithm 2). The cost with FMM for each secular equation is O( n

2l ).
Thus, the subtotal is

ξ5 =

lmax−1∑
l=0

2l · r ·O
( n

2l

)
= O(rn log n).

The costs in the other operations (lines 31 and 32 of Algorithm 2) are similar:

ξ6 = O(rn log n), ξ7 = O(rn log n).

To sum up, we obtain the total cost ξ = ξ1+· · ·+ξ7 for our DC algorithm. Clearly,
if r is bounded, the cost ξ4 for applying the intermediate eigenmatrices to vectors
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dominates the complexity. In general, the conquering stage costs more than the
dividing stage. In addition, by setting l = 0 in (3.1), we get the cost ξ̃ for applying QT

to a vector. The storage for the Qi matrices in terms of the Cauchy-like/Householder
forms can be easily counted. These results are summarized as follows, where the rank
structures of banded matrices and Toeplitz matrices are given in the next subsection.
The costs are nearly linear in n, so our DC algorithm is said to be superfast [15,
section 5.3].

Theorem 3.1. The superfast DC scheme costs ξ flops to find the eigendecompo-
sition (1.1) and ξ̃ flops to apply QT to a vector, and the storage for the structured
eigenmatrix is σ, where

ξ = O(r2n log n) +O(rn log2 n), ξ̃ = O(rn log n), σ = O(rn log n).

Specifically, if A is a banded symmetric matrix with finite bandwidth,

ξ = O(n log2 n), ξ̃ = O(n log n), σ = O(n log n),

and if A is a symmetric Toeplitz matrix,

ξ = O(n log3 n), ξ̃ = O(n log2 n), σ = O(n log2 n).

3.2. Applications and preprocessing. The algorithm can be used to quickly
compute the eigendecomposition of matrices with the low-rank property. Such matri-
ces arising in various fields, and their HSS forms or approximations can be constructed
with several strategies. If no additional knowledge is available on the matrix entries,
then a direct HSS construction [45] may be used. In practice, this is usually unneces-
sary. Often, fast analytical or algebraic methods can be used for the HSS construction,
and the cost is about O(n) or less. For example, for banded matrices, an HSS form
can be constructed on the fly. For Toeplitz matrices, the HSS construction can be
done in nearly O(n) flops with randomized methods. These are explained as follows.

If A is banded with blocks Ajj on the main diagonal and Aj,j+1 on the first block
superdiagonal, then the HSS generators look like [42]

Di =

 Aj−1,j−1 Aj−1,j

Aj,j−1 Aj,j Aj,j+1

Aj+1,j Aj+1,j+1

 , Ui =

 I 0
0 0
0 I

 ,

Rc1
=

(
I 0
0 0

)
, Rc2

=

(
0 0
0 I

)
, Bc1

=

(
0 0

Aj+1,j+2 0

)
,

where the zero and identity blocks have sizes bounded by the half bandwidth. Thus,
the bandwidth of A determines its off-diagonal rank bound r.

Our algorithm can also be applied to Toeplitz matrices and may be modified
for other structured matrices (Toeplitz-like, Hankel, and Hankel-like) with the aid of
displacement structures [18, 22, 26, 30, 35]. In fact, the rank structure of Toeplitz
matrices in Fourier space is known as follows.

Lemma 3.2 (see [13, 33, 36]). For a Toeplitz matrix A, let C be a Cauchy-like
matrix resulting from the transformation of T into Fourier space through the use of
displacement structures. Then the off-diagonal numerical ranks of C are O(log n) for
a given tolerance.
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In particular, to preserve the symmetry as well as the real entries [33], we use the
following Cauchy-like form:

(3.2) C = FnAF∗n,

where Fn is the order-n normalized inverse discrete Fourier transform matrix. C
can be approximated by an HSS form via a randomized HSS construction [47]. This
construction is based on fast Toeplitz matrix-vector multiplication and randomized
low-rank approximation and costs O(n log2 n).

For applications involving simple discretized kernel matrices, multipole expansions
may be used to construct the HSS form [7].

4. Impact of HSS off-diagonal compression on the accuracy of eigenval-
ues. For practical problems such as Toeplitz matrices, a dense matrix A is approxi-
mated by an HSS form Ã first. We thus study the impact of off-diagonal compression
on the accuracy of the eigenvalues and verify that the accuracy is well controlled by
the approximation tolerance (and the FMM accuracy which, as an implementation
issue, can be made very high and is not discussed). The study can be viewed as
structured perturbation analysis for Hermitian eigenvalue problems. Previously, for
special cases such as tridiagonal or banded A, there have been various studies on
whether a small off-diagonal entry or block can be neglected [25, 28, 29, 34, 48]. Here
for dense A, we are only truncating the singular values of the off-diagonal blocks. A
significant benefit of an HSS approximation is to enable us to conveniently assess how
the off-diagonal compression affects the accuracy of the eigenvalues.

4.1. General results. We start with a block 2× 2 form A and a one-level HSS
approximation:

(4.1) A ≡
(
A11 A12

A21 A22

)
≈ Ã ≡

(
D1 U1B1U

T
2

U2B
T
1 U

T
1 D2

)
,

where D1 ≡ A11, D2 ≡ A22, and U1 and U2 are assumed to have orthonormal columns
as often used. We study how the eigenvalues λ̃i of Ã approximate the eigenvalues λi
of A due to the approximation A12 ≈ U1B1U

T
2 . For convenience, suppose U1B1U

T
2 is

a truncated SVD of A12 so that the full SVD of A12 looks like

(4.2) A12 =
(
U1 Û1

)( B1

B̂1

)(
UT2
ÛT2

)
= U1B1U

T
2 + Û1B̂1Û

T
2 .

Thus,

A = Ã+ E with E =

(
0 Û1B̂1Û

T
2

Û2B̂
T
1 Û

T
1 0

)
.

As a direct result of Weyl’s theorem [15] and the fact that ||E||2 = ||B̂1||2, we have
the following accuracy estimation, which indicates that the off-diagonal compression
accuracy controls the eigenvalue accuracy.

Lemma 4.1. For A and Ã in (4.1), suppose ||B̂1||2 ≤ τ in (4.2). Then

|λi − λ̃i| ≤ τ.

More generally, a bound can be obtained for a general multilevel HSS approx-
imation. Suppose we apply truncated SVDs with a tolerance τ to the off-diagonal
blocks of A as in [45] to get the HSS approximation Ã. An HSS approximation error
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bound in [40] may be used but would yield a conservative estimate of the eigenvalue
accuracy. Here instead, we use a much tighter error bound, which was previously also
given in [1]. Here, we further show that it is attainable.

Theorem 4.2. Suppose a multilevel HSS approximation Ã to A is constructed via
truncated SVDs applied to the off-diagonal blocks of A, so that each B generator is
obtained with the accuracy τ like in (4.2). Let l be the total number of levels (excluding
the root) in the HSS tree. Then the approximation error matrix E = A− Ã satisfies
the following bound that is attainable:

(4.3) ||E||2 ≤ lτ.

Thus,
|λi − λ̃i| ≤ lτ.

Proof. The HSS construction means

A = Ã+ E with

E =

l∑
l̃=1

diag

((
0 ÛiB̂iÛ

T
sib(i)

Ûsib(i)B̂
T
i Û

T
i 0

)
, i: all nodes at level l̃

)
,(4.4)

where each Û matrix has orthonormal columns. Since ||B̂i|| ≤ τ ,

||E||2 ≤
l∑
l̃=1

max
i: all nodes at level l̃

∥∥∥∥∥
(

0 ÛiB̂iÛ
T
sib(i)

Ûsib(i)B̂
T
i Û

T
i 0

)∥∥∥∥∥
2

≤
l∑
l̃=1

τ = lτ.

The error in |λi − λ̃i| then follows from Weyl’s theorem.
To show that the bound in (4.3) is attainable, consider a special approximation

error matrix E in (4.4) that looks like

E(l) ≡
l∑
l̃=1

diag

((
0 τI
τI 0

)
, i: all nodes at level l̃

)
.

Then it can be shown that
||E(l)||2 = lτ.

In fact, the eigenvalues of E(l) are

±τ,±3τ, . . . ,±lτ if l is odd or

0,±2τ, . . . ,±lτ if l is even.

This can be proven based on induction. First for l = 1, the matrix ( 0 τI
τI 0 ) has

eigenvalues ±τ . Suppose jτ is an eigenvalue of E(l) with the corresponding eigenvector
q. Then

E(l+1)

(
q
q

)
=

(
E(l)q + τq
τq + E(l)q

)
=

(
jτq + τq
τq + jτq

)
= (j + 1)τ

(
q
q

)
,

E(l+1)

(
q
−q

)
=

(
E(l)q − τq
τq − E(l)q

)
=

(
jτq − τq
τq − jτq

)
= (j − 1)τ

(
q
−q

)
.

Thus, (j + 1)τ and (j − 1)τ are eigenvalues of E(l). Based on this, it is not hard
to find all the eigenvalues. (This also shows how the eigenvectors of E(l) can be
found. In particular, for the eigenvalue lτ of E(l), the corresponding eigenvector is
( 1 · · · 1 )T /

√
l.)
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Lemma 4.1 and Theorem 4.2 indicate how the accuracy of the eigenvalues de-
pends on the HSS approximation accuracy. Theorem 4.2 shows that the error in the
eigenvalues due to all the off-diagonal compression is only amplified by at most the
number of levels of the HSS tree. Note that l = O(log n

r ).

4.2. Additional discussions on the accuracy of eigenvalues. There is also
a potential to further improve the previous general accuracy results.

First, there are some very useful error diminishing effects so that the approxima-
tion errors in some off-diagonal blocks have little impact on the accuracy of certain
eigenvalues. Following the eigenvalue perturbation analysis in [34], there is a useful
shielding effect related to the compression of the off-diagonal blocks of A. That is,
for certain eigenvalues λ of A originating from, say, A11 in (4.1), the accuracy of λ is
roughly shielded from the approximation error within the other subproblem A22. (λ
is said to originate from A11 in the sense that it is a certain continuous function of the
perturbation [34].) More specifically, the HSS approximation error δ in A22 appears
in the error bound of λ like O(δ2).

In particular, if the singular values of the off-diagonal blocks quickly decay to a
desired accuracy τ , then a compact HSS form Ã can be used to compute the eigen-
values with satisfactory accuracies. This type of problem is indeed an important
application of HSS methods. For example, when A results from the discretization of
a kernel function that is smooth away from the diagonal singularity, then the sub-
blocks of the off-diagonal blocks have a decay property, i.e., they quickly decay when
they are farther away from the diagonal. In this case, the accuracy shielding effect
can be more rigorously characterized as a multiplicative effect for the off-diagonal
compression accuracy. The reader is referred to [34] for more discussions.

Next, the error diminishing effects above and also various existing perturbation
analyses imply that the off-diagonal approximation errors have less impact on the
eigenvalues that are well separated from the rest of the spectrum (see, e.g., [31, 34]).
In addition, for such eigenvalues, their accuracies can also be conveniently estimated.
The following result directly follows from Theorem 4.2 and [27] and may give a tighter
bound than those in section 4.1 if the projection of the error matrix E onto the
eigenspace of λi is much smaller than ||E||2.

Proposition 4.3. Let E = A− Ã be the HSS approximation error matrix as in
Theorem 4.2. Then for any eigenvalue λi of A satisfying |λi−λi+1| > 2lτ , |λi−1−λi| >
2lτ , we have

(4.5) |λi − λ̃i| ≤ ||Eqi||2,

where qi is the eigenvector associated with λi.

This result can also yield a useful feature with HSS matrices. That is, when the
off-diagonal blocks are compressed, we can conveniently assess the effect of slightly
increasing or decreasing the off-diagonal numerical ranks via the treatment of the
perturbation as essentially an HSS form. Thus, we can conveniently keep track of
the accuracy in (4.5) via a fast HSS matrix-vector multiplication, where qi can be
extracted from the numerical eigenmatrix.

Finally, for eigenvalues that are not well separated from the rest of the spectrum,
it is also possible to make certain improvements. In particular, if the gaps between
an eigenvalue λi and its neighbor eigenvalues are small and close to the tolerance,
then it is possible to save work by truncating some off-diagonal singular values with
magnitudes close to these gaps. That is, instead of including such singular values in
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the low-rank updated eigenvalue computation, we may use some update formulas to
directly refine the accuracy of λ̃i. This is useful in saving computations when the
off-diagonal singular values decay to magnitudes around the tolerance and then the
decay slows down. The details are technical and are skipped. Overall, we hope the
discussions in this subsection can lead to possible interesting future research directions
in the accuracy of structured eigenvalue solutions.

5. Numerical results. In this section, we demonstrate the efficiency and accu-
racy of our algorithm in terms of some symmetric HSS matrices. A Toeplitz matrix
and a discretized matrix are tested. Similar results are also observed for several other
types of symmetric matrices that admit HSS approximations. The algorithm is im-
plemented in MATLAB and is compared with a recent HSS eigensolver in [41] based
on bisection and HSS factorization update, also in MATLAB. The algorithm in [41]
has a cost of over O(n2) for finding all the eigenvalues (only). The following notation
is used throughout the tests:

• NEW: our superfast DC eigensolver;
• XXC14: the HSS eigensolver in [41];
• λi: the eigenvalues of A (here, the results from the MATLAB function eig

are used as the “exact” eigenvalues);

• λ̂i: the numerical eigenvalues;
• Q̂: the numerical eigenmatrix with column q̂i being the numerical eigenvector

associated with λ̂i;

• γ = maxi ‖Aq̂i−λ̂iq̂i‖2
n‖A‖2 : the residual, as used in [23];

• θ = maxi ‖Q̂T q̂i−ei‖2
n : the loss of orthogonality, as used in [23];

• e =

√
Σn

i=1(λi−λ̂i)2

n
√

Σn
i=1λ

2
i

: the relative error;

• ξ, ξ̃, σ: complexity measurements as in Theorem 3.1.

The HSS block sizes are chosen following the strategies in common HSS practices
(e.g., [12, 43, 45]). A tolerance is used in the HSS approximation and FMM (if
applicable) so that both NEW and XXC14 reach accuracies e around 10−10. A smaller
tolerance is also tested for NEW to reach higher or even the machine accuracy. See
Remark 5.1 below.

Example 1. First, we consider the Kac–Murdock–Szego (KMS) Toeplitz matrix
A as in [38], with its entries given by

Aij = ρ|i−j|, ρ = 0.5.

A has the same eigenvalues as the Cauchy-like matrix C in (3.2), and our tests are
done on C.

As mentioned in Lemma 3.2, the maximum off-diagonal numerical rank of C grows
with n as O(log n). We test C with sizes n ranging from 160 to 10,240 and show the
complexity ξ of NEW and XXC14 to reach similar accuracies in the eigenvalues. The
performance results are given in Table 2. NEW takes less work than XXC14 for all the
cases. For n = 10,240, NEW is over 12 times more efficient. We also plot the results
in Figure 3(a) with reference lines for O(n log3 n) and O(n2). Clearly, the asymptotic
complexity scales like O(n log3 n) for NEW (see Theorem 3.1) and O(n2) for XXC14.

NEW further gives a structured eigenmatrix Q, which can be applied quickly to
a vector. See Table 2 for its cost ξ̃. The storage σ is also plotted in Figure 3(b)
and scales like O(n log2 n). On the other hand, the eigenmatrix is not available from
XXC14.
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Table 2
Example 1 (KMS Toeplitz matrix): Complexity ξ of NEW for finding all the eigenvalues (as

compared with XXC14), complexity ξ̃ of NEW for applying the eigenmatrix to a vector, and storage σ
of NEW for the eigenmatrix.

n 160 320 640 1280 2560 5120 10,240

XXC14 ξ 3.17e08 1.19e09 4.72e09 1.82e10 7.14e10 2.82e11 1.12e12

ξ 1.55e08 5.45e08 1.70e09 4.86e09 1.32e10 3.44e10 8.70e10

NEW ξ̃ 3.40e05 1.26e06 4.53e06 1.36e07 3.81e07 1.01e08 2.61e08

σ 3.84e03 1.02e04 2.56e04 6.14e04 1.43e05 3.28e05 7.37e05
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(a) Eigenvalue solution cost ξ (b) Structured eigenmatrix storage σ

Fig. 3. Example 1 (KMS Toeplitz matrix): Complexity ξ of NEW and XXC14 for finding all the
eigenvalues, and storage σ of NEW for the eigenmatrix.

We have also compared NEW with the MATLAB built-in eig function, which is
highly optimized. Our algorithm is initially slower for smaller n but scales much bet-
ter. For n = 2560, 5120, 10,240, the runtimes of NEW are 12.3, 40.0, and 80.9 seconds,
respectively (on a MacBook Pro with an Intel Core i7 CPU and 8 GB memory), and
those of eig are 5.1, 36.6, and 270.0 seconds, respectively. Clearly, even if our code is
far less optimized and the MATLAB runtime is pessimistic for non-built-in routines,
NEW already shows significant advantages for larger n.

The accuracies are shown in Table 3. Both methods reach similar accuracies in
the eigenvalues. Since NEW also produces the eigenvectors, we report the residual γ
and the orthogonality measurement θ. In particular, θ for NEW reaches nearly machine
precision.

Table 3
Example 1 (KMS Toeplitz matrix): Accuracy (error e, residual γ, and loss of orthogonality θ)

of the methods when the tolerance in the off-diagonal compression and FMM is set to be around
10−10.

n 160 320 640 1280 2560

XXC14 e 2.40e− 10 1.02e− 10 5.80e− 11 4.39e− 11 3.84e− 11

e 1.00e− 09 1.07e− 10 1.47e− 10 9.32e− 11 8.45e− 11

NEW γ 3.49e− 09 1.49e− 09 7.38e− 10 2.53e− 10 9.99e− 11

θ 1.79e− 16 3.69e− 16 7.94e− 16 6.56e− 16 8.53e− 16

Remark 5.1. We would like to point out that with a smaller tolerance, the residual
and error in NEW can reach nearly machine precision too, as shown in Table 4. The
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corresponding cost of NEW is higher than with the 10−10 tolerance but still scales like
O(n log3 n). See Figure 4.

Table 4
Example 1 (KMS Toeplitz matrix): Accuracy (error e, residual γ, and loss of orthogonality θ)

of NEW when the tolerance in the off-diagonal compression and FMM is set to be around 10−15.

n 160 320 640 1280 2560

e 9.64e− 16 1.01e− 15 1.27e− 15 1.07e− 15 1.31e− 15

NEW γ 4.14e− 15 4.40e− 15 6.69e− 15 7.62e− 15 6.26e− 15

θ 4.25e− 16 5.33e− 16 7.24e− 16 9.37e− 16 7.18e− 16
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Fig. 4. Example 1 (KMS Toeplitz matrix): Complexity ξ of NEW when the tolerance in the
off-diagonal compression and FMM is set to be around 10−15.

Remark 5.2. As mentioned at the beginning of this section, the residual measure-
ment we use follows [23] and is not the regular one, so as to show that our structured
DC eigensolver can reach desired accuracies and can also reach machine precision.
We have also checked the regular accuracy measurements. For the tests in Table 4,
the regular errors |λi − λ̂i| are in the magnitudes around 10−19 ∼ 10−16, mostly
10−19 ∼ 10−17. (The errors are consistent with the bound in Theorem 4.2.) The

regular residuals ‖Aq̂i − λ̂iq̂i‖2 are around 10−11 ∼ 10−10. We have also computed

the gaps ĝi = minj 6=i |λ̂i − λj |, which are around 10−6 ∼ 10−3. It is known that if λ̂i
is the Rayleigh quotient of A and q̂i, then |λi− λ̂i| ≤ ‖Aq̂i− λ̂iq̂i‖22/ĝi [15]. Here, our
results are observed to roughly follow such a relationship.

Example 2. In our next example, we consider a matrix A in the following form:

Ai,j =

√
|x(n)
i − x(n)

j |,

where the points x
(n)
i = cos(π(2i + 1)/(2n)) are the zeros of the nth Chebyshev

polynomial. Thus, the points are not uniformly distributed.

This is a matrix resulting from the discretization of
√
|x− y| at the given points.

It is well known to have small off-diagonal numerical ranks [11], which also grow with
n, but the growth is moderate. Our method still exhibits nearly linear complexity
with satisfactory accuracies. See Tables 5 and 6 and Figure 5 for the test results. For
n = 4000, NEW is already over 23 times more efficient than XXC14.
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Table 5
Example 2 (discretized kernel matrix): Complexity ξ of NEW for finding all the eigenvalues (as

compared with XXC14), complexity ξ̃ of NEW for applying the eigenmatrix to a vector, and storage σ
of NEW for the eigenmatrix.

n 250 500 1000 2000 4000 8000

XXC14 ξ 3.04e10 1.77e11 9.06e11 4.70e12 2.83e13 Failed

ξ 1.39e10 4.66e10 1.39e11 4.28e11 1.18e12 3.19e12

NEW ξ̃ 2.50e07 7.10e07 1.92e08 4.98e08 1.26e09 3.11e09

σ 1.05e05 2.72e05 6.87e05 1.71e06 4.19e06 1.01e07
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(a) Eigenvalue solution cost ξ (b) Structured eigenmatrix storage σ

Fig. 5. Example 2 (discretized kernel matrix): Complexity ξ of NEW and XXC14 for finding all
the eigenvalues, and storage σ of NEW for the eigenmatrix.

Table 6
Example 2 (discretized kernel matrix): Accuracy (error e, residual γ, and loss of orthogonality

θ) of the methods.

n 250 500 1000 2000 4000

XXC14 e 2.51e− 10 1.52e− 10 6.01e− 11 3.60e− 11 2.52e− 11

e 2.40e− 11 8.71e− 11 1.14e− 10 7.36e− 11 2.33e− 10

NEW γ 3.68e− 10 5.05e− 10 7.36e− 10 5.08e− 10 6.47e− 10

θ 3.59e− 15 5.39e− 15 6.39e− 15 5.29e− 15 8.44e− 15

6. Conclusions. This work designs a superfast DC algorithm to compute the
eigendecomposition of symmetric matrices with small off-diagonal ranks or numerical
ranks. We illustrate the preservation of the rank structure during the recursive DC
dividing process, as well as how to quickly and stably perform a sequence of operations
in computing the eigenvalues and eigenvectors in the conquering stage. The nearly
linear complexity is proven and is verified with applications such as Toeplitz and
discretized matrices. In the tests, for even modest sizes n, the new method takes
dramatically less work than a recent HSS eigensolver.

We further show approximation error bounds for the eigenvalues due to hierarchi-
cal off-diagonal compression. The analysis confirms that the accuracy is conveniently
controlled by the compression tolerance. Some eigenvalues may be accurately evalu-
ated even if the compression accuracy is not so high.

The algorithm and analysis may be modified for the computation of SVDs of
nonsymmetric HSS matrices. For matrices with higher off-diagonal ranks, we may
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approximate them by compact HSS forms and then use our superfast DC method to
estimate the eigenvalue distribution. This is useful in preconditioning. Such exten-
sions, as well as more practical implementations, will appear in future work.
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