
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS

Numer. Linear Algebra Appl. 2011; 00:1–0 Prepared using nlaauth.cls [Version: 2002/09/18 v1.02]

A robust inner-outer HSS preconditioner

Jianlin Xia1∗†

1Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.

SUMMARY

This paper presents an inner-outer preconditioner for symmetric positive definite matrices based on
hierarchically semiseparable (HSS) matrix representation. A sequence of new HSS algorithms are developed,
including some ULV-type HSS methods and triangular HSS methods. During the construction of this
preconditioner, off-diagonal blocks are compressed in parallel, and an approximate HSS form is used as the
outer HSS representation. In the meantime, the internal dense diagonal blocks are approximately factorized
into HSS Cholesky factors. Such inner factorizations are guaranteed to exist for any approximation accuracy.
The inner-outer preconditioner combines the advantages of both direct HSS and triangular HSS methods,
and are both scalable and robust. Systematic complexity analysis and discussions of the errors are presented.
Various tests on some practical numerical problems are used to demonstrate the efficiency and robustness.
In particular, the effectiveness of the preconditioner in iterative solutions has been shown for some ill-
conditioned problems. This work also gives a practical way of developing inner-outer preconditioners using
direct rank structured factorizations (other than iterative methods). Copyright c© 2011 John Wiley & Sons,
Ltd.

key words: robust preconditioner; hierarchically semiseparable (HSS) matrix; inner-outer HSS algorithm;

ULV factorization

1. INTRODUCTION

In this paper, we present a robust and scalable inner-outer preconditioner based on hierarchically
semiseparable (HSS) matrix structures [7, 8, 35]. It is known that dense intermediate matrices
in many practical applications have certain low-rank structure (or low-rank off-diagonal blocks),
based on the early studies by Rokhlin [28], Gohberg, Kailath, and Koltracht [12], and on the ideas
of the fast multipole method (FMM) by Greengard and Rokhlin [17]. The HSS representation by
Chandrasekaran, Dewilde, Gu, et al. is a stable special form of FMM representations and H- and H2-
matrices by Hackbusch, et al [5, 19, 20]. HSS matrices have been widely used in the development of
fast numerical methods for sparse matrices, PDEs, integral equations, Toeplitz problems, and more
[7, 22, 23, 26, 31, 34, etc.]. HSS methods can often be used to solve related problems with nearly

∗Correspondence to: Jianlin Xia, Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.
†Email: xiaj@math.purdue.edu

The research of Jianlin Xia was supported in part by NSF grants DMS-1115572 and CHE-0957024.

Copyright c© 2011 John Wiley & Sons, Ltd.

2 JIANLIN. XIA

linear complexity. An HSS form has a nice binary tree structure and the operations are conducted
locally at multiple hierarchical levels.

The applications of HSS methods (and similar) as preconditioners have been considered by
Dewilde, Gu, et al. [18, 30, 36]. These methods can be considered as structured incomplete
factorizations. Robustness enhancement has also been studied. In previous studies for general
symmetric positive definite (SPD) matrices, it is know that incomplete Cholesky factorizations exist
for M -matrices and certain H-matrices. See, e.g., [27] by Meijerink and van der Vorst and [25]
by Manteuffel. Some robust or stabilized methods have been proposed for general SPD matrices.
See, e.g., [3, 4] by Benzi, Cullum, and Tuma, and [21] by Kaporin. In fact, rank structured matrix
techniques have also been shown very useful in robust preconditioning. Robustness techniques for
H-matrices are discussed by Bebendorf and Hackbusch [2]. For an SPD matrix, the structured
methods in [18] by Gu, Li, and Vassilevski and in [36] by Xia and Gu guarantee that the structured
preconditioners are always positive definite. In particular, it is discussed in [36] that HSS methods
have the potential to work as effective preconditioners for problems where the low-rank structure is
insignificant, or when the problems have only weak low-rank property.

However, both methods in [18, 36] involve Schur complement computations in approximate
triangular factorizations, and are not easily parallelizable. Recently, the scalability of HSS methods
has been investigated by Wang, Li, et al. [32]. It is shown that both the direct construction of
an HSS form and the solution of an HSS system with an ULV factorization procedure are highly
parallelizable. (In ULV, U and V represent orthogonal matrices and L represents triangular ones.)
On the other hand, the direct HSS construction may not preserve positive definiteness so that the
ULV factorization may break down.

Direct HSS methods and triangular HSS factorizations also have different efficiency. For example,
the direct construction of an HSS approximation to a general SPD matrix costs 3rn2 flops under
certain assumptions, where r is a related off-diagonal rank bound [33]. Then the ULV factorization
and solution in [35] costs at least 56

3 r2n. In contrast, an HSS Cholesky factorization costs about
11
2 rn2, but the triangular HSS solution is more efficient and needs only 10rn.

1.1. Main results

The task of this work is to combine the benefits of both direct HSS and triangular HSS methods.
That is, we propose an efficient and effective preconditioner for SPD matrices which is both scalable
and robust. Motivated by the ideas of inner-outer iterative preconditioning by Saad [29], Golub
and Ye [14], Bai, Benzi, and Chen [1], et al., we design an inner-outer HSS factorization scheme.
We give a sequence of new HSS algorithms, including both direct and triangular HSS ones. Then
the inner-outer preconditioner uses a direct HSS construction and ULV factorization as the outer
scheme, where an inner triangular HSS factorization is applied to the diagonal blocks. Both the inner
and the outer schemes approximate certain off-diagonal blocks with compression or rank-revealing
factorizations.

Just like some inner-outer iteration-based preconditioners [1, 14], we can also use lower accuracies
in the inner HSS factorizations so as to save costs. Moreover, we allow the flexibility of adjusting
the levels of hierarchical operations in both the inner and the outer HSS methods. The level of outer
operations can be designed to fit the available parallel computing resource, and the inner one can then
be adjusted to enhance the robustness. Here, the robustness means that our inner scheme guarantees
the existence of a local Cholesky HSS factorization regardless of the approximation accuracy, unlike
ULV HSS methods which may break down at certain stages of the hierarchical operations (see, e.g.,

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 3

Example 2 below). At the outer HSS levels, even if breakdown occurs, we can use simple diagonal
shifting. Since the number of outer HSS levels is often small, the effect of diagonal shifting on the
approximation accuracy is limited, as illustrated in Section 5.

The individual new HSS algorithms here are compared with similar existing ones, and generally
have better efficiency and scalability. For example, for ULV HSS factorizations, we use local triangular
factorizations for diagonal blocks, which not only are more efficient than QR factorizations as used in
[8], but also enable us to use the new triangular HSS algorithms as inner operations. Our triangular
HSS factorization only needs to compress off-diagonal blocks about half of the size of those used in
[36], while keeping about the same accuracy. Unlike the triangular HSS solution procedure in [24]
which is sequential, a scalable triangular ULV factorization scheme with similar cost is proposed.

The detailed complexity of these new HSS algorithms is analyzed. The analysis can help us
compare different methods and provide improvements and optimization. (See, e.g., (39) and (40)).
Discussions on the errors are given. Several numerical examples are used to demonstrate the efficiency
and robustness of the algorithms. We show the effectiveness of the inner-outer HSS preconditioning
for some ill-conditioned problems, such as a Toeplitz problem generated by a Gaussian radial basis
function and a linear elasticity PDE. We observe that, with efficient inner-outer HSS preconditioning,
the preconditioned conjugate gradient method converges quickly for all the examples, and the
convergence is often much faster than with block diagonal preconditioning. The overall inner-outer
preconditioning cost is often insignificant when we manually set the off-diagonal rank bounds to be
small. Our methods can also be built into sparse factorization or preconditioning frameworks as in
[15, 16, 34] by Grasedyck, Le Borne, Kriemann, Xia, et al.

1.2. Outline and notation

The remaining sections are organized as follows. Section 2 provides some new HSS factorization
algorithms for SPD matrices. Additional HSS solution algorithms and our inner-outer HSS
preconditioner is given in Section 3. The complexity and error analysis are presented in Section 4.
Sections 5 and 6 are devoted to some numerical experiments and concluding remarks, respectively.

For convenience, the following notation is used in the presentation:

• For an index set ti ⊂ I ≡ {1, 2, . . . , n}, let tci ∪ ti ∪ tri = I, where all indices in tci are smaller
than those in ti, and all indices in tri are larger than those in ti.

• A|ti×tj is the submatrix of a matrix A with row index set ti and column index set tj .
• If a rank-revealing QR (RRQR) factorization is computed for A|ti×tj , we sometimes write

A|ti×tj ≈ UiA|t̂i×tj
, which can be understood as that the factor A|t̂i×tj

is still stored in A

with row index set t̂i.
• T is a postordered full binary tree with nodes ordered as 1, 2, . . . That is, each non-leaf node

i and its children ci,1, ci,2 are ordered following ci,1 < ci,2 < i. Sometimes we just write the
children as c1, c2 when no confusion is caused. For a node i, denote its parent and sibling by
par(i) and sib(i), respectively.

• diag(A1, . . . , Ak) is a diagonal matrix with diagonal blocks A1, . . . , Ak.

The definition and notation for HSS structures are also briefly reviewed as follows, following a
postordering HSS form [35, 36].

Definition 1.1. Assume A be an n × n dense matrix. Let T be a postordered full binary tree
with 2k − 1 nodes, and ti ⊂ T be an index set associated with each node i of T . We say T is
a postordered HSS tree and A is in an HSS form if:

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

4 JIANLIN. XIA

1. For each non-leaf node i with children c1 and c2, tc1 ∪ tc2 = ti, tc1 ∩ tc2 = φ, and
t2k−1 = I = {1, 2, . . . , n}.

2. There exist matrices Di, Ui, Vi, Ri,Wi, Bi (called HSS generators) associated with each node i

satisfying

Di =
(

Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1

Dc2

)
, Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
, (1)

so that D2k−1 ≡ A|ti×ti . Here, U2k−1, V2k−1, R2k−1, W2k−1, B2k−1 are empty matrices.

A is in a data-sparse form given be the generators. For a non-leaf node i, the generators Di, Ui, Vi

are recursively defined and are not explicitly stored. Define the following HSS blocks:

A−i = A|ti×(I\ti), A
|
i = A|(I\ti)×ti

.

Clearly, Ui gives a column basis for A−i (HSS block row), and V T
i gives a row basis for A

|
i (HSS

block column). Ui and Vi are also called cluster bases in [5]. The maximum (numerical) rank of all
HSS blocks is called the HSS rank of A. The following is a block 4× 4 HSS matrix example:

A =




D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
4 D5


 . (2)

See Figure 1. Obviously, if A is symmetric, we can set [35]

Di = DT
i , Vi = Ui, Bj = BT

i with j = sib(i). (3)

1

D1
D2 D4

D5

2

3

4 5

6

7

level

0

1

2

D3
D6

D7=A

Figure 1. HSS tree for the block 4× 4 HSS matrix (2).

A given HSS form generally enables us to conduct related matrix operations such as matrix
inversions and multiplications in linear complexity, if the HSS rank is small. Otherwise, we can use
compact HSS forms as efficient preconditioners.

2. NEW SPD HSS FACTORIZATION ALGORITHMS

We show how to convert a dense SPD matrix into data-sparse forms, by either direct HSS
construction with ULV factorization, or Cholesky HSS factorization. In this section, for convenience,
each subsection uses the same notation for the generators of a related HSS form. To help the reader
understand the algorithms, we briefly summarize the major framework of each algorithm in Table I.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 5

HSS construction (Section 2.1)
• Leaf level: off-diagonal block row compression for U generators;
• Non-leaf levels: off-diagonal block row compression for R generators;
• Similar off-diagonal block column compression.

ULV HSS factorization (Section 2.2, and similar for Section 2.4)
• Diagonal block factorization;
• Introducing zeros into off-diagonal blocks and preserving diagonal identity matrices;
• Partial diagonal elimination;
• Merging and recursion.

Robust HSS Cholesky factorization (Section 2.3)
• Leaf level:

– Diagonal block factorization;
– Computation of the off-diagonal block row of the factor and its compression

for U generators;
– Partial Schur complement formation;

• Non-leaf level: off-diagonal block row compression for R generators;
• Similar off-diagonal block column compression.

Table I. Framework of the major algorithms in Section 2.

2.1. Scalable symmetric HSS construction

The HSS construction algorithm in [35] uses nested compression of the HSS blocks of a given matrix
A. However, it is a sequential process since early compression results participate in later compression.
The algorithm can be modified into a new scalable one. In particular, for a symmetric matrix A, we
need only to compress the block rows. Moreover, we can further reduce the compression cost. The
method has two stages and is briefly explained as follows. For simplicity, assume the row size and
numerical rank of all HSS block rows are m and r, respectively.

During the first stage, all HSS block rows are compressed. If i is a leaf, compute an RRQR

A|ti×(I\ti) ≈ UiA|t̂i×(I\ti)
.

If i is a non-leaf node with children c1 and c2, compute an RRQR of the matrix(
A|t̂c1×(I\ti)

A|t̂c2×(I\ti)

)
≈

(
Rc1

Rc2

)
A|t̂i×(I\ti)

.

Then by recursion,

A|ti×(I\ti) ≈
(

Uc1A|t̂c2×(I\ti)

Uc2A|t̂c2×(I\ti)

)
=

(
Uc1

Uc2

)(
Rc1

Rc2

)
A|t̂i×(I\ti)

= UiA|t̂i×(I\ti)
.

That is, we obtain the orthonormal column basis Ui for each HSS block row A−i . These compression
steps are done independently of other nodes at the same level of the HSS tree. After this stage, all
U and R generators are available.

In the next stage, we compute the B generators. Let j = sib(i). According to the first stage, we
have

A|ti×tj ≈ UiA|t̂i×tj
.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

6 JIANLIN. XIA

On the other hand, in the HSS approximation, A|ti×tj
has a form UiBiU

T
j . Thus, we can let

BT
i =





A|t̂j×ti
Uj , if i is a leaf,

A|t̂j×ti

(
Rcj1

Rcj2

)
, otherwise.

(4)

Note that the method in [35] needs additional compression steps to get Bi, which are generally more
expensive than (4).

2.2. Improved ULV-type HSS factorization

The ULV HSS Cholesky factorization in [35] computes an explicit ULV-type factorization of an HSS
matrix A. The basic idea is similar to the implicit ULV solution in [8]. However, for SPD matrices,
as pointed out in [35], the efficiency of these ULV algorithms can be improved. Moreover, we can
take advantage of certain special forms of the generators. The main steps are illustrated in Figure 2
and are explained as follows. For simplicity, assume all leaf level HSS block row sizes are mi ≡ m,
and the ranks of all HSS blocks are r. Since Ui forms a basis for the column space of A−i , sometimes
we write A−i = UiTi.

If node i is a leaf, compute a Cholesky factorization Di = LiL
T
i , and then a full QL factorization

of L−1
i Ui as

L−1
i Ui = Qi

(
0
Ũi

)
m− r

r
. (5)

See Figure 2(i)–(ii). Then apply QT
i to the HSS block row A−i = UiTi (on the left):

QT
i A−i =

(
0

ŨiTi

)
m− r

r

This also means Qi is applied to the HSS block column (on the right). Notice that the diagonal
block remains to be an identity matrix. See Figure 2(iii). After this, the leading m− r rows of block
row i can be eliminated. This is done for all the leaves.

If node i is a non-leaf node with its children c1 and c2 being leaves, assume the previous operations
are applied to both c1 and c2. That is,

(
QT

c1
L−1

c1

QT
c2

L−1
c2

) (
Dc1 Uc1Bc1U

T
c2

Uc2B
T
c1

UT
c1

Dc2

)(
L−T

c1
Qc1

L−T
c2

Qc2

)

=


 I diag

(
0, Ũc1Bc1Ũ

T
c2

)

diag
(
0, Ũc2B

T
c1

ŨT
c1

)
I


 , (6)

where diag(· · ·) denotes a block diagonal matrix with the given blocks on the diagonal. Then we
merge appropriate blocks on the right-hand side of (6) and remove c1 and c2 from the HSS tree so
that i becomes a leaf with D and U generators

Di =
(

I Ũc1Bc1Ũ
T
c2

Ũc2B
T
c1

ŨT
c1

I

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
. (7)

(Note that we are using Di and Ui to mean the generators of a smaller matrix after elimination,
instead of A. This smaller matrix is called a reduced HSS matrix). See Figure 2(iv).

The same operations then apply recursively. At the root level, a direct Cholesky factorization is
computed. Figure 3 shows how an HSS tree is reduced along the factorization.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 7

D1

D2

D4

D5

L
1

L
2

L
4

L
5

U3

U1

U4

L
1

T
L

2

T
L

4

T
L

5

T

U2

U5
U6

Q
1

T

Q
1

Q
2

Q
2

T

Q
4

Q
5

Q
4

T

Q
5

T

(i) Cholesky factorization of diagonal blocks (ii) Introducing zeros into off-diagonal

L
3

T
L

6

T

L
3

L
6

(iii) After introducing zeros (iv) Merging remaining blocks and repeating

Figure 2. An improved ULV HSS factorization scheme for an SPD matrix.

1

D1,U1

2

3

4 5

6

7

D2,U2 D4,U4 D5,U5

B1 B4

B3

R1 R2 R4 R5

(i) Symmetric HSS tree

D3,U3

3 6

7

D6,U6

B3

(ii) After eliminating one level

D7

7

(iii) Until the root

Figure 3. How the HSS tree is reduced along the ULV HSS factorization.

Note that due to the special form of Di in (7), the intermediate Cholesky factorization Di = LiL
T
i

at non-leaf levels can be done quickly. That is, we have

Li =
(

I

Ũc2B
T
c1

ŨT
c1

L̃i

)
, L̃iL̃

T
i = I − (Ũc2B

T
c1

)(Ũc2B
T
c1

)T . (8)

Similarly, the update L−1
i Ui for (7)–(8) can also be done quickly as

L−1
i Ui =

(
I

−L̃−1
i Ũc2B

T
c1

ŨT
c1

L̃−1
i

)(
Ũc1Rc1

Ũc2Rc2

)
=

(
Ũc1Rc1

L̃−1
i Ũc2 [Rc2 − (BT

c1
ŨT

c1
)(Ũc1Rc1)]

)
. (9)

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

8 JIANLIN. XIA

(8)–(9) can be carefully organized so that they only need six matrix multiplications and one
triangular solution.

This improved algorithm is thus more efficient than the one in [35], which requires two dense
square matrix products in the form of QT

i D̃iQi and the full QR factorization of a size (m − r) × r

dense block for each node i. In fact, according to Table VI in Section 4, this new ULV factorization
with m = 2r costs 35

3 r2n flops, while the one in [35] costs 56
3 r2n flops.

Our algorithm computes an ULV-type HSS factorization

A = L̂L̂
T
, (10)

where L̂ is given by a sequence of orthogonal and lower triangular matrices. We call L̂ an ULV
factor, which is formed recursively. Let A(l) be the reduced matrix at level l obtained from A(l+1)

after the elimination of all nodes at level l +1, where A(lmax) ≡ A for the leaf level lmax. Assume the
nodes at level l are j1, j2, . . . , jα. Also let Pl be a permutation matrix which performs all the merge
steps during the elimination of level l + 1 and also forms the new reduced HSS matrix. That is,

PlXldiag
((

Ūcj1,1Rcj1,1

Ūcj1,2Rcj1,2

)
, . . . ,

(
Ūcjα,1Rcjα,1

Ūcjα;2Rcjα,2

))
=

(
0

diag
(
Ūj1 , . . . , Ūjα

)
)

, (11)

PlXlA
(l+1)XT

l PT
l = diag

(
I,A(l)

)
, (12)

where

Xl = diag
(
diag

(
QT

cj1,1
L−1

cj1,1
, QT

cj1,2
L−1

cj1,2

)
, . . . , diag

(
QT

cjα,1
L−1

cjα,1
, QT

cjα,2
L−1

cjα,2

))
.

Then we let
L̂ ≡ L̂(lmax), and A(l) = L̂(l)(L̂(l))T , l = lmax, lmax − 1, . . . , 1, 0,

where L̂(0) is the Cholesky factor associated with the root, and

L̂(l+1) = X−1
l PT

l diag
(
I, L̂(l)

)
Pl, l = lmax − 1, lmax − 2, . . . , 1, 0. (13)

2.3. Robust HSS Cholesky factorization

2.3.1. Motivation of robust and effective HSS preconditioning The factorization method in [36]
computes an approximate Cholesky factorization for a dense SPD matrix A ≈ RT R, where R is
an upper triangular HSS matrix. The approximation RT R is guaranteed to exist and to be positive
definite, regardless of the approximation accuracy. The basic idea is called Schur compensation and
can be illustrated as follows. Consider a block 2× 2 SPD matrix and the Cholesky factorization of
its (1, 1) block:

A ≡
(

A11 AT
21

A21 A22

)
=

(
DT

1

A21D
−1
1 I

)(
D1 D−T

1 AT
21

S

)
, (14)

where S = A22 −
(
A21D

−1
1

) (
D−T

1 AT
21

)
is the Schur complement. Compute an SVD: D−T

1 AT
21 =

U1ΣUT
2 + Û1Σ̂ÛT

2 , where the singular values in Σ are larger than a tolerance τ , and those in Σ̂ are
smaller than τ . (A relative tolerance τ may be used.) If all the singular values in Σ̂ are dropped,
then S is approximated by

S̃ = A22 − Û2Σ2ÛT
2 = S + O(τ2). (15)

That is, a positive semidefinite term is automatically added to the Schur complement. Compute a
Cholesky factorization S̃ = D2D

T
2 . We then get an approximate Cholesky factorization A ≈ RT R.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 9

It is also shown in [36] that, with certain additional techniques, a modification to R can work as
an effective preconditioner when the low-rank property is not significant. That is, if the numerical
rank for a given tolerance is large, we can still manually set a small rank to get a low accuracy R.
The idea is then generalized so that the Cholesky factor of A is approximated by an HSS matrix.
RRQR factorizations are often used to replace SVDs in the compression, since they are generally
more efficient.

2.3.2. Improved HSS Cholesky factorization The HSS Cholesky factorization algorithm in [36] uses
a form for R where only D, U,R, B generators are needed. R is computed block rowwise. The
computed off-diagonal block column R|tc

i×ti
and off-diagonal block row R|ti×tr

i
associated with

node i are put together as ((R|tc
i×ti

)T R|ti×tr
i

), which is compressed to provide the column
basis Ui. This is equivalent to constructing a form for a symmetric full matrix whose block upper
triangular part is R. Here, we propose a new procedure which has several advantages:

(1) Instead of compressing ((R|tc
i×ti

)T R|ti×tr
i

), we compress R|tc
i×ti and R|ti×tr

i

independently so as to get their row and column bases Ui and V T
i , respectively. This

implementation is much simpler.

(2) The HSS form of the Cholesky factor we obtained is more compact, since the
individual numerical ranks of R|tc

i×ti and R|ti×tr
i

are usually smaller than that of
((R|tc

i×ti)
T R|ti×tr

i
), if the same compression accuracy is used.

(3) The algorithm in [36] maintains a compressed form (see (22) below) only for Schur complement
computations. Here, this compressed form is also used to speed up the computation of Vi

generators.

The new HSS Cholesky factorization procedure is described with the aid of the following definition.

Definition 2.1. [36] For a node i of a postordered binary tree T , the set of predecessors of i is
defined to be

pred(i) =
{ {i} , if i is the root of T ,
{i} ∪ pred(par(i)), otherwise.

A visited set Vi (set of visited nodes before i whose siblings have not been visited) is defined to be

Vi = {j : j is a left node and sib(j) ∈ pred(i)}. (16)

We can still use the HSS tree T as in Definition 1.1 for R, but some generators do not exist. The
following result can be easily verified.

Observation 1. For an HSS matrix to be block triangular, some of its generators are empty
matrices, as specified in Table II.

Lower triangular Upper triangular
par(i) ∈ pred(1) Ui, Ri Vi, Wi

par(i) ∈ pred(j) Vi, Wi Ui, Ri

Table II. Empty generators of triangular HSS matrices, where j is the last (largest-labeled) leaf of the
HSS tree of the matrix.

The factorization is conducted along the postordering traversal of the HSS tree for nodes
i = 1, 2, . . .

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

10 JIANLIN. XIA

If i is a leaf, let A(i−1)|tr
i−1×tr

i−1
denote the Schur complement due to the previous i−1 factorization

steps. A(i−1)|tr
i−1×tr

i−1
is partially formed, or, its first block row A(i−1)|ti×tr

i−1
is available (see (23)

below). Note tri−1 = ti ∪ tri . Compute a block row
(

Di R|ti×tr
i

)
of R as in the usual Cholesky

factorization. That is, compute the following Cholesky factorization and update the off-diagonal
block as

A(i−1)|ti×ti
= DT

i Di, R|ti×tr
i

= D−T
i A(i−1)|ti×tr

i
. (17)

Then compress R|ti×tr
i

with an RRQR factorization

R|ti×tr
i
≈ UiR|t̂i×tr

i
. (18)

The off-diagonal block column R|tc
i×ti is already partially compressed in previous steps so that

R|tj×ti ≈ UjR|t̂j×ti
for all j ∈ Vi ≡ {j1, j2, . . . , js}, where tci = tj1 ∪ tj2 ∪ · · · ∪ tjs . Ignoring

previously computed U bases, we only need to compress
(
(R|t̂j1×ti

)T (R|t̂j2×ti
)T · · · (R|t̂js×ti

)T
)
≈ Vi

(
(R|t̂j1×t̂i

)T (R|t̂j2×t̂i
)T · · · (R|t̂js×t̂i

)T
)

.

(19)
Note that (19) can be replaced by a more efficient step as illustrated in (26) and (27) below.

If i is a non-leaf node, let c1 and c2 be its children. Clearly, trc2
= tri . The blocks R|tc1×tr

i
and

R|tc2×tr
i

are compressed in previous steps. With the basis matrices ignored, we compress the following
matrix (

R|t̂c1×tr
i

R|t̂c2×tr
i

)
≈

(
Rc1

Rc2

)
R|t̂i×tr

i
. (20)

Similarly, the further compression of R|tc
i×ti =

(
R|tc

i×tc1
R|tc

i×tc2

)
is done by ignoring certain

existing V basis matrices. That is, compress
((

(R|t̂j1×t̂c1
)T · · · (R|t̂js×t̂c1

)T
)

(
(R|t̂j1×t̂c2

)T · · · (R|t̂js×t̂c2
)T

)
)
≈

(
Wc1

Wc2

) (
(R|t̂j1×t̂i

)T · · · (R|t̂js×t̂i
)T

)
. (21)

After these compression steps, Ui and Vi are implicitly available due the recursions in (1).
According to Observation 1, if i ∈ pred(1), (18) and (20) are not needed. Also, if i ∈ pred(j)
where j is the last (largest-labeled) leaf, (19) and (21) are not needed.

Furthermore, if i is a right node with its sibling j, we set

Bj = R|t̂j×t̂i
.

Before the traversal of each leaf i, we partially form A(i−1)|ti×tr
i−1

, which is the first block row of
the new Schur complement. Similar to [36], we also maintain a compact approximation

R|tc
i×tr

i−1
≈ Qi−1Yi−1, (22)

where Qi−1 has orthonormal columns and is not stored. Once (22) holds, then

A(i−1)|ti×tr
i−1

= A|ti×tr
i−1

− (R|tc
i×ti)

T R|tc
i×tr

i−1
≈ A|ti×tr

i−1
− Y T

i−1;1Yi−1, (23)

where a partitioned form of (22) is used:
(

R|tc
i×ti R|tc

i×tr
i

) ≈ Qi−1

(
Yi−1;1 Yi−1;2

)
. (24)

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 11

Here, Yi−1 is obtained approximately by recursion. For any i− 1 ∈ pred(1), set Yi−1 ≡ R|t̂i−1×tr
i−1

.
Otherwise, let j be the largest leaf before i so that Yj−1 is previously available. Then Yi−1 can be
approximately computed with an RRQR factorization(

Yj−1;2

R|t̂j×tr
j

)
≈ Q̃i−1Yi−1. (25)

See [36] for the detailed derivation.
Furthermore, unlike [36], here we can use Yi−1 to improve the efficiency of computing Vi. Due to

(24), the HSS block column R|tc
i×ti is already in a compressed form

R|tc
i×ti

≈ Qi−1Yi−1;1.

Thus, to get the V T
i which gives a row basis for the row space of R|tc

i×ti , we just compress Y T
i−1;1

with an RRQR factorization
Y T

i−1;1 ≈ ViTi, (26)

where Ti is not stored. Then set(
(R|t̂j1×t̂i

)T (R|t̂j2×t̂i
)T · · · (R|t̂js×t̂i

)T
)

= Vi

(
(R|t̂j1×ti

)T (R|t̂j2×ti
)T · · · (R|t̂js×ti

)T
)

.

(27)
Equations (26) and (27) can be used to replace (19). This generally reduces the compression cost,
since the difference between the costs of (19) and (26)–(27) is(

4m(sr)r − 2r2(sr + m) +
4
3
r3

)
−

(
2(sr)mr + 4mrr − 2r2(r + m) +

4
3
r3

)

= 2r2 ((m− r)s + r − 2m) .

Here, m > r in general, and s is as large as O(log n).

2.4. Triangular ULV HSS factorization

Next, we study the ULV factorization of triangular HSS matrices. Notice that the ULV algorithm
in Section 2.2 cannot be applied in a straightforward way, due to the nonsymmetry. We consider a
(block) lower triangular HSS matrix L. (An upper triangular HSS factorization procedure can be
similarly derived.) A triangular HSS solution algorithm is given in [23, 24]. The algorithm traverses
the HSS tree with depth-first sweeps so that newly computed solution entries can be used to update
the right-hand side, or information is propagated to all related nodes of the HSS tree. This algorithm
implicitly computes a triangular HSS matrix-vector multiplication by recursion. It is thus not suitable
for parallelization.

Here, we provide a new triangular ULV HSS solver which is scalable. Again, we convert the
diagonal blocks to identity matrices so as to avoid multiplications of square dense blocks. The main
steps are illustrated in Figure 4 and explained briefly as follows.

If node i is a leaf, multiply D−1
i to the block row i so that the diagonal block becomes an identity

matrix, and update Ui as D−1
i Ui. Compute a full QL factorization of D−1

i Ui

D−1
i Ui = Qi

(
0
Ũi

)
m− r

r
. (28)

Then let QT
i Vi =

(
Ṽi

Ṽi

)
, where the partition follows that of (28). Clearly, the leading (m − r) ×

(m− r) subblock of the diagonal block becomes an identity matrix, which is the only nonzero block
in those rows and can be eliminated.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

12 JIANLIN. XIA

D4

D2

D5

U6 U5

U2

D1D1

D2

D4

D5

Q
2

T

Q
4

T

Q
5

T

(i) Factorization of diagonal blocks (ii) Introduction of zeros into off-diagonal

Q
2

T Q
4

T Q
5

T

(iii) Restoring diagonal identity (iv) Merging remaining blocks and repeating

Figure 4. A triangular ULV HSS factorization scheme.

If node i is a non-leaf node with its children c1 and c2 being leaves, assume the previous operations
are applied to both c1 and c2. That is,

(
QT

c1
D−1

c1

QT
c2

D−1
c2

)(
Dc1

Uc2Bc2V
T
c1

Dc2

)
=

(
I

diag
(
0, Ũc2Bc2 Ṽ

T
c1

)
I

)
. (29)

Then we merge appropriate blocks on the right-hand side of (29) and remove c1 and c2 from the
HSS tree so that i becomes a leaf with D and U generators

Di =
(

I

Ũc2Bc2 Ṽ
T
c1

I

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
. (30)

L is reduced to a smaller matrix. The same operations then apply recursively.

Note that due to the special form of Di in (30), the intermediate update step D−1
p Ũp can be done

quickly as

D−1
i Ũi =

(
Ũc1Rc1

Ũc2 [Rc2 − (Bc2 Ṽ
T
c1

)(Ũc1Rc1)]

)
. (31)

The products in (30)–(31) can be carefully organized so that only five multiplications of r×r matrices
are needed.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 13

3. INNER-OUTER HSS PERCONDITIONER

3.1. Improved ULV HSS solution

Due to the improved ULV-type HSS factorization in Section 2.2, the solution procedure with the
ULV factor is much simpler than the one in [35]. For example, for L̂ in (10), we consider the solution
of the following system by forward substitution:

L̂y = b.

In the process, each node i of the HSS tree is associated with bi, a piece of b, and yi, a piece of y.
These pieces are defined recursively. First, b is partitioned into bi pieces according to the leaf level
Li sizes. For each leaf i, let

b̃i = QT
i L−1

i bi. (32)

Partition b̃i as b̃i =

(
b̃i,1

b̃i,2

)
m− r

r
, and set

ỹi = b̃i,1.

Assume similar operations are also conducted for j = sib(i). Then for p = par(i), set bp =

(
b̃i,2

b̃j,2

)

if i < j, or bp =

(
b̃j,2

b̃i,2

)
otherwise. Similar operations can then be applied to upper level nodes.

These steps proceed until the root node 2k − 1 is reached, where

ỹ2k−1 = L−1
2k−1bk. (33)

After all these ỹi pieces are computed, we traverse the HSS tree top-down. Let y2k−1 = ỹ2k−1.

For a non-leaf node i with children c1, c2, partition ỹi as ỹi =
(

ỹi,1

ỹi;2

)
r

r
and compute

yc1 = L−T
c1

Qc1

(
ỹc1

ỹi;1

)
, yc2 = L−T

c2
Qc2

(
ỹc2

ỹi;2

)
. (34)

When all the nodes are visited, the pieces yi associated with all the leaves can be assembled into y.
See Figure 6 below.

3.2. Triangular ULV HSS solution

We then consider the ULV solution for a lower triangular HSS system

Lx = b.

Initially, partition b conformably following the sizes of the leaf level diagonal blocks Di in L.
For each node i of the HSS tree, compute

b̃i = QT
i (D−1

i bi)

Similarly, the structure of Di in (30) can be used to accelerate the computation of D−1
i bi. Partition

b̃i as b̃i =
(

b̃i,1

b̃i,2

)
m− r

r
, and set

x̃i = b̃i,1.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

14 JIANLIN. XIA

Then similar to the previous subsection, we form bp by stacking b̃i,2 and b̃j,2 for j = sib(i). The
process then proceeds, until the root node 2k − 1 is reached, where

x̃2k−1 = D−1
2k−1bk.

After all solution pieces x̃i are computed, we traverse the HSS tree top-down. Let x2k−1 = x̃2k−1.

For a non-leaf node i with children c1, c2, partition x̃i as x̃i =
(

x̃i,1

x̃i;2

)
r

r
and compute

xc1 = Qc1

(
x̃c1

x̃i;1

)
, xc2 = Qc2

(
x̃c2

x̃i;2

)
. (35)

When all the nodes are visited, the pieces xi associated with all the leaves can be assembled into x.

3.3. Inner-outer HSS solution

With all the new HSS algorithms above, we are ready to present our inner-outer HSS algorithms. In
the inner-outer factorization, A is approximated by an HSS form with the HSS tree T , where each
diagonal block Di is approximately factorized as Di ≈ LiL

T
i , and Li is an inner lower triangular HSS

form with the HSS tree T0. This is illustrated with Figure 5. Then ULV factorizations are computed
for both inner and outer HSS forms. Sections 2.3 and 2.2 are used. In the solution stage, we follow
an outer solution procedure given by the ULV solution in Section 3.1. In the meantime, for any
solution steps involving Li associated with a leaf i, such as (32), we use the triangular HSS solution
in Section 3.2. The solution algorithm is summarized in Table III.

1

D1
D2 D4

D5

2

3

4 5

6

7

D3
D6

D7=A

Figure 5. A pictorial illustration of the inner-outer HSS process, where each leaf Di block of the outer
HSS tree (in Figure 1) is approximately factorized into an HSS Cholesky factor as the inner HSS

matrix.

In practical implementations of the algorithm as a preconditioner, additional techniques can
be utilized. One is that we can traverse the HSS trees levelwise, so that the algorithms can be
implemented in parallel. For example, when all the yi pieces are obtained as in (34), they can be
first assembled together at each level. Assume the solution pieces provided at each level l form a
vector ȳ(l). Then the solution y is formed by collecting all ȳ(l) with appropriate permutations (Figure
6). That is, we define

y(l) = PT
l

(
ȳ(l)

y(l−1)

)
, l = lmax, lmax − 1, . . . , 2, 1 (36)

with ȳ(0) = y2k−1. Then y ≡ y(0).
Another techniques is that we can use diagonal shifts in the outer factorization step to enhance

robustness. (This is not needed for the inner factorizations.) Since Di has the form in (7) for a

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 15

Algorithm 1. (Inner-outer HSS solution)

subroutine io hsssol(A, b)
Input: A in factorized form, where the outer ULV factor is given by Qi and Li, and Li

is given by its inner ULV factor; b: right-hand side (initially, y ≡ b)
Output: Solution y

for all nodes i at the bottom level lmax, partition y into yi pieces
for each leaf i, compute ỹi = QT

i · [triulvsol(Li, bi)]
for l = lmax − 1, lmax − 2, . . . , 1 do

for all nodes i at level l do

for each child c of i, compute b̃c = QT
c L−1

c bc ≡
(

ỹc,1

ỹc,2

)
m− r

r

Let bi =
(

ỹc1,2

ỹc2,2

)
, ỹc1 = ỹc1,1, ỹc2 = ỹc2,1

end for

end for

Compute ỹ2k−1 = L−1
2k−1b2k−1

for l = 0, 1, . . . , lmax − 1 do

for all nodes i at level l do

Partition ỹi as ỹi =
(

ỹi,1

ỹi;2

)
r

r

for j = 1, 2, compute ycj = L−T
cj

Qcj

(
ỹcj

ỹi;j

)

end for

end for

for each leaf i, compute ycj = triulvsol

(
LT

cj
, Qcj

(
ỹcj

ỹi;j

))

end subroutine

Table III. An inner-outer HSS solution algorithm, where triulvsol represents the solution scheme in
Section 3.2.

non-leaf node i in T , we can add the following shift to Di:

si = εI. (37)

Notice that this diagonal shift is only needed for non-leaf nodes in T . In parallel computing, the
number of non-leaf nodes may be set to be twice of the number of processors, and the affect on the
accuracy is limited.

4. ANALYSIS

We collect all the new HSS algorithms in this work as follows:

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

16 JIANLIN. XIA

y1 y2

y3

y(lmax)

y(lmax-1)

y(0)

...
...

{
y(0) {

y(lmax)=
y

y(lmax-1)
...

1 2

3

level

0

lmax-1

lmax

...
...

Figure 6. How the solution pieces generated in Algorithm 1 are assembled into the solution y, where
the pieces yi associated with the nodes at each level l of the HSS tree T are assembled into ȳ(l), and

then into y(l) as in (36).

• Direct-HSS: The new HSS algorithms based on direct HSS construction and ULV operations:

– Direct-HSS(constr): The HSS construction procedure in Section 2.1.
– Direct-HSS(fact): The ULV HSS factorization procedure in Section 2.2.
– Direct-HSS(sol): The ULV HSS solution procedure in Section 3.1.

• Tri-HSS: The new HSS algorithms based on triangular HSS operations:

– Tri-HSS(constr): The HSS Cholesky factorization procedure in Section 2.3.
– Tri-HSS(sol): The triangular HSS factorization procedure in Section 2.4 together with

solution in Section 3.2.

• I/O-HSS: The new inner-outer HSS algorithms:

– I/O-HSS(constr): The procedure with outer Direct-HSS(constr) and inner
Tri-HSS(constr).

– I/O-HSS(fact): The procedure with outer Direct-HSS(fact).
– I/O-HSS(sol): The procedure with outer Direct-HSS(sol) and inner Tri-HSS(sol).

For convenience, we use the following notation in the analysis and the numerical experiments:

• For the outer HSS algorithms, n, r, m, and T are the matrix size, HSS rank, leaf level diagonal
block size, and outer HSS tree, respectively. The number of leaves in T is k.

• For the inner HSS algorithms, we similarly use the notation n0, r0, m0, T0, and k0. Here,
n0 ≡ m.

• ξ(1), ξ(2), and ξ(3) are the flop counts of the above three types of algorithms. For example,
ξ
(2)
constr is the cost of Tri-HSS(constr).

4.1. Complexity count: the new HSS Cholesky factorization as an example

As an example, we count the flops of Tri-HSS(constr), and then other algorithms can be easily
studied. For simplicity, assume the inner HSS tree T0 is a perfect binary tree, and m0 = O(r0). Since
there are k0 leaves, k0m0 = n0. We also assume the root of T0 is at level 0 so that there are totally
about log2 k0 levels. Our complexity analysis uses the flop counts of some basic matrix operations
in Table IV.

Also two useful formulas are needed:

∑

i at level l

ni =
2l∑

j=1

(k0 − j
k0

2l
)m0 =

1
2
k0m0(2l − 1),

∑

i at level l

si =
l∑

j=1

(
l

j

)
= 2l − 1, (38)

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 17

Operation Flops
Cholesky factorization of an m0 ×m0 matrix 1

3m3
0

Product of an m0 × q matrix and an q × r0 matrix 2m0qr0

RRQR factorization of an m0 × q matrix with rank r0 4m0qr0 − 2r2
0(m0 + q) + 4

3r3
0

Full QR factorization of an m0 × r0 tall matrix (m0 > r0) 2r2
0

(
m0 − r0

3

)

Product of the Q factor and an m× q matrix 2r0q(2m0 − r0)
Solution of an order m0 triangular system Lx = b m2

0

Table IV. Flop counts (leading terms only) of some basic matrix operations, which can be found in,
say, [10, 13] or can be derived based on those. The RRQR factorization in our work is based on the

modified Gram-Schmidt process with column pivoting [13].

where ni is the column size of R|ti×tr
i
, and si is the cardinality of Vi in (16). The first formula is

because there are 2l nodes at each level l, with the ni values (k0 − j k0
2l)m0, j = 1, 2, . . . , 2l. The

second formula is derived in [33].
(a) Elimination cost. For each leaf i, the elimination step (17) costs m3

0
3 + m2

0ni flops. Thus, the
total elimination cost for all leaves is

∑

i: leaf

(
m3

0

3
+ m2

0ni

)
=

k0m
3
0

3
+ m2

0

∑

i at level log2 k0

ni =
1
2
k2
0m

3
0 +

1
3
k0m

3
0.

(b) Compression cost. For each leaf i, the RRQR step (18) is applied to an m0 × ni block to get
Ui. For each non-leaf node i at level l > 0, the RRQR step (20) is applied to a 2r0 × ni block to get
Rc1 , Rc2 . The total for all HSS block row compression is then

∑

i: leaf

(4m0nir0 − 2r2
0(m0 + ni) +

4
3
r3
0) +

log2 k0−1∑

l=1

∑

i at level l

[4(2r0)nir0 − 2r2
0(2r0 + ni) +

4
3
r3
0]

≈ 2r0k
2
0m

2
0 + 2r2

0k
2
0m0 − 2r2

0km0 +
4
3
k0r

3
0,

where (38) is used.
For each leaf i, to compute Vi with (26)–(27), we need the compression of a size r0 ×m0 block

and the multiplication of a m0 × r0 and an r0 × sir0 matrix. For each non-leaf node i at level l > 0,
the RRQR step (21) is applied to an 2r0 × sir0 block to get the W generators. The total cost at all
HSS block column compression is then

∑

i: leaf

[4m0r
2
0−2r2(m0+r0) +

4
3
r3
0+2(sir0)r0m0]+

log2 k−1∑

l=1

∑

i at level l

[8(sir0)r2
0−2r2

0(2r0+sir0)+
4
3
r3
0]

≈ 4k0r
2
0m0 − 8

3
r3
0m0 +

10
3

k0r
3
0.

(c) Schur complement computation cost. Similarly, we can count the cost of (23) and (25) for each
leaf i as

(
m0r0 + 3r2

0

)
k2
0m0.

Therefore, the total factorization cost is roughly

ξ
(2)
constr ≈

(
1
2
m0 + 3r0 + 5

r2
0

m0

)
n2

0. (39)

This formula can be used to minimize ξ
(2)
constr. It can be easily shown that the optimal cost is

ξ
(2)
constr ≈

(
3 +

√
10

)
r0n

2
0, (40)

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

18 JIANLIN. XIA

which is achieved when m0 =
√

10r0. If we choose m0 = 2r0 as often used, ξ
(2)
constr ≈ 13

2 r0n
2
0, which is

slightly larger than the optimal cost. On the other hand, the original version in [36] with m0 = 2r0

costs at least 11r̃0n
2
0 flops [33], where r̃0 may be as large as 2r0.

Similarly, the costs of the new ULV triangular HSS factorization and solution are

ξ
(2)
fact ≈ r0

(
m0 + 2r0 +

50
3

r2
0

m0

)
n0 and ξ

(2)
sol ≈

(
m0 + 4r0 + 8

r2
0

m0

)
n0,

respectively.

4.2. Complexity of the inner-outer HSS algorithm and other algorithms

The complexity of other algorithms involved can be counted similarly. See Table V.

Type Operation Complexity
Construction 2

(
1 + r

m

)
rn2

Direct-HSS ULV factorization
(

1
3m2 + mr + 2r2 + 38

3
r3

m

)
n

ULV solution
(
m + 4r + 8 r2

m

)
n

Factorization
(

1
2m0 + 3r0 + 5 r2

0
m0

)
n2

0

Tri-HSS ULV factorization r0

(
m0 + 2r0 + 50

3
r2
0

m0

)
n0

ULV solution
(
m0 + 4r0 + 8 r2

0
m0

)
n0

Construction 2
(
1 + r

m

)
rn2 +

(
1
2m0 + 3r0 + 5 r2

0
m0

)
mn

I/O-HSS Factorization
[
r0

(
m0 + 2r0 + 50

3
r2
0

m0

)
+ r

(
m0 + 4r0 + 8 r2

0
m0

)
+ 2r2 + 38

3
r3

m

]
n

Solution
(
m0 + 4r0 + 8 r2

0
m0

+ 4r + 8 r2

m

)
n

Table V. Flop counts (leading terms only) of the HSS algorithms proposed in this work.

In particular, with certain values of m and m0, we get some sample counts in Table VI. It can
then be verified that the new HSS algorithms proposed in this work are generally much faster than
similar existing ones. See, e.g., Section 2.2.

Type Operation Complexity
Construction 3rn2

Direct-HSS ULV factorization 35
3 r2n

ULV solution 10rn

Factorization 13
2 r0n

2
0

Tri-HSS ULV factorization 37
3 r2

0n0

ULV solution 10r0n0

Construction 23
8 rn2

I/O-HSS Factorization 73
3 r2n

Solution 14rn

Table VI. Flop counts (leading terms only) as in Table V, with r = r0, m0 = 2r0, m = n
4
. (These

assumptions may not be satisfied in the numerical experiments in the next section.)

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 19

4.3. Approximation errors

The off-diagonal compression introduces errors into the approximations, which can be roughly
measured by the following result.

Proposition 4.1. For a given SPD matrix A, let τ be the relative tolerance in the off-diagonal
compression (by truncated SVD). Then after the outer HSS construction for A, the HSS
approximation Ã satisfies

||A− Ã||2
||A||2 ≤ τO(log n).

Sketch of the proof. The proof uses the result that the U, V generators have orthonormal columns.
The HSS tree T has O(log n) levels, and the approximation error accumulates additively when the
compression level moves bottom-up along T .

This proposition can be applied to HSS constructions with a given relative tolerance τ for the off-
diagonal singular values. For an off-diagonal block B, the singular values σi that satisfy σi < σ1τ are
dropped, where σ1 is the largest singular value of B. The number of remaining singular values is the
numerical rank of B. The proposition gives a bound for the error introduced in the approximation
of A.

The error analysis for the HSS Cholesky factorization is less straightforward. As in [18], the
compression of R|ti×tr

i
= D−T

i A(i−1)|ti×tr
i

in (17) with an absolute error τ0 introduces an error of
e = O (‖D1‖2 τ0) = O

(√‖A‖2τ0

)
into A(i−1)|ti×tr

i
. (If an relative tolerance is used, this becomes

more complicated.) With hierarchical compression, the error introduced into the original off-diagonal
block A|ti×tr

i
can be as large as O(log n) · e. Moreover, the compression of R|ti×tr

i
adds an error

of ẽ = O(τ2
0) to the Schur complement Si, which continues to be factorized approximately, and ẽ

may be magnified by O (n). Such analysis may be too pessimistic, and the detailed study is not
the main focus of this work. In practice, the error is often well controlled. Since our objective is
preconditioning, a lower accuracy is allowed in the inner HSS Cholesky factorization. The feasibility
is verified by the numerical experiments.

5. NUMERICAL EXPERIMENTS

The inner-outer HSS algorithms and others are implemented in Matlab, and are tested on various
examples. For convenience, we list additional notation as follows, other than that summarized at the
beginning of Section 4:

Notation Meaning Notation Meaning
κ2 (A) 2-norm condition number of A e Relative residual ||A1x−b||2

||b||2
ε Size of the shift in (37) Niter Number of preconditioned
Nshift Number of times when shifts (37) are conjugate gradient (PCG) iterations

used to avoid breakdown in I/O-HSS ξiter Total PCG cost (flops)

Example 1. Let

A0 =
(√

|xi − xj |
)

n×n

, (41)

where the points xi = cos((2i + 1)π/2n) are the zeros of the nth Chebyshev polynomial, as used in
[7, 9].

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

20 JIANLIN. XIA

We demonstrate the performance of the algorithms for a linear system with an SPD coefficient
matrix:

A1x = b, with A1 = AT
0 A0 + 2I. (42)

(The 2I diagonal matrix ensures that A1 remains positive definite in our numerical tests with the
presence of numerical errors on the computer. This nearly has no effect on the off-diagonal numerical
ranks in our factorizations, and does not change the nature of the tests.) A1 has size n ranging from
500 to 160, 000, and b is generated with random exact x. Several aspects are tested.

First, both Tri-HSS and Direct-HSS algorithms proposed here are faster than the original
versions in [7, 36]. For example, for n = 4000, m0 = 50, and compression accuracy τ0 = 10−6,
our Tri-HSS(constr) and Tri-HSS(sol) (directly applied to A1) cost about 8.00E8 and 6.09E5 flops,
respectively. While the original versions in [36] cost 1.24E9 and 6.11E5 flops, respectively.

In the second test, we use I/O-HSS algorithms to directly solve the system (42). Different inner
and outer off-diagonal compression accuracies are used, which are τ0 and τ , respectively. No diagonal
shift is involved here, or ε = 0 in (37). The performance is demonstrated in Table VII. It can be
seen that, for reasonable accuracy, I/O-HSS(constr) has about O(n2) complexity, and I/O-HSS(fact)
and I/O-HSS(sol) have nearly O(n) complexity.

n 500 1000 2000 4000 8000 16000
ξ
(3)
constr 4.84E6 2.07E7 8.56E7 3.47E8 1.42E9 5.49E9

ξ
(3)
fact 3.30E5 6.88E5 1.40E6 2.79E6 5.77E6 1.06E7

ξ
(3)
sol 7.91E4 1.70E5 3.51E5 7.07E5 1.43E6 2.78E6

e 1.68E − 8 3.06E − 8 5.68E − 8 2.94E − 8 5.32E − 8 4.67E − 8

Table VII. Example 1: Flop counts ξ(3) and relative residuals e of the inner-outer HSS algorithms for
solving (42), where m = 1000, m0 = 50, ε = 0, τ = 10−8, τ0 = 10−6.

The I/O-HSS algorithms are also compared with Tri-HSS and Direct-HSS algorithms, when they
are directly applied to A1 to get about the same accuracy. The same set of parameters m0, τ0 are
used by Tri-HSS and Direct-HSS. (Note that the ULV factorization in Tri-HSS is intended for
parallel implementation and may be slower than the sequential triangular solver in [24]. Thus, here
we use the one in [24], which does not use a factorization stage.) From Figure 7, we observe that
the ξsol costs of all three types of algorithms are comparable to each other, while I/O-HSS can take
into consideration both the scalability and the robustness.

In the third test, we examine the effectiveness of I/O-HSS as a preconditioner in PCG for A1 and
also

A2 = (AT
0 A0)T (AT

0 A0) + 2I.

The matrices A1 and A2 have 2-norm condition numbers κ2 = 5.4e6 and κ2 = 6.2e13, respectively.
In I/O-HSS(constr), we only keep very few columns in the off-diagonal compression, or we manually
set the numerical rank r to be a small number (and set r0 = r). Thus, it is very efficient to obtain and
use the preconditioner. The results are shown in Table VIII. The details of the iteration processes
are shown in Figure 8. We can see that, PCG with I/O-HSS converges much faster and costs far less
than with block diagonal preconditioning.

Lastly, we test the performance of the inner-outer preconditioning by using lower accuracies in
the inner Tri-HSS factorization. For A1 in Table VIII, we use outer HSS rank bound r = 7, and
the inner HSS rank bound r0 varies from 3 to 7. See Table 9 for the performance. We see that fast

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 21

10
3

10
4

10
6

10
7

10
8

10
9

10
10

10
11

n (matrix size)

flo
ps

Tri−HSS
I/O−HSS
Basic−HSS

10
3

10
4

10
5

10
6

10
7

10
8

n (matrix size)

flo
ps

Basic−HSS
I/O−HSS

10
3

10
4

10
4

10
5

10
6

10
7

n (matrix size)

flo
ps

I/O−HSS
Tri−HSS
Basic−HSS

(i) ξconstr (ii) ξfact (iii) ξsol

Figure 7. Example 1: Flop counts of I/O-HSS, Tri-HSS, and Direct-HSS for solving (42), where
m = 1000, m0 = 50, τ = 10−8, τ0 = 10−6, and ε = 0 in (37).

Matrix A1 (κ2 = 5.4E6) Matrix A2 (κ2 = 6.2E13)
Niter ξiter e Niter ξiter e

Block diagonal 1354 4.39E10 9.10E−15 Block diagonal 3793 1.23E11 1.64E−9
I/O-HSS 9 6.57E8 6.63E−15 I/O-HSS 9 6.57E8 2.48E−15

Table VIII. Example 1: Performance of PCG with block diagonal preconditioning and I/O-HSS

preconditioning for A1 and A2 with sizes n = 4000, where m = 1000, m0 = 50, r = 7, and ε = 0 in
(37).

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

N
iter

 (# of iterations)

e
(r

el
at

iv
e

re
si

du
al

)

(1)(2)

(1) − Block diag prec
(2) − I/O−HSS prec

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

N
iter

 (# of iterations)

e
(r

el
at

iv
e

re
si

du
al

)

(1)(2)

(1) − Block diag prec
(2) − I/O−HSS prec

(i) A1 (ii) A2

Figure 8. Example 1: Convergence of PCG with block diagonal preconditioning and I/O-HSS

preconditioning for A1 and A2 with sizes n = 4000, where m = 1000, m0 = 50, r = 7, and ε = 0.

convergence is achieved for all these r0 values. In fact, the convergence behaviors for r0 = 4, 5, 6, 7
are almost the same.

Example 2. Then we consider a Toeplitz matrix A generated by a Gaussian radial basis function,
as

v(ti) = e−δ2t2i ,

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

22 JIANLIN. XIA

5 10 15 20

10
−15

10
−10

10
−5

10
0

N
iter

 (# of iterations)

e
(r

el
at

iv
e

re
si

du
al

)

I/O−HSS prec (r
0
=3)

I/O−HSS prec (r
0
=4)

I/O−HSS prec (r
0
=5)

I/O−HSS prec (r
0
=6)

I/O−HSS prec (r
0
=7)

Figure 9. Example 1: Convergence of PCG with I/O-HSS preconditioning for A1 in Table VIII with
different inner rank bounds r0.

where the ti = i− 1. (The Toeplitz structure is not our focus and is ignored.) The matrix is highly
ill conditioned for small δ. In fact, its condition number is about eπ2/(4δ2) [6].

We consider the matrix with size n = 16000. If regular Direct-HSS methods are directly
applied with a low accuracy τ , they actually break down since some intermediate diagonal blocks
(corresponding to non-leaf nodes of T) fail to be positive definite. Then we may use shifts as in (37).
The number of times (nodes) of such breakdown or shifting is denoted Nshift. However, I/O-HSS can
significantly enhance the robustness. The larger m is, the more robust the method is. See Figure IX.
If no inner factorization is used, then too many shifting steps are needed, and the preconditioner
fails to be useful in practice (Table X). PCG with I/O-HSS preconditioning also costs much less than
with block diagonal preconditioning. The detailed convergence is shown in Figure 10.

Direct-HSS I/O-HSS

m 50 (m = m0) 250 500 750 1000 1250 1500 1750 2000
ξ
(3)
constr 6.11E9 5.42E9 5.49E9 5.64E9 5.79E9 5.95E9 6.11E9 6.33E9 6.48E9

ξ
(3)
fact 2.98E7 1.88E7 1.95E7 1.98E7 1.99E7 2.01E7 2.01E7 2.02E7 2.02E7

ξ
(3)
sol 2.62E6 1.38E6 1.33E6 1.31E6 1.30E6 1.30E6 1.29E6 1.29E6 1.29E6

Nshift 160 32 16 10 8 6 5 4 4

Table IX. Example 2: Costs ξ(3) of I/O-HSS algorithms, and the number Nshift of shifts, where of PCG
with I/O-HSS preconditioning, where m0 = 50, r = 10, and ε = 10−4 in (37).

Niter ξiter e

Block diagonal 124 7.00E10 4.16E−14
Direct-HSS Failure

I/O-HSS (r = 10) 16 1.40E10 3.45E−16

Table X. Example 2: Convergence of PCG with block diagonal preconditioning and I/O-HSS

preconditioning, where m0 = 50, r = 10, and ε = 10−4 in (37).

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 23

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

N
iter

 (# of iterations)

e
(r

el
at

iv
e

re
si

du
al

)

(1)(2)

(1) − Block diag prec
(2) − I/O−HSS prec

Figure 10. Example 2: Convergence of PCG with block diagonal preconditioning and I/O-HSS

preconditioning, where m0 = 50, r = 10, and ε = 10−4 in (37).

Example 3. Next, we consider the dense Schur complements in the direct factorization of sparse
matrices arising from the discretization of the following two-dimensional linear elasticity equation:

−(µ∆u + (λ + µ)∇∇ · u) = f in Ω = (0, 1)× (0, 1),

where λ and µ are the Lamé constants, u is the displacement vector field, and a Dirichlet boundary
condition is used.

It is well known that the discretized matrix is ill conditioned when the ratio λ/µ is large, which is
referred to be the incompressible limit. As in [18, 36], here we consider a matrix A which is the largest
Schur complement in the factorization of the discretized matrix after nested dissection reordering.
As illustrated in Table XI, when λ/µ increases, the 2-norm condition number κ2 increases, and the
number of iterations of PCG with block diagonal preconditioning increases significantly. But with
I/O-HSS preconditioning, the convergence is fast for all λ/µ. Here we keep the numerical ranks to
be at most r = 5. The total PCG costs compare similarly to the previous examples.

λ/µ 1 102 104 106 108 1010

κ2 1.71E3 2.17E4 2.02E6 2.02E8 2.02E10 2.02E12
Block Niter 127 117 136 449 1137 1512
diagonal e 9.81E − 15 7.63E − 15 9.89E − 15 9.82E − 15 1.02E − 14 9.90E − 15

Niter 23 25 37 33 34 35
I/O-HSS e 2.35E − 15 6.42E − 15 2.07E − 15 7.54E − 15 8.30E − 15 3.57E − 15

ε 10−1 10−1 10−1 10−3 10−5 10−7

Table XI. Example 3: Convergence of PCG with block diagonal preconditioning and I/O-HSS

preconditioning, where n = 2002, m = 500, m0 = 20, r = 5, and Nshift = 2.

Remark 1. In Table XI, if the small shifts ε are all replaced by 10−1, the convergence is nearly
unchanged. In fact, in all these tests, and the effect of shifting on the approximation is limited.

Example 4. Finally, we demonstrate the performance of I/O-HSS as a preconditioner for A

without rapidly decaying off-diagonal singular values. A is constructed as follows. Take an SPD
discretized matrix A defined on a 3D tetrahedral finite element mesh, as generated by the routine

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

24 JIANLIN. XIA

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

N
iter

 (# of iterations)

e
(r

el
at

iv
e

re
si

du
al

)

(1−1)(1−2)

(2−1)

(2−2)

(1−1) − Block diag prec (λ/µ=1010)

(1−2) − Block diag prec (λ/µ=102)

(2−1) − I/O−HSS prec (λ/µ=1010)

(2−2) − I/O−HSS prec (λ/µ=102)

Figure 11. Example 3: Convergence of PCG with block diagonal preconditioning and I/O-HSS

preconditioning, where the parameters are given in Table XI.

grid3dt in [11]. Similar to the previous example, let S be the largest Schur complement in the
factorization of A after nested dissection reordering. S corresponds to the largest 2D separator and
generally do not have the low-rank property for a small relative tolerance τ . Then let A = S3. (Note:
we use S3 in order for the decay of the off-diagonal singular values of A to be sufficiently slow and
for A to be ill conditioned.) Such matrix powers are frequently used in matrix functions.

As pointed out in [36], HSS factorization methods have a good potential to work as effective
preconditioners, even if the decay of the off-diagonal singular values is not rapid. In fact, the HSS
ranks of A for different relative tolerances are shown in Table XII. The ranks are relatively high
even for relatively large tolerances. Also, κ2 (A) = 5.790× 107.

τ 10−1 10−2 10−3 10−4 10−5 10−6

HSS rank 104 144 196 256 305 356

Table XII. Example 4: HSS ranks of A of order n = 2500 for different relative tolerances τ .

However, by specifying a small numerical rank r, I/O-HSS can still work as an effective
preconditioner. For different parameters, the convergence of PCG with I/O-HSS preconditioning and
block diagonal preconditioning is shown in Table XIII. With I/O-HSS, we observe similar convergence
behaviors when different inner HSS ranks r0 are used. In particular, the detailed convergence for
r0 = 23 is shown in Figure 12. Clearly, with a small inner HSS rank r0 = 23 and outer HSS rank
r = 25 in I/O-HSS, PCG converges quickly. To reach the relative residual e = 10−14, PCG needs
144 steps with I/O-HSS preconditioning, while 746 steps with block diagonal preconditioning.

Preconditioner I/O-HSS
Block diagonal

r0 18 19 20 21 22 23 24 25
Niter 167 160 154 150 147 144 143 142 746
ξiter 2.94E9 2.87E9 2.82E9 2.80E9 2.79E9 2.78E9 2.80E9 2.82E9 9.37E9

Table XIII. Example 4: Numbers of iterations Niter and total costs (flops) ξiter for PCG to reach
an accuracy of e = 10−14, where in I/O-HSS, n = 2500, m = 625, m0 = 25, r = 25, ε = 0.2, and

Nshift = 2, and in block diagonal preconditioning, the diagonal block sizes are 25.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

ROBUST INNER-OUTER HSS PRECONDITIONER 25

0 200 400 600 800
10

−15

10
−10

10
−5

10
0

N
iter

 (# of iterations)

e
(r

el
at

iv
e

re
si

du
al

)

(1)(2)

(1) − Block diag prec
(2) − I/O−HSS prec

Figure 12. Example 4: Convergence of PCG with block diagonal preconditioning and I/O-HSS

preconditioning, where r0 = 23 and the rest parameters are the same as in Table XIII.

6. CONCLUSIONS

This work presents a robust and scalable inner-outer HSS preconditioner based on a series of
new HSS algorithms which improve the efficiency or scalability of existing ones. Systematic
complexity analysis and an error bound are given. The performance of the inner-outer preconditioner
is illustrated with some ill-conditioned numerical problems. Due to the hierarchical structured
operations, the algorithms have nice data locality and good potential for parallel implementations.
This work also gives a practical way of developing inner-outer preconditioners using direct rank
structured factorizations (other than iterative methods). The method is useful for dealing with
dense intermediate matrices in sparse preconditioning. In our future work, we expect to analyze the
dependence of the convergence on the tolerance, and to design a parallel Fortran code based on the
scalable HSS package from [32].

ACKNOWLEDGEMENTS

The author is very grateful to Ming Gu and Shen Wang for some useful discussions and to Zhiqiang
Cai for a test example. The author would also like to thank the anonymous referees for their valuable
suggestions.The research of Jianlin Xia was supported in part by NSF grants DMS-1115572 and
CHE-0957024.

REFERENCES

1. Bai Z-Z, Benzi M, Chen F. Modified HSS iteration methods for a class of complex symmetric linear systems.
Computing 2010; 87:93–111.

2. Bebendorf M, Hackbusch W. Stabilized rounded addition of hierarchical matrices. Numerical Linear Algebra with
Applications 2007; 14:407–423.

3. Benzi M, Cullum JK, Tuma M. Robust approximate inverse preconditioning for the conjugate gradient method.
SIAM Journal on Scientific Computing 2000; 22:1318–1332.

4. Benzi M, Tuma M. A robust incomplete factorization preconditioner for positive definite matrices. Numerical
Linear Algebra with Applications 2003; 10:385–400.

5. Börm S, Hackbusch W. Data-sparse approximation by adaptive H2-matrices. Computing 2002; 69:1–35.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

26 JIANLIN. XIA

6. Boyd JP, Gildersleeve KW. Numerical experiments on the condition number of the interpolation matrices for
radial basis functions. Applied Numerical Mathematics 2011; 61:443–459.

7. Chandrasekaran S, Dewilde P, Gu N, Lyons W, Pals T. A fast solver for HSS representations via sparse matrices.
SIAM Journal on Matrix Analysis and Applications 2006; 29:67–81.

8. Chandrasekaran S, Gu M, Pals T. A fast ULV decomposition solver for hierarchically semiseparable
representations. SIAM Journal on Matrix Analysis and Applications 2006; 28:603–622.

9. Chandrasekaran S, Gu N, Lyons W. A fast adaptive solver for hierarchically semiseparable representations.
CALCOLO 2005; 42:171–185.

10. Demmel J. Applied Numerical Linear Algebra. SIAM: Philadelphia, PA, 1997.
11. Gilbert JR, Teng S-H. MESHPART, A Matlab Mesh Partitioning and Graph Separator Toolbox,

http://aton.cerfacs.fr/algor/Softs/MESHPART/.
12. Gohberg I, Kailath T, Koltracht I. Linear complexity algorithms for semiseparable matrices. Integral Equations

and Operator Theory 1985; 8:780–804.
13. Golub G, Loan CV. Matrix Computations. The John Hopkins University Press, 1989.
14. Golub GH, Ye Q. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM Journal

on Scientific Computing 1999; 21:1305–1320.
15. Grasedyck L, Le Borne S, Kriemann R. Parallel blackbox H-LU preconditioning for elliptic boundary value

problems. Computing and Visualization in Science 2008; 11:273–291.
16. Grasedyck L, Kriemann R, Le Borne S. Domain decomposition based H-LU preconditioning. Numerische

Mathematik 2009; 112:565–600.
17. Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal of Computational Physics 1987;

73:325–348.
18. Gu M, Li XS, Vassilevski P. Direction-preserving and Schur-monotonic semiseparable approximations of

symmetric positive definite matrices. SIAM Journal on Matrix Analysis and Applications 2010; 31:2650–2664.
19. Hackbusch W. A Sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices. Computing

1999; 62:89–108.
20. Hackbusch W, Khoromskij BN. A sparse H-matrix arithmetic. Part-II: Application to multi-dimensional

problems. Computing 2000; 64:21–47.
21. Kaporin IE. High quality preconditioning of a general symmetric positive definite matrix based on its UT U +

UT R + RT U-decomposition. Numerical Linear Algebra with Applications 1998; 5:483–509.
22. Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication.

Journal of Computational Physics 2001; 230: 4071–4087.
23. Lyons W. Fast Algorithms with Applications to PDEs. PhD thesis, University of California, Santa Barbara, June.

2005.
24. Lyons W, Chandrasekaran S, Gu M. Fast LU decomposition for operators with hierarchically semiseparable

structure. UCSB Technical Report, 2005.
25. Manteuffel T. An incomplete factorization technique for positive definite linear systems. Mathematics of

Computation 1980; 34:473–497.
26. Martinsson PG. A fast randomized algorithm for computing a hierarchically semi-separable representation of a

matrix. Submitted, http://amath.colorado.edu/faculty/martinss/Pubs/2010 randomhudson.pdf.
27. Meijerink JA, van der Vorst HA. An iterative solution method for linear systems of which the coefficient matrix

is a symmetric M -matrix. Mathematics of Computation 1977; 31:148–162.
28. Rokhlin V. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics

1985; 60:187–207.
29. Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 1993;

14:461–469.
30. Sheng Z, Dewilde P, van der Meijs N. Iterative solution methods based on the hierarchically semi-separable

representation. In Proceedings of the 17th annual workshop on Circuits, Systems and Signal Processing
(ProRISC) 2006; Veldhoven (NL):343–349.

31. Sheng Z, Dewilde P, Chandrasekaran S. Algorithms to solve hierarchically semi-separable systems. Operator
Theory: Advances and Applications 2007; Birkhauser Basel, 176:255–294.

32. Wang S, Li XS, Xia J, Situ Y, de Hoop MV. Efficient scalable algorithms for hierarchically semiseparable matrices.
Preprint, 2011, http://www.math.purdue.edu/˜xiaj/work/parhss.pdf.

33. Xia J. On the complexity of some hierarchical structured matrices. SIAM Journal on Matrix Analysis and
Applications. Submitted, 2011, http://www.math.purdue.edu/˜xiaj/work/hsscost.pdf.

34. Xia J, Chandrasekaran S, Gu M, Li XS. Superfast multifrontal method for large structured linear systems of
equations. SIAM Journal on Matrix Analysis and Applications 2009; 31:1382–1411.

35. Xia J, Chandrasekaran S, Gu M, Li XS. Fast algorithms for hierarchically semiseparable matrices. Numerical
Linear Algebra with Applications 2010; 17:953–976.

36. Xia J, Gu M. Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices.
SIAM Journal on Matrix Analysis and Applications 2010; 31:2899–2920.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls

