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Abstract. We propose randomized direct solvers for large sparse linear systems, which integrate
randomization into rank structured multifrontal methods. The use of randomization highly simplifies
various essential steps in structured solutions, where fast operations on skinny matrix-vector products
replace traditional complex ones on dense or structured matrices. The new methods thus significantly
enhance the flexibility and efficiency of using structured methods in sparse solutions. We also consider
a variety of techniques, such as some graph methods, the inclusion of additional structures, the
concept of reduced matrices, information reuse, and adaptive schemes. The methods are applicable
to various sparse matrices with certain rank structures. Particularly, for discretized matrices whose
factorizations yield dense fill-in with some off-diagonal rank patterns, the factorizations cost about
O(n) flops in 2D, and about O(n) to O(n4/3) flops in 3D. The solution costs and memory sizes are
nearly O(n) in both 2D and 3D. These counts are obtained based on two optimization strategies
and a sparse rank relaxation idea. The methods are especially useful for approximate solutions and
preconditioning. Numerical tests on both discretized PDEs and more general problems are used to
demonstrate the efficiency and accuracy. The ideas here also have the potential to be generalized to
matrix-free sparse direct solvers based on matrix-vector multiplications in future developments.
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1. Introduction. Large sparse linear systems arise frequently in numerical so-
lutions of mathematical and engineering problems. It is often critical to quickly solve
these systems. Classical direct solvers have various advantages, such as the robust-
ness and the suitability for multiple right-hand sides. However, the issue of fill-in or
loss of sparsity often makes direct factorizations unaffordable. On the other hand,
iterative solvers have cheap memory requirements. But they generally need effective
preconditioners to converge quickly, and can be inefficient for multiple right-hand
sides.

In recent years, a lot of efforts have been made in the development of fast ap-
proximate direct solvers, especially those using the idea of the fast multipole method
(FMM) [18] or based on rank structures. Such rank structures mean that certain in-
termediate dense matrices have low-rank (or low-numerical-rank) off-diagonal blocks.
Some useful structured or data-sparse matrix representations are developed to char-
acterize low-rank structures, such as hierarchical (H-, H2-) [3, 4, 20], quasiseparable
[2, 13], and semiseparable matrices [7, 34]. These representations are used to develop
fast structured direct solvers for sparse linear systems, such as H-LU or inversion
methods [1, 16, 17, 27] and structured multifrontal methods [40]. Such solvers com-
press dense intermediate fill-in, which can often help significantly improve the factor-
ization efficiency. For example, for discretized elliptic equations in 2D, these methods
can achieve nearly linear complexity, while classical exact factorizations need at least
O
(
n1.5

)
flops [22], where n is the matrix size.

Here, we concentrate on structured multifrontal methods, which are first proposed
in [40] and then generalized or simplified in [32, 35, 37, 39]. These methods use
a factorization framework called the multifrontal method [12, 25], which is one of
the most important direct solvers and has good scalability. The method conducts the
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factorization in terms of a series of local factorizations of smaller dense matrices (called
frontal matrices), and these local factorizations are organized following a tree called
elimination or assembly tree [12, 25]. The elimination performs a partial factorization
of a frontal matrix and yields a Schur complement called an update matrix. Following
the assembly tree, update matrices associated with sibling nodes are assembled to
form the parent frontal matrix. This operation is called an extend-add operation
[12, 25]. In [40], the frontal matrices are further approximated by low-rank structures
called hierarchically semiseparable (HSS) forms [5, 6, 26, 41], and the computation of
the update matrices and the extend-add operation are also performed in HSS forms.

The structured multifrontal method in [40] mainly works for certain 2D mesh
structures, and even so, the HSS version extend-add operation is still very complicated.
In fact, it is not clear how to design a general HSS extend-add operation or how
efficient it can be. More general meshes are considered in [32, 37, 39]. But the
method in [32] still requires the 2D mesh to roughly follow the pattern of a regular
mesh, since it uses horizontal and vertical lines to divide the mesh into a uniform
partition. The methods in [37, 39] use simplifications by keeping the update matrices
dense, so as to avoid complex extend-add operations. This then requires to store
potentially large dense matrices, and the overall complexity and memory are higher
than those in [40].

1.1. Main results. In this work, we seek to avoid all such difficulties with ran-
domization. 2D, 3D, and more general problems are considered. In recent researches,
the idea of randomization has been used to assist efficient low-rank computations
[23, 24, 28, 29, 30]. See [21] for a comprehensive review. In particular, if a large
matrix Φ is rank deficient, its compression can be conducted in terms of certain
matrix-vector products in randomized sampling, instead of handling the original Φ
as in classical rank-revealing factorizations. Based on this, fast HSS construction
algorithms are proposed in [24, 28], which apply randomize sampling hierarchically
to the low-rank off-diagonal blocks of a matrix F . In particular, the method in [28]
only needs O (1) matrix-vector multiplications, provided that selected entries of F are
available. This scheme is then further improved in [42] with additional structures.

We bring such randomization techniques into sparse solutions by using matrix-
vector products as the information passed along the assembly tree instead of dense or
HSS update matrices. That is, at each step i of the multifrontal factorization, certain
matrix-vector products Yi = FiXi are used to compute an HSS approximation to a
frontal matrix Fi, where Xi is a tall and skinny random matrix. Then instead of
passing the Schur complement Ui to the parent step p, we pass its product with a
submatrix of Xi: Zi = UiX̃i. The product Zi is a skinny matrix and can be easily used
to assemble the parent step Yp in a highly simplified extend-add operation, where we
then repeat these steps.

The overall method includes these main steps, where the last step is used to com-
pute certain matrix entries required by the methods in [28, 42] for HSS constructions:

• Fast randomized HSS construction.
• Fast partial ULV-type HSS factorization [6] and Schur complement compu-
tation.

• Fast multiplication of HSS Schur complements with random vectors.
• Simple skinny extend-add operation for the rows of the matrix-vector prod-
ucts, instead of both the rows and the columns of dense or HSS update
matrices.

• Fast formation of selected entries of HSS frontal matrices.
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The following useful strategies are developed or used to achieve high efficiency
and flexibility:

• The inclusion and preservation of additional structures in the randomized
HSS construction and factorization, and then in the structured multifrontal
method. Some existing HSS algorithms are modified to improve efficiency.

• The idea of reduced matrices in the Schur complement computation after a
ULV factorization. This idea replaces the inversion or solution of an HSS
matrix by the corresponding operation on a small reduced matrix [39].

• Flexible choices of methods for computing HSS matrix-vector products.
• Three levels of adaptivity in the factorization.
• Strategies for reusing information as much as possible when forming the en-
tries of an HSS matrix.

• Various graph methods that facilitate the computations.

Analysis is provided for the different stages. In particular, the complexity is
studied in terms of an idea of rank relaxation in [38, 39]. That is, we do not require
the off-diagonal ranks of the frontal matrices to be very low. In fact, some rank
patterns are allowed for the off-diagonal blocks, so that even if the ranks depend
on the frontal matrix sizes, we can still achieve satisfactory performance. This is
especially useful for 3D PDEs and more general problems.

Specifically, assume a frontal matrix F in the multifrontal factorization is hierar-
chically partitioned into lmax levels and follows a off-diagonal rank pattern rl, which
is the maximum (numerical) rank of the off-diagonal blocks at level l. Also assume
the level l off-diagonal blocks have maximum size Nl. Then, say, if rl = O(logp Nl)

(p ∈ N), O(N
1/p
l ) (p ∈ N, p ≥ 2), or O(αlmax−lr0) (α, r0 > 0), then the factorization

complexity is about O(n) for 2D discretized matrices, and about O (n), O
(
n10/9

)
, or

O
(
n4/3

)
for 3D (see Tables 4.2 and 4.3 for the details). The solution costs and mem-

ory are nearly O (n) for both 2D and 3D, which makes the methods very attractive
for preconditioning and for problems with many right-hand sides (such as in seismic
imaging). Unlike [40], two different optimization strategies in [39] are used here. We
minimize the factorization cost in 2D, while the solution cost in 3D. Note that the
method in [39] needs at least O

(
n4/3

)
flops for 3D problems, and is generally slower

than the new method. Moreover, we avoid storing large dense update matrices. The
new methods also use multiple tree structures and various graph techniques. They
thus have nice data locality and are suitable for parallel computations.

1.2. Outline. The remaining part of the paper is organized as follows. Section
2 provides some preliminaries about HSS structures and a randomized HSS construc-
tion. The randomized multifrontal methods are discussed step by step in Section 3,
and are then summarized and analyzed in Section 4. Section 5 presents the numerical
tests. We draw some conclusions in Section 6.

The presentation uses the following notation:

– 1 : N or {1 : N} means the index set {1, 2, . . . , N}.
– Fi,j or F |i,j denotes the (i, j) entry of a matrix F .
– F |Ii×Ij is the submatrix of F given by the row and column index sets Ii and
Ij , respectively.

– F |Ii or F |Ii×: is the submatrix of F given by the rows specified by the index
set Ii. Similarly, define F |:×Ij .

2. HSS representations and randomized HSS construction. We first give
some preliminaries about HSS representations and their construction via randomized
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sampling.

2.1. Review of HSS representations. In the HSS definition, an N ×N dense
matrix F is hierarchically partitioned, and the off-diagonal blocks are represented (or
approximated) by low-rank forms [5, 6, 41]. This follows the structure of a binary tree
T . Suppose T has k nodes which are labeled as 1, 2, . . . , k in its postordering. That
is, k is the root of T , and the children c1 and c2 of any non-leaf node i are ordered as
c1 < c2 < i, where c1 is the left child of i. Assume i is associated with an index set
Ii that is defined recursively as

Ii = Ic1 ∪ Ic2 , Ic1 ∩ Ic2 = ∅,

so that Ik = I ≡ {1 : N}.
An HSS form of F is then defined recursively to be [5, 6, 41]

F = Dk,

where for each non-leaf node i of T with left child c1 and right child c2,

(2.1) Di ≡ F |Ii×Ii =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c2 Dc2

)
, Ui=

(
Uc1Rc1

Uc2Rc2

)
, Vi=

(
Vc1Wc1

Vc2Wc2

)
.

We say Di, Ui, Vi, Ri, Wi, and Bi are (HSS) generators associated with node i. Due
to the recursion, we only store the D,U, V generators corresponding to the leaves of T
as well as all the R,W,B generators. If F is symmetric, only the D,U,R,B generators
are involved [41]. Also, T is called the corresponding HSS tree. See Figure 2.1.
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T
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T

U3

B3

D1

D2

D4

D5U6

B6 V3

T

V7

T
U14B14
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7 14

3

15

6 10 13

D1, U1,V1

R1, W1
B1

Fig. 2.1. Pictorial illustrations of an HSS matrix example and the corresponding HSS tree.

Later for convenience, we use the following names and notation for HSS matrices:

– F−
i ≡ F |Ii×(I\Ii) and F

|
i ≡ F |(I\Ii)×Ii are called the i-th HSS block row and

column of F , respectively. The maximum (numerical) rank of all HSS blocks
of F is called the HSS rank of F .

– The block row (or column) of F corresponding to node i is said to be the i-th
block row (or column) of F .

– k = root (T ) denotes the root of T , and j = sib (i) denotes the sibling node
of node i of T .

– The generators associated the nodes at level l of T are also said to be the
level-l generators, where root (T ) is at level 0.
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2.2. Randomized HSS construction. We then review an HSS construction
method in [28, 42] that uses randomization, which is what we need in our sparse fac-
torization. The construction applies hierarchically a randomized compression scheme
to the off-diagonal blocks of F .

First, given an M1 ×M2 matrix Φ with numerical rank r and M1 ≥ M2, the
randomized method in [21, 23] compresses Φ as follows. (The case M1 < M2 can be
similarly considered.) Choose an M2 × (r + µ) Gaussian random matrix X, where µ
is a small constant, and compute

Y = ΦX.

(We call r ≡ r + µ the sampling size.) Then compute a strong rank-revealing factor-
ization [19] of Y :

Y ≈ Π

(
Z1

Z2

)
Ω = Π

(
I

Z2Z
−1
1

)
(Z1Ω) = Π

(
I
E

)
Y |̂I,

where Π is a permutation matrix, Z1 is r × r, E = Z2Z
−1
1 , and Y |̂I is a submatrix of

Y with row index set Î. Then it is shown in [21, 23] that Φ can be approximated by:

(2.2) Φ ≈ UΦ|̂I, with U = Π

(
I
E

)
.

Moreover, under certain mild assumptions for µ, the probability for the approximation
error

∥∥Φ− U1Φ|̂I
∥∥
2
to satisfy the following bound is 1− 6µ−µ [21, 23, 29]:

(2.3)
∥∥Φ− U1Φ|̂I

∥∥
2
≤ (1 + 11

√
r
√

min(M1,M2))σr+1,

where σr+1 is the (r+1)-st singular value of Φ. In [28], µ = 10 is used. The above com-
pression scheme is called a structure-preserving rank-revealing (SPRR) factorization
in [42].

Then to construct an HSS form with randomized sampling for an order N dense
matrix F with HSS rank r, SPRR factorizations are applied to the HSS blocks of F .
We follow the basic method in [28], with additional structures considered as in [42].
Here, we focus on a symmetric F , and the scheme can be further simplified.

Choose an N × (r + µ) Gaussian random matrix X and compute

(2.4) Y = FX.

We traverse a given HSS tree T in a bottom-up order for its nodes i = 1, 2, . . .
If i is a leaf, set the generator Di ≡ F |Ii×Ii , where Ii is given as in Section 2.1.

Let Xi ≡ X|Ii and Yi ≡ Y |Ii . Since F−
i X|(I\Ii) +DiXi = Yi, let

(2.5) Φi ≡ F−
i X|(I\Ii) = Yi −DiXi.

Use the SPRR factorization to compute an approximation (like in (2.2))

(2.6) Φi ≈ UiΦi |̂Ii , with Ui = Πi

(
I
Ei

)
.

Then

(2.7) F−
i ≈ UiF

−
i |̂Ii .
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Since F−
i |̂Ii is a submatrix of F , we write its row index set in F as Ĩi. Also, let

(2.8) Ŷi = UT
i Xi =

(
I ET

i

)
ΠT

i Xi.

Ŷi is used in (2.9) later and its meaning is explained after (2.10).
If i is a non-leaf node with the left child c1 and right child c2, assume we already

obtain Ĩc1 , Ŷc1 , Ĩc2 , and Ŷc2 as before. Set

Bc1 = F |̃Ic1×Ĩc2
.

According to [28, 42], we compute the following SPRR compression:

(2.9) Φi ≡

(
Φc1 |Ic1 −Bc1 Ŷc2

Φc2 |Ic2 −Bc2 Ŷc1

)
≈
(

Rc1

Rc2

)
Φ|̂Ii , with

(
Rc1

Rc2

)
= Πi

(
I
Ei

)
.

Similarly, it can be shown that (2.7) holds, with Ui recursively given as in (2.1). We
also write the row index set of Φ|̂Ii in F as Ĩi, and let

(2.10) Ŷi =
(
RT

c1 RT
c2

)( Ŷc1

Ŷc2

)
=
(
I ET

i

)
ΠT

i

(
Ŷc1

Ŷc2

)
.

Due to the recursion as in (2.8) and (2.10), we still have Ŷi = UT
i Xi. The storage of

Ŷc1 and Ŷc2 for the computation of Φi in (2.9) can be justified as follows. Consider,
say, Φc1 |Ic1 −Bc1 Ŷc2 in (2.9). Since

Uc1(Φc1 |Ic1 −Bc1 Ŷc2) = Uc1Φc1 |Ic1 − Uc1Bc1 Ŷc2 = Uc1Φc1 |Ic1 − Uc1Bc1U
T
c2Xc2

= F |Ic1×(I\Ic1 )X|I\Ic1 − F |Ic1×Ic2
Xc2 ,

Φc1 |Ic1 − Bc1 Ŷc2 can be understood as the (recursive) subtraction of the product
F |Ic1×Ic2

Xc2 from the product F |Ic1×(I\Ic1 )X|I\Ic1 (with the basis matrix Uc1 ex-

cluded), which is the top portion of F−
i Xi. That is, (2.9) provides a quick way to

compute F−
i Xi (with the basis matrices Uc1 and Uc2 excluded).

Then the process repeats.

3. Randomized structured multifrontal methods. For convenience, as-
sume A is a symmetric positive definite (SPD) sparse matrix. (Generalizations of
our discussions can be made for nonsymmetric or indefinite matrices and are not
shown here.)

3.1. Review of multifrontal and structured multifrontal methods. The
multifrontal method transforms the overall factorization of the sparse matrix A into
a series of smaller local factorizations. Here, we focus on a supernodal version that is
combined with the nested dissection ordering of A [15] to reduce fill-in. The reordering
of A follows that of its adjacency graph or mesh as follows. Choose some small sets
of variables (called separators) to recursively divide the graph into smaller pieces at
some hierarchical levels. See Figure 3.1. The separators are eliminated following a tree
structure, called assembly tree [12, 25]. See Figure 3.2(i). Separators corresponding
to lower level nodes of the assembly tree T are eliminated first.

In the multifrontal method, a node (or separator) i of T corresponds to a dense
matrix Fi called a frontal matrix, which is obtained as follows. Let Ni be the set of
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Fig. 3.1. Nested dissection for a 2D and a 3D domain.
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Fi

Fi

Ui

Uc1
Uc2

(i) An assembly tree T for Figure 3.1(i) or (ii) (ii) An intermediate factorization step

Fig. 3.2. Example of an assembly tree and an intermediate step of the multifrontal method.

neighbors of i, where a separator j is a neighbor of i if j is at an upper level (closer to
root (T )) and is connected to i after the elimination of lower level separators [31, 33].

If i is a leaf of T , set

(3.1) Fi ≡ F 0
i , with F0

i =

(
Aii (ANi,i)

T

ANi,i 0

)
,

where Aii denotes the submatrix of A whose row and column indices correspond to
separator i. ANi,i can be similarly understood. If i is a non-leaf node, let

(3.2) Fi = F0
i↔↕ Uc1↔↕ Uc2 ,

where Uc1
and Uc2

are the Schur complements obtained from the elimination steps
associated with c1 and c2, respectively (see the induction step (3.3)–(3.4)), and the
symbol↔↕ represents an operation to assemble the data, called extend-add operation.
This operation adds matrix entries according to the indices in A.

The elimination performed on Fi is a partial factorization. Partition Fi con-
formably following F0

i in (3.1), and compute the Cholesky factorization of the leading
block:

(3.3) Fi ≡
(
Fii FT

Ni,i

FNi,i FNi,Ni

)
=

(
Lii

LNi,i I

)(
I
Ui

)(
LT
ii LT

Ni,i

I

)
,

where Ui is the Schur complement

(3.4) Ui = FNi,Ni
−FNi,i (Fii)

−1 FT
Ni,i

= FNi,Ni
− LNi,iLT

Ni,i
.
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Ui is called the update matrix at step i. See Figure 3.2(ii). This then repeats for
all i, until i = root (T ) is reached, where Fi ≡ Fii is full factorized. Note that the
local eliminations associated with the nodes at a same level of T can be performed in
parallel.

In the structured multifrontal method in [40], Fi and Ui are approximated by
HSS matrices. See Figure 3.3(i). There are two major stages involved recursively:

1. Passing information: an HSS form extend-add operation (3.2) is performed.
The HSS forms of Uc1 and Uc2 are permuted and extended to match the HSS
partition of F0

i . This also needs to split and merge existing HSS blocks.
2. Factorization: a ULV-type factorization [6] is applied to Fii, and the HSS

form of (3.4) is computed.

0

Fc1 Fc2

Fi

Fi

Ui

Uc1
Uc2

Fc1

0

Fc2

Fi

Fi

Ui

Uc1
Uc2

(i) The structured factorization in [40] (ii) The structured factorization in [39]

Fig. 3.3. Illustration of two existing structured multifrontal methods.

The HSS form extend-add operation is generally complicated. One reason is that
it involves the splitting, permutation, and merging of HSS blocks. Another reason is
that the HSS partition of Fi is decided based on the accumulation of the partitions
of Uc1

and Uc2
. (Such a strategy helps preserve the connectivity among separators

and is useful for reducing related HSS ranks.) Thus, the method in [40] focuses on
2D regular meshes, where the pattern of the extend-add operation can be decided in
advance.

Simplified versions are then proposed in [37, 39]. A dense Fi is formed first
and then approximated by an HSS form with FNi,Ni

kept as a dense block. Fi is
partially factorized to yield a dense Ui. See Figure 3.3(ii). Then a regular extend-add
operation is used. This method thus needs to store dense Fi and Ui, and is slower
than the method in [40] by a factor of about O (log n) for 2D problems.

3.2. Randomized structured multifrontal factorizations. Here, we present
our structured multifrontal methods using randomized sampling techniques to avoid
the complicated HSS operations. For convenience, we do not distinguish between a
frontal/update matrix and its HSS approximation, or between ranks and numerical
ranks. The methods still involve two major stages:

1. Passing information: a simple extend-add operation is performed on some
vectors, and the result is used to compute an HSS approximation to Fii.

2. Factorization: a ULV factorization is applied to Fii, and the product of Ui
with certain random vectors is computed.

That is, the main difference between the new methods and the previous struc-
tured multifrontal methods is the information passed along the assembly tree and
used for HSS constructions. Matrix-vector products are used to replace dense or
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structured matrices, and complex structured extend-add operations are replaced by a
simple skinny one. The main framework of the methods is shown in Table 3.1, and is
illustrated by Figure 3.4. Specifically, the five steps in Table 3.1 are marked in Figure
3.5. The details are elaborated in the following subsections.

Table 3.1
Overview of our randomized structured multifrontal methods.

Factorization

Passing
information

r�

6
-r
?r
?r
?r
?

1. Construct an HSS approximation to Fi from selected entries
of Fi and Yi = FiXi, the product of Fi with a random skinny
matrix Xi.

2. Partially factorize the HSS form Fi with a ULV factorization
scheme and compute an HSS form Ui.

3. Compute Zi = UiX̃i, where X̃i is a submatrix of Xi that
corresponds to Ui.

4. If i is a right child of node p and j = sib(i), compute a skinny
extend-add operation on (F0

pXp), Zj, and Zi to form Yp.

5. Compute selected entries of Fp from F0
p, Ui, and Uj.

0

Yi

Yp

Yj

Yp

=

Zi Zj

=

=

Zp

Factorization

Passing
information

Fig. 3.4. Illustration of our new randomized structured multifrontal methods, as compared with
Figure 3.3.

0

Yi

Yp

=

Zi

1 2 3

4

5

Fi

Ui

Fig. 3.5. The operations corresponding to node i in Figure 3.4 with the five steps in Table 3.1
marked.

3.2.1. Frontal matrix (Fi) HSS construction. Step 1 in Table 3.1 uses the
method in Section 2.2. Assume Fi has order N and HSS rank r. By induction, Step
4 provides the product of Fi with an N × (r + µ) Gaussian random matrix Xi:

(3.5) Yi = FiXi,
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where r + µ is the sampling size. Then we compute an HSS representation (or ap-
proximation) for Fi with the scheme in Section 2.2, which is assumed to be

(3.6) Fi =

(
Fii UkBkU

T
q

UqB
T
k U

T
k FNi,Ni

)
.

See Figure 3.6 with the HSS tree T for Fi. That is, root (T ) has two children k and q,
which are the roots of two subtrees T [k] and T [q], respectively. T [k] is the HSS trees
for Fii and T [q] is the HSS tree for FNi,Ni

. Unlike in the method in [40], T [k] and
T [q] here can be general binary trees.

Vq
TUkBkFii

FNi,Ni

k

q+1

q

T[k] T[q]

(i) HSS form for Fi (ii) HSS tree T for Fi and subtrees T [k] and T [q]

Fig. 3.6. Illustration of an HSS form and an HSS tree for Fi.

Notice that the scheme in Section 2.2 needs the D and B generators (submatrices
of Fi) to be explicitly available. Here, Fi is not fully formed in general (except for a
leaf i), but we can conveniently get those entries required by the D and B generators.
See Section 3.2.5 below.

3.2.2. Partial ULV factorization of Fi and computation of Ui. Step 2 in
Table 3.1 modifies the basic ULV factorization scheme in [42] to take advantage of the
symmetry, and it stops when node k is eliminated from T . This is briefly described
as follows, and is not justified since similar details can be found in [6, 42].

For node i = 1, 2, . . . , k of T , if i is a leaf, the special structure of Ui in (2.6)
means [42]

(3.7)

[(
−Ei I
I 0

)
ΠT

i

]
Ui =

(
0
I

)
m− r
r

,

where we assume Ui is m× r and all the HSS blocks of Fi have (numerical) ranks r.

Note that (3.7) does not cost anything. The multiplication of

(
−Ei I
I 0

)
ΠT

i to the

i-th block row of Fi thus introduces zeros into the i-th HSS block row. Update Di as

(3.8) D̄i =

(
−Ei I
I 0

)
ΠT

i DiΠi

(
−Ei I
I 0

)T

≡
(m− r r

D̄i;1,1 D̄i;1,2

D̄i;2,1 D̄i;2,2

)
m− r
r

.

The special structures (zeros and identity blocks) help save the computational costs.
Then compute a partial Cholesky factorization

(3.9)

(
D̄i;1,1 D̄i;1,2

D̄i;2,1 D̄i;2,2

)
=

(
Li

D̄i;2,1L
−T
i I

)(
I

D̂i

)(
LT
i L−1

i D̄i;1,2

I

)
.
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Now, we can eliminate Li.

If i is a non-leaf node with left child c1 and right child c2, we merge appropriate
blocks obtained from the steps associated with c1 and c2:

(3.10) D̃i =

(
D̂c1 Bc1

BT
c1 D̂c2

)
, Ũi =

(
Rc1

Rc2

)
.

This does not cost anything either, and is significantly simpler than some similar steps
in [6, 41, 42].

Then we remove c1 and c2 from T . This makes i a leaf, with the corresponding
generators D̃i, Ũi, Ri, and Bi. The previous process is then repeated on i, until
k = root (T ) is reached, where we compute a Cholesky factorization

(3.11) D̃k = LkL
T
k .

Next, we compute Ui. The following definition is useful for replacing some HSS
operations by simple operations on smaller matrices.

Definition 3.1. [39] In the ULV factorization of an HSS matrix with an HSS
tree T , assume the children of a non-leaf node i are eliminated, so that the U and
V generators corresponding to i are updated to D̃i and Ũi as in (3.10), respectively.
Then the resulting new HSS matrix is called a reduced (HSS) matrix.

Figure 3.7 shows the reduced matrix right before the removal of node k from T ,
which corresponds to generators D̃k, Ũk, Rk, and Bk. We now have:

(3.12) Fi =

(
Lii

UqB
T
k U

T
k L

−T
ii I

)(
I
Ui

)(
LT
ii L−1

ii UkBkU
T
q

I

)
,

where Fii = LiiLT
ii represents the ULV factorization of Fii, and

Ui = FNi,Ni
− UqB

T
k

(
UT
k F−1

ii Uk

)
BkU

T
q .

A direct computation with this can be expensive. In fact, it can be replaced by a fast

Vq
TUkBk

FNi,Ni

Dk

~
~

k

q+1

q

Dk,Uk

~ ~

(i) After the partial ULV factorization of Fii (ii) The resulting tree

Fig. 3.7. Illustration of the result after the partial ULV factorization of Fi in Figure 3.6, where
D̃k is the reduced matrix from Fii before the removal of node k.

low-rank update. The following result is a direct extension of a theorem in [39].
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Theorem 3.2. (Fast Schur complement computation) After the above partial
ULV factorization of Fi, the Schur complement of Fii or the update matrix is

Ui = FNi,Ni
− UqB

T
k

(
ŨT
k D̃−1

k Ũk

)
BkU

T
q(3.13)

= FNi,Ni
−ΘT

i Θi, with Θi = (L−1
k Ũk)BkU

T
q ,

where Lk is given in (3.11).

Note that D̃k is the last step reduced matrix in the ULV factorization of Fii,
and its size is only O (r). The matrices D̃k and Ũk replace the roles of Fii and Ui,
respectively. If Fii has size O(N), then the computation of UT

k F
−1
ii Uk costs O(r2N)

flops, which that of ŨT
k D̃−1

k Ũk costs only O(r3) [39].

We can then conveniently derive the HSS form for Ui using a graph method in
[41]. However, unlike the Cholesky factorization in [41] which performs the following
operations for each node i = 1, 2, . . . , k of T [k], here we only need to preform for node
k at the end of the ULV factorization of Fii.

Proposition 3.3. (Schur complement HSS form) Assume the HSS generators
of F are Di, Ui, Ri, and Bi for i = 1, 2, . . . , k, k + 1, . . . , q, and the path connecting
node i to k is

P (i→ k) : i→ p→ · · · → c→ q → k,

where p = par (i), and c is the child of q that is an ancestor of i. Let

(3.14) St = Rp · · ·RcB
T
k

(
ŨT
k D̃−1

k Ũk

)
BkR

T
c · · ·RT

p .

Then Ui is an HSS matrix with generators Di, Ûi, Ri, and B̂i for i = k+1, k+2, . . . , q,
where

1. D̂i for each leaf i is given by

D̂i = Di − UiSiU
T
i .

2. B̂i is given by (only needed to compute for left nodes i)

B̂i = Bi −RiSpR
T
j ,

where j = sib (i).

Sp in (3.14) can be computed in a top-down order to save the costs. That is, let

Sq = BT
k

(
ŨT
k D̃−1

k Ũk

)
Bk.

Then for each node p = q − 1, q − 2, . . . , k + 1, compute

Sp = RpStR
T
p ,

where t = par (p),

The total cost for updating the generators of FNi,Ni
to get those of Ui is O

(
r2N

)
,

if Fi has order N and HSS rank r. The storage for Di and Bi can be used for D̂i and
B̂i, respectively, for i = k + 1, k + 2, . . . , q.
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3.2.3. From Ui to the products of Ui and random vectors. Next, we want
to compute the product

Zi = UiX̃i,

where we partition Xi (and also Yi) according to (3.6):

(3.15) Xi =

(
X̂i

X̃i

)
, Yi =

(
Ŷi

Ỹi

)
.

The purpose of this step is to pass the skinny matrix Zi instead of the HSS matrix Ui
to the node p = par (i) (see Figure 3.4).

One way to do this is to compute directly HSS matrix-vector multiplications with
the HSS form of Ui. This scheme can be found in [6]. A basic operation it uses is to
compute y = UT

q x for a vector x as follows. Partition x into xi pieces following the
leaf level Di sizes for k + 1 ≤ i ≤ q. Following the bottom-up traversal of T [q] for
i = k + 1, k + 2, . . . , q, compute

(3.16) gi =

{
UT
i xi, if i is a leaf,

RT
c1gc1 +RT

c2gc2 otherwise.

Then y = gq. Using this operation, Algorithm 1 shows how to compute the product

of Ui with a column x of X̃i. Notice that Ui has generators D̂i, Ui, Ri, and B̂i.

Algorithm 1 Computing z = Uix — Direct method [6]

1: procedure Uix
2: Split x into pieces xi following the leaf level D̂i sizes for k + 1 ≤ i ≤ q
3: gq = UT

q x as in (3.16) ◃ Bottom-up traversal of T [q]
4: fq = 0
5: for i = q, q − 1, . . . , k + 1 do ◃ Top-down traversal of T [q]
6: if i is a non-leaf node then ◃ Propagation of the products to the children
7: fc1 = B̂c1gc2 +Rc1fi
8: fc2 = B̂T

c1gc1 +Rc2fi
9: else

10: zi ← D̂ixi + Uifi ◃ Piece of z = Uix
11: end if
12: end for
13: end procedure

Algorithm 1 costs about 9 (q − k) r2 flops, if Fi has HSS rank r. The special
structures of the U generators in (2.6) and the R generators in (2.9) also help save
the multiplication costs.

The efficiency of Algorithm 1 can be improved by an indirect computation, es-
pecially when the size of FNi,Ni

is much larger than that of Fii. According to (3.6),
(3.13), and (3.15), we have

Zi = UiX̃i = FNi,Ni
X̃i − UqB

T
k

(
ŨT
k D̃−1

k Ũk

)
BkU

T
q X̃i(3.17)

= Ỹi − UqB
T
q U

T
k X̂i − UqB

T
k

(
ŨT
k D̃−1

k Ũk

)
BkU

T
q X̃i

= Ỹi − UqB
T
k

[
UT
k X̂i +

(
ŨT
k D̃−1

k Ũk

)
BkU

T
q X̃i

]
.
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The computation is summarized in Algorithm 2, where we assume x̂ is a column of
X̂i and ỹ is a column of Ỹi. Algorithm 2 costs about 6qr2 − 3kr2. The efficiency
improvement over Algorithm 1 is about 1/3. Both algorithms are used for certain
circumstances (see Section 3.2.5). The total cost for computing Zi is O

(
r2N

)
.

Algorithm 2 Computing z = Uix — Indirect method

1: procedure Uix (x, x̂, and ỹ have the same column index in X̃i, X̂i, and Ỹi,
respectively)

2: Split ỹ into pieces ỹi following the leaf level D̂i sizes for k + 1 ≤ i ≤ q
3: gq = UT

q x as in (3.16) ◃ Bottom-up traversal of T [q]

4: gk = UT
k x̂ similarly to (3.16) ◃ Bottom-up traversal of T [k]

5: fq = BT
k [gk + (ŨT

k D̃−1
k Ũk)Bkgq] ◃ Part of (3.17)

6: for j = q, q − 1, . . . , k + 1 do ◃ Top-down traversal of T [q]
7: if j is a non-leaf node then ◃ Propagation of the product to the children
8: fc1 = Rc1fi
9: fc2 = Rc2fi

10: else
11: zi ← ỹi − Uifi ◃ Piece of z = Uix
12: end if
13: end for
14: end procedure

3.2.4. Skinny extend-add operation. If i is a right child of p = par (i), we
perform an extend-add operation to form Fp. We propose a skinny version which
is significantly simpler than the regular one and the HSS one in [40]. The regular
extend-add operation can be expressed by

Fp = F0
p↔↕ Uj↔↕ Ui = F0

p + Ūj + Ūi,

where Ūj and Ūi are extended from Uj and Ui, respectively, and are called subtree
update matrices [25]. Such an extension can be represented by

(3.18) Ūj|σj×σj
= Uj, Ūi|σi×σi

= Ui,

where σj and σi are certain index sets.
Here, the extension and addition are simply performed on the matrix-vector prod-

ucts Zi and Zj for j = sib (i), so as to compute Yp. Merge and extend Xj and Xi to

a parent random matrix Xp. That is, we first extend X̃j, X̃i, Zj, and Zi into X̄j, X̄i,
Z̄j, and Z̄i, respectively:

(3.19) X̄j|σj
= X̃j, X̄i|σi

= X̃i, Z̄j|σj
= Zj, Z̄i|σi

= Zi,

where the extension of X̃j and X̃i may introduce additional random entries, and the
extension of Zj and Zi may introduce zero entries. Then merge X̄j and X̄i into Xp

by ignoring any repeated entries. Thus, (3.18) is replaced by a simple skinny version
(3.19).

Clearly,

Yp =
(
F0

p↔↕ Uj↔↕ Ui
)
Xp = F0

pXp + ŪjXp + ŪiXp(3.20)

= F0
pXp + ŪjX̄j + ŪiX̄i = F0

pXp + Z̄j + Z̄i

≡ Y 0
p −↕ Zj −↕ Zi,
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where Y 0
p ≡ F0

pXp, and the symbol −↕ is introduced to denote a simplified version of
↔↕ on the skinny matrices without any extension of the columns. That is, we just need
to perform the skinny extend-add operation (3.20) (on three tall and skinny matrices)
to get Yp, which is then used in Step 1 to compute an HSS approximation to Fp.
This is illustrated in Figure 3.8.

= =

(i) Regular HSS extend-add operation (ii) Skinny extend-add operation

F0
p↔↕ Uj↔↕ Ui = Fp Y 0

p −↕ Zj −↕ Zi = Yp

Fig. 3.8. Skinny extend-add operation in our randomized multifrontal methods as compared
with the regular HSS one.

Thus, it is clear that, a substantial improvement of our randomized multifrontal
methods over the classical one and the previous structured ones is, our extend-add
operation is performed only on the rows of some vectors, instead of both rows and
columns of dense or structured matrices. This skinny extend-add operation is thus
significantly simpler and more efficient. In comparison, the structured extend-add
operation in Figure 3.8(i) is much more complicated, even for problems discretized on
regular meshes. It is not easy to be extended to general sparse matrices either.

3.2.5. Formation of selected entries of a frontal matrix. As stated in
Section 3.2.1, computing an HSS approximation to Fp requires the explicit formation
of its D,B generators, which are given by selected entries of Fp, and thus selected
entries of F0

p, Uj, and Ui. Therefore, we need to form some entries of the HSS matrices
Uj and Ui. For convenience, consider Ui with generators Di, Ui, Ri, Bi, where we write

D̂i and B̂i in Proposition 3.3 as Di and Bi, respectively. There are different versions.
A straightforward version is to traverse the HSS tree T [q] of Ui (Figure 3.6(ii)) for

each specified location (j1, j2) given by a row index j1 and column index j2. Assume
j1 (j2) corresponds to a leaf i1 (i2) of T [q], and a row index k1 (k2) in Ui1 (Ui2). Then
the desired entry is

(3.21) Ui|j1,j2 = Ui1 |k1
Ri1Rt1 · · ·Bc1 · · ·RT

t2R
T
i2 (Ui2 |k2

)
T
,

where the path in T [q] that connects i1 and i2 is assumed to be

(3.22) P (i1 → i2) : i1 → t1 → · · · → c1 → c2 → · · · → t2 → i2.

If Ui has order O (N) and HSS rank r, and T [q] has O (logN) levels, the computation
of (3.21) costs up to O

(
r2 logN

)
. Here, we may need to compute up to O (rN) entries

of Ui, which makes the total formation cost O
(
r3N logN

)
.

An improved version is to take advantage of the fact that, many desired entries of
Ui that contribute to the D,B generators of Fp are from the same rows or columns.
In fact, it is clear that the entries in the same row (column) of Ui are also in the
same row (column) of Ūi. The randomized HSS construction also means that each
row (column) of the D,B generators consists of some entries in a same row (column)
of Fp. Thus, we need to traverse at most N paths (instead of O(rN)) like (3.22) in
T [q] to form the O(rN) entries. We then have the following lemma, which helps us
reuse the computations.
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Lemma 3.4. (Computation reuse) The entries of Ui that contribute to those in
the same row (column) of Fp are also in the same row (column) of Ui. Thus, it needs
O
(
r2N logN

)
flops to compute all those entries in Ui, by traversing at most N paths

like (3.22) in T [q].

The final version we employ is to further reuse the information. That is, different
paths P (i1 → i2) may share common pieces also. For this purpose, we define the
distance between nodes i1 and i2.

Definition 3.5. The distance d (i1, i2) between nodes i1 and i2 of T is defined
to be the number of nodes in the path (3.22) that are smaller than c1 (or larger than
c2).

With these results, we have the formation procedure in Algorithm 3, where to
save space, some loops are combined. Another feature to keep in mind is that, the D
generators of Fp can often be quickly obtained, since they generally correspond to the
D generators of Ui and Uj. The reason is that we preserve the partition information
of Ni and Nj when we partition separator p and construct an HSS form for Fp.

Algorithm 3 Find the entries Uj1,j2 of an HSS matrix U with generatorsDi, Ui, Ri, Bi

for given sequences of row indices j1 and column indices j2
1: procedure hssij

2: for each index j1 (j2) do
3: Find the corresponding leaf i1 (i2) and row index k1 (column index k2)
4: end for
5: for each leaf i1 and i2 do
6: Find the distance d (i1, i2) ◃ For information reuse following the distance
7: end for
8: for each index j1 (j2) do ◃ Tree traversal

9:
(
x1
i1

)T
= Ui1 |k1

(
(
x1
i2

)T
= Ui2 |k2

)
◃ Starting to access with row/column index

10: t = i1 (t = i2)
11: for l = 2, 3, . . . ,maxi2 d(i1, i2) (l = 2, 3, . . . ,maxi1 d(i1, i2)) do

◃ Bottom up traversal of the HSS tree for at most max d(i1, i2) steps

12:
(
xl
i1

)T
=
(
xl−1
i1

)T
Rt (

(
xl
i2

)T
=
(
xl−1
i2

)T
Rt)

◃ Performing the multiplication on the left/right of Bc1 in (3.21)
13: t← par (t)
14: end for
15: end for
16: for each index j1 and j2 do
17: if i1 = i2 then ◃ Entry of a diagonal block
18: Uj1,j2 ← Di1 |k1,k2

19: else ◃ Entry of an off-diagonal block

20: Uj1,j2 ←
(
xl
i1

)T
Bc1x

l
i2

◃ c1 as in (3.22)
21: end if
22: end for
23: end procedure

3.3. Structured multifrontal solution after randomized factorizations.
The above elimination process repeats for nodes i = 1, 2, . . . , root (T ), and yields a
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factorization

A = LLT .

(This is generally approximate, since compression is used. We write equalities for
notational convenience.)
L is a structured Cholesky factor and is generally not triangular. But we can still

use forward and backward substitutions to solve

Ly = b, and(3.23)

LTx = y,(3.24)

respectively. The main framework is similar to the one in [39], except that additional
structures are involved. Assume the vectors b, y, and x are partitioned into pieces
bi, yi, and xi, respectively, following the separator ordering in nest dissection.

3.3.1. Forward substitution. In a forward substitution stage, we solve (3.23)
with a postordering traversal of T . According to (3.12), in each step, we need to solve
a system of the form

(3.25)

(
Lii

UqB
T
k U

T
k L

−T
ii I

)(
yi

b̃Ni

)
=

(
bi

bNi

)
.

A ULV forward substitution scheme improved from those in [6, 41] is used to solve
Liiyi = bi. For convenience, we rewrite this system as

Liiy = b.

Partition b and y into bi and yi pieces, respectively, following the leaf levelDi generator
sizes of Fii.

If i is a leaf of the HSS tree T [k], following (3.7), let

(3.26) b̃i =

(
−Ei I
I 0

)
ΠT

i bi ≡
(

b̃i,1
b̃i,2

)
m− r
r

.

Then compute

(3.27) yi ≡ L−1
i b̃i,1,

where Li is given in (3.9). If i is a non-leaf node with children c1 and c2, set

bi =

(
b̃c1,2
b̃c2,2

)
−
(

D̄c1;2,1yc1
D̄c2;2,1yc2

)
.

Then we similarly compute yi as in (3.26)–(3.27).
The traversal of T [k] proceeds bottom-up. When it reaches k, we compute

(3.28) yk = L−1
k bk.

Merging all the yi pieces together yields the solution yi ≡ y.
Then we need to update bNi

in (3.25) as:

(3.29) bNi
← b̃Ni

= bNi
− UqB

T
k U

T
k yi.



18 JIANLIN XIA

A fast computation method can be derived based on the idea of reduced HSS matrices
in a similar way as in [39].

Theorem 3.6. (Fast right-hand side update) For a separator i, write yk in
(3.28) as yi,k. Assume the conditions in Theorem 3.2 hold. Then

(3.30) b̃Ni
= bNi

−ΘT
k bk = bNi

− UqB
T
k Ũ

T
k yi,k,

where Θi is given in (3.13).
Note that computing ŨT

k yk in (3.30) costs O
(
r2
)
flops, while computing UT

k yi in
(3.29) costs O (rN) flops.

3.3.2. Backward substitution. In a backward substitution stage, we solve
(3.24) with a reverse-postordering traversal of T . According to (3.12), we need to
solve intermediate systems of the form(

LT
ii L−1

ii UkBkU
T
q

I

)(
xi

xNi

)
=

(
yi

xNi

)
,

where xNi
is already computed in the steps associated with the separators in Ni. We

first compute

(3.31) ỹi = yi − L−1
ii UkBkU

T
q xNi

.

Similarly, this can be quickly computed as follows based on Theorem 3.2 and [39].
Theorem 3.7. (Fast right-hand side update) Assume the yi ≡ yi,i pieces in the

forward substitution in Section 3.3.1 form yi. Write yk in (3.28) as yi,k. Then the
computation of (3.31) is equivalent to updating only the piece yi,k by

(3.32) yi,k ← ỹi,k = yi,k −ΘixNi
,

where Θi is given in (3.13).
Then we solve the system LT

iixi = ỹi with a ULV-type backward substitution.
For convenience and by abuse of notation, we rewrite it as

LT
iix = y.

Also, partition y and x into yi and xi pieces, respectively, following the leaf level Di

generator sizes of Fii.
For node k of T [k], compute

xk = L−T
k yk.

For a non-leaf node i, partition xi as xi =

(
xi,1

xi,2

)
r
r

and compute

xc1 =

(
−Ec1 I
I 0

)(
L−T
c1 yc1
xi,1

)
, xc2 =

(
−Ec2 I
I 0

)(
L−T
c2 yc2
xi,2

)
,

where c1 and c2 are the children of i, and the partitions in the matrix-vector multi-
plications may not be consistent.

When all the leaves are visited, merge all the pieces xi corresponding to the leaves
i to form x.
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3.4. Adaptive schemes. There levels of adaptivity can be built into the algo-
rithms to enhance the efficiency. The first level already exists in the SPRR factoriza-
tion. That is, although the sampling size r + µ is larger than the actual off-diagonal
rank r, SPRR can approximately detect the right r.

The second level is to use variable sampling sizes at different hierarchical levels of
the randomized HSS construction algorithm in Section 2.2. That is, the initial X in
(2.4) has a column size equal to the maximum rank of the leaf level HSS blocks. Later
to compute Φi in (2.9), we revisit lower level submatrices (already in HSS forms), so
as to use different random vectors. Here, we omit the details (which are similar to the
next level adaptivity below). Another strategy is to use a top-down HSS construction
method in [24], although Fi may need to be multiplied by as many as O (logN)
random matrices, instead of one single X in Section 2.2.

Finally, the top level adaptivity is to use flexible sampling sizes at different levels
of the assembly tree T . That is, a sampling size rl is used at level l of T , which
may be decided based on certain rank patterns (see Remark 4.2 below). We generally
use a smaller rl for a larger l (closer to the leaves). This strategy helps save the
factorization costs at those levels.

In addition, we can also flexibly choose the algorithm for computing Zi = UiX̃i

in Section 3.2.3, since Algorithm 2 is generally faster than Algorithm 1. That is, if
rl ≥ rl−1, only selected columns of X̃i (say, X̃i|:×(1:rl−1)) contribute to Xp. Then

we can compute Zi = UiX̃i|:×(1:rl−1) with Algorithm 2. Otherwise, we expand X̃i by

adding additional columns. Then Zi is formed from two pieces: Zi|:×(1:rl−1) = UiX̃i

computed with Algorithm 2, and Zi|:×(rl−1+1:rl) = UiX̂i computed with Algorithm 1.

See Algorithm 5 in the next section for a summary. More details and additional
improvements will be given in future work.

4. Algorithms and performance analysis. In this section, we summarize
the algorithms and then show the complexity based a rank relaxation idea. Just
like existing structured multifrontal methods in [39, 40], below certain level ls of
the assembly tree T , exact factorizations are computed. Structured factorizations
are computed above (or after) ls. This level is then called a switching level, which
helps the algorithms achieve nearly optimal complexity. See Algorithms 4, 5, and 6.
These algorithms are highly parallelizable and can be generalized to nonsymmetric
and indefinite sparse matrices (ignoring pivoting issues).

For the complexity analysis, we focus on 2D and 3D discretized PDEs. Similar to
the complexity results in [38, 39], our analysis relaxes the rank requirements. That
is, our methods can be applied to more general problems where the HSS rank of Fi

is not small or depends on N . Such situations arise often, especially in 3D problems
[8].

The following lemma summarizes some dense rank relaxation results from [38]
with modifications for the randomized case.

Lemma 4.1. (Dense rank relaxation) Assume an N ×N dense matrix F is par-
titioned into lmax = O (logN) levels of HSS blocks following a perfect binary tree T
with lmax levels. Then the costs and memory of some HSS algorithms are as shown
in Table 4.1, where

– Nl ≡ O(N/2l) is the maximum row dimension of the HSS blocks correspond-
ing to level l of T ,

– rl is the maximum (numerical) rank of these HSS blocks, with r = maxl rl,
– ξ̃constr is the cost to construct an HSS form for F with Y in (2.4),
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Algorithm 4 Randomized structured multifrontal factorization

1: procedure RSMF

2: for node/separator i from 1 to root (T ) do
3: if i is a leaf of T then
4: Fi = F0

i ◃ Initial frontal matrix
5: end if
6: if i is at level l > ls of T then ◃ Exact factorization below ls
7: Fi,i = LiiLT

ii ◃ Exact Cholesky factorization
8: LNi,i = FNi,iL

−T
ii

9: Ui = FNi,Ni
− LNi,iLT

Ni,i
◃ Exact update matrix

10: if i is a left node then
11: Push Ui onto a stack ◃ For later extend-add operation
12: else ◃ Assembly of Fp

13: Pop Uj from the stack for j = sib (i)
14: Fp = F0

p↔↕ Uj↔↕ Ui ◃ Exact extend-add operation
15: end if
16: else ◃ Structured factorization above ls
17: if i is at level l = ls of T then ◃ Direct computation of Yi = FiXi

18: Generate random Xi in (3.5) and compute Yi = FiXi

19: end if
20: Compute a partial ULV factorization of Fi as in (3.12)
21: Zi = UiX̃i ◃ Algorithm 2
22: if i is a left node then
23: Push X̃i and Zi onto a stack ◃ For later skinny extend-add
24: else ◃ Assembly of Yp = FpXp

25: Pop X̃j and Zj from the stack for j = sib (i)

26: Merge X̃i and X̃j and introduce new random entries to form Xp

27: Yp =
(
F0

pXp

)
↔↕ Zj↔↕ Zi ◃ Skinny extend-add operation

28: end if
29: end if
30: end for
31: end procedure

– ξ̃fact is the cost of the ULV factorization for the HSS form,
– ξ̃sol is the ULV solution cost, and
– σ̃mem is the memory size.

Here, the formula for rl is called a rank pattern [39]. Clearly, HSS algorithms and
related randomized versions perform well for F with various rank patterns.

Note that in our randomized multifrontal methods, Y is accumulated from lower
levels of T via the skinny extend-add operation. According to Lemma 3.4, ξ̃constr =
O
(
r2N logN

)
, which is used in the derivation of the following results based on those

in [39].

Theorem 4.2. (Sparse rank relaxation) Suppose the randomized algorithms are
applied to an order n discretized matrix A, so that the total factorization cost is ξfact,
the solution cost is ξsol, and the memory size is σmem. Assume each frontal matrix
satisfies the rank patterns in Lemma 4.1. Then,

• If A results from the discretization on a 2D N ×N mesh and n = N2, then
choose the switching level ls so that the factorization costs before and after ls
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Algorithm 5 Adaptive randomized structured multifrontal factorization

1: procedure ARSMF (Replace Lines 17–28 of Algorithm 4 by the following)
2: · · ·
3: Decide rl if i is at level l ◃ Sampling size used at level l of T
4: if i is at level l = ls of T then ◃ Direct computation of Yi = FiXi

5: Generate random Xi in (3.5) and compute Yi = FiXi

6: end if
7: Compute a partial ULV factorization of Fi as in (3.12)
8: if i is a left node then
9: Push X̃i onto a stack

10: else ◃ Assembly of Yp = FpXp

11: Pop X̃j from the stack for j = sib (i)
12: if rl ≥ rl−1 then
13: Merge X̃i and X̃j and introduce new random rows to form Xp

14: Zi = UiX̃i|:×(1:rl−1), Zj = UjX̃j|:×(1:rl−1) ◃ Algorithm 2
15: else
16: Merge X̃i and X̃j and introduce new random rows/columns to form Xp

17: Extend X̃i to ( X̃i X̃ ′
i ) and X̃j to ( X̃j X̃ ′

j ) using entries from Xp

18: Zi|:×(1:rl−1) = UiX̃i, Zj|:×(1:rl−1) = UjX̃j ◃ Algorithm 2

19: Zi|:×(rl−1+1:rl) = UiX̃ ′
i , Zj|:×(rl−1+1:rl) = UjX̃ ′

j ◃ Algorithm 1
20: end if
21: Yp =

(
F0

pXp

)
↔↕ Zj↔↕ Zi ◃ Skinny extend-add operation

22: end if
23: · · ·
24: end procedure

Table 4.1
Costs and memory of randomized HSS construction and other HSS algorithms for an N × N

matrix F , where p is a positive integer, α > 0, and the results for ξ̃fact, ξ̃sol, and σ̃mem are from
[38].

rl r = max rl ξ̃constr ξ̃fact ξ̃sol σ̃mem

O(1) O(1) O(N)
O(N)

O(N) O(N)
O(logpNl) O(logpN) O(N log2pN)

p > 3 O(N1/p) O(N (p+2)/p)

O(N
1/p
l ) p = 3 O(N1/3) O(N5/3) O(N logN)

p = 2 O(N1/2) O(N2) O(N3/2) O(N logN) O(N logN)

O(αlmax−lr0)

α < 3
√
2 < O(N1/3) < O(N5/3) O(N)

O(N) O(N)α = 3
√
2 O(N1/3) O(N5/3) O(N logN)

α < 2
√
2 < O(N1/2) < O(N2) O(N logα3

)

α = 2
√
2 O(N1/2) O(N2) O(N3/2) O(N logN) O(N logN)

are the same, and the counts are given in Table 4.2.
• If A results from the discretization on a 3D N ×N ×N mesh and n = N3,
then choose the switching level ls so that the solution costs before and after
ls are the same, and the counts are given in Table 4.3.

In both cases, lmax − ls ≤ O(logN), where lmax is the total number of levels in T
and root (T ) is at level 0.

Proof. The derivation is similar to that in [41]. We only show two cases in 2D
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Algorithm 6 Randomized structured multifrontal solution

1: procedure RSMS

2: Partition b into bi pieces according to the sizes of the separators
3: for node i from 1 to root (T ) do ◃ Forward substitution for (3.23)
4: if i is at level l > ls of T then ◃ Exact solution below ls
5: Solve Liiyi = bi

6: bNi
← b̃Ni

= bNi
− LNi,iyi,k

7: else ◃ Structured solution above ls
8: Solve Liiyi = bi as in Section 3.3.1
9: bNi

← b̃Ni
as in (3.30) ◃ Fast update via the idea of reduced matrices

10: end if
11: end for
12: y← b ◃ y (and also x) in the memory space of b
13: for node i from root (T ) to 1 do ◃ Backward substitution for (3.24)
14: if i is at level l > ls of T then ◃ Exact solution below ls
15: Solve LT

iixi = yi

16: for all nodes j such that i ∈ Nj do
17: yj ← ỹj = yj − Lj,iyi

18: end for
19: else ◃ Structured solution above ls
20: Solve LT

iixi = yi as in Section 3.3.2
21: for node j such that i ∈ Nj do ◃ Fast update via reduced matrices
22: yi,k ← ỹi,k as in (3.32) with k used in step j
23: end for
24: end if
25: end for
26: end procedure

Table 4.2
Factorization cost ξfact, solution cost ξsol, and storage σmem of the randomized structured

algorithms applied to A discretized on a 2D N ×N mesh, where p ∈ N and α > 0.

rl r = max rl ξfact ξsol σmem

O(1) O(1)
O(n) O(n) O(n)

O(logp Nl) O(logp N)

O(N
1/p
l )

p ≥ 3 O(N1/p) O(n log3/4 n)

O(n log log n) O(n log log n)
p = 2 O(N1/2) O(n log2 n)

O(αlmax−lr0)
α ≤ 3

√
2 O(N1/3) O(n log3/4 n)

α ≤
√
2 O(N1/2) O(n log2 n)

and 3D using Lemma 4.1. For the case rl = O(N
1/3
l ) in 2D, we minimize ξfact:

ξfact =

lmax∑
l=ls+1

4⌊l/2⌋O

((
N

2⌊l/2⌋

)3
)

︸ ︷︷ ︸
before ls

+

ls∑
l=0

4⌊l/2⌋O

((
N

2⌊l/2⌋

)5/3

log
N

2⌊l/2⌋

)
︸ ︷︷ ︸

after ls

= O

(
N3

2⌊ls/2⌋

)
+O

(
N5/32⌊ls/2⌋/3 (⌊lmax/2⌋ − ⌊l/2⌋)

)
.
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Table 4.3
Factorization cost ξfact, solution cost ξsol, and storage σmem of the randomized structured

algorithms applied to A discretized on a 3D N ×N ×N mesh, where p ∈ N and α > 0.

rl r = max rl ξfact ξsol σmem

O(1) O(1)
O(n)

O(n) O(n)
O(logp Nl) O(logp N)

O(N
1/p
l )

p > 3 O(N1/p) O(n log n)
p = 3 O(N1/3) O

(
n10/9 log n

)
p = 2 O(N1/2) O(n4/3 log n) O(n log n) O(n log n)

O(αlmax−lr0)
α ≤ 3

√
2 O(N1/3) O

(
n10/9 log n

)
O(n) O(n)

α ≤
√
2 O(N1/2) O(n4/3 log n) O(n log n) O(n log n)

This can be roughly optimized if we set the dense factorization cost before the switch-
ing level ls to be equal to the structured factorization cost after ls. That yields

(4.1) ⌊lmax/2⌋ − ⌊ls/2⌋ = O (log logN) .

We then have

ξfact = O(N2 (⌊lmax/2⌋ − ⌊ls/2⌋)3/4) = O(n log3/4 n),

ξsol =

lmax∑
l=ls+1

4⌊l/2⌋O

((
N

2⌊l/2⌋

)2
)

+

ls∑
l=0

4⌊l/2⌋O

((
N

2⌊l/2⌋

))
= O

(
N2 (⌊lmax/2⌋ − ⌊ls/2⌋)

)
+O

(
N2⌊ls/2⌋

)
= O (n log log n) .

For the case rl = O(N
1/3
l ) in 3D, we minimize ξsol instead. This guarantees that

ξsol is roughly O (n) while ξfact is in the same order as otherwise when we minimize
ξfact. That is,

ξsol =

lmax∑
l=ls+1

8⌊l/3⌋O

((
N

2⌊l/3⌋

)4
)

+

ls∑
l=0

8⌊l/3⌋O

((
N

2⌊l/3⌋

)2
)

= N4
(1
2

)⌊ls/3⌋
+O(N22⌊ls/3⌋).

The optimality condition is

(4.2) ⌊ls/3⌋ = O (logN) .

We then have

ξsol = O
(
N3
)
= O (n) ,

ξfact =

lmax∑
l=ls+1

8⌊l/3⌋O

((
N

2⌊l/3⌋

)6
)

+

ls∑
l=0

8⌊l/3⌋O

((
N

2⌊l/3⌋

)10/3

log

(
N

2⌊l/2⌋

)2
)

= N6
lmax∑

l=ls+1

(
1

8

)l

+N10/3
ls∑
l=0

(
1

21/3

)l

(⌊lmax/2⌋ − ⌊ls/2⌋) = O
(
n10/9 log n

)
.
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These results are generally better than those in [39]. The optimality conditions
(4.1) and (4.2) show how to choose the switching level ls. For simplicity, we generally
choose lmax − ls to be roughly constant or slowly increasing.

Remark 4.1. Notice that the solution costs and memory sizes in all the cases in
Theorem 4.2 are roughly linear in n. This makes the algorithms especially attractive
for problems with multiple right-hand sides and for preconditioning.

Remark 4.2. The rank patterns are also useful in deciding the values of the
sampling sizes rl in Section 3.4. That is, when such a pattern is known, then we
can roughly decide rl−1 from rl based on their corresponding frontal matrix sizes.
Although not theoretically justified, this works well in our numerical tests below.

5. Numerical experiments. In this section, we test our randomized algorithms
with a Helmholtz equation and some more general problems. For convenience, the
following notation is used:

• NEW: The new randomized algorithms, as specified below.
• MF: The classical multifrontal method, which uses the code for NEW by setting
ls = 0. (In [37], a similar version is compared with the serial SuperLU solver
[11] and has comparable performance.)

• e2 =
∥x−x̃∥2

∥x∥2
and γ2 =

∥Ax̃−b∥2

∥b∥2
: Relative error and relative residual, respec-

tively, where x̃ is an approximation to the solution x of Ax = b.

Example 1. We solve sparse linear systems Ax = b arising from the discretization
of a Helmholtz equation:

(5.1) [−∆− ω2c(x)−2]u = f ,

where ω, c(x), and f are the angular frequency, the velocity field, and the forcing
term, respectively. Here, ω = 5Hz. The discretized matrix is indefinite. That is, we
are solving an elliptic problem with an indefinite perturbation. By fixing ω and by
varying the mesh size, we can conveniently demonstrate the complexity of NEW (which
is expected to be about O(N) in 2D). Such kind of tests are also used, say, in [35].

The low-rank property of this matrix is studied in [14, 35]. In our factorizations,
we choose A with size n = N2 from N ×N meshes, where N varies from 300 to 4800.
In NEW with Algorithm 4, we set the r+ µ = 120 and a relative tolerance τ = 10−5 in
the SPRR factorizations used in the intermediate compression steps. See Table 5.1
for the factorization performance. In NEW, we choose lmax− ls = 11, 11, 11, 10, and 10
for the N values from 300 to 4800. The results are also plotted in Figure 5.1, together
with the ratios of the flop counts and timings. We notice that, when n quadruples and
gets large, the flop and timing ratios for MF and NEW approach 8 and 4, respectively,
which is consistent with the flop counts O(n1.5) for MF and O (n) for NEW.

Table 5.2 shows the memory of the methods and the ratios when n increases. The
solution costs and accuracies (with single precisions) are given in Tables 5.3 and 5.4,
respectively. The memory and solution costs of NEW scale nearly linearly and better
than MF. The difference in the solution costs increases when n increases. For example,
when n = 12002, 24002, and 48002, the ratios of the solution flops of MF over NEW

are 1.21, 1.42, and 1.56, respectively. (We expect this advantage to be even more
significant when n is large in our future tests, specially in 3D.) After few steps of
iterative refinement, NEW reaches similar accuracies as MF. The timing for the iterative
refinement is roughly the solution time in Table 5.3 times the number of steps in Table



RANDOMIZED SPARSE DIRECT SOLVERS 25

Table 5.1
Example 1: Factorization flops and timing (in seconds) of NEW and MF for (5.1) with various

matrix sizes n.

n (= N2) 3002 6002 12002 24002 48002

lmax 13 15 17 19 21

Flops
MF 1.04E9 8.40E9 6.76E10 5.43E11 4.36E12
NEW 1.07E9 8.05E9 4.93E10 2.54E11 1.19E12

Time (s)
MF 7.51E−1 4.21E0 2.59E1 1.71E2 1.35E3
NEW 8.53E−1 5.43E0 2.98E1 1.59E2 7.28E2
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Fig. 5.1. Example 1: Factorization flops and timing (in seconds) of NEW and MF for (5.1) with

various n, where the scaling factors
flopsn
flopsn/4

and timen
timen/4

for each method are marked.

5.4. (This makes the overall NEW solution cost larger here, but the total cost is still
much lower since the solution is much faster than the factorization.)

Table 5.2
Example 1: Memory (number of nonzeros in the factors) of NEW and MF for (5.1) with various n.

n (= N2) 3002 6002 12002 24002 48002

lmax 13 15 17 19 21

Memory
MF 7.97E6 3.73E7 1.71E8 7.73E8 3.45E9
NEW 7.72E6 3.35E7 1.40E8 5.39E8 2.20E9

Memoryn

Memoryn/4

MF / 4.68 4.58 4.52 4.46
NEW / 4.34 4.18 3.85 4.08

In addition, unlike the method in [39] (denoted MFHSS), NEW avoids storing large
dense frontal matrices. We thus compare their memory requirements for constructing
an HSS approximation to the last frontal matrix. See Figure 5.2. Such memory
includes the matrix-vector products in NEW and the dense frontal matrices in MFHSS.
It is clear that the memory scales linearly for NEW, while quadratically for MFHSS.

Remark 5.1. We only compare the storage of the frontal matrices in NEW

and MFHSS. The overall performance is not compared, since the matrices are not large
enough for NEW to be significantly faster, and MFHSS generally uses tolerances to control
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Table 5.3
Example 1: Solution flops and timing (in seconds) of NEW and MF for (5.1) with various n (the

timing for MF with n = 48002 is left blank since it is too long to be meaningful).

n (= N2) 3002 6002 12002 24002 48002

lmax 13 15 17 19 21

Flops
MF 1.58E7 7.39E7 3.40E8 1.53E9 6.85E9
NEW 1.53E7 6.68E7 2.80E8 1.08E9 4.38E9

Time (s)
MF 9.80E − 2 4.06E − 1 1.70E0 6.99E0
NEW 9.80E − 2 4.08E − 1 1.70E0 6.69E0 2.75E1

Table 5.4
Example 1: Solution accuracies of NEW and MF for (5.1) with various n, and few steps of iterative

refinements are used in NEW.

n (= N2) 3002 6002 12002 24002 48002

lmax 13 15 17 19 21

MF
γ2 1.21E − 7 1.26E − 7 1.34E − 7 1.53E − 7 1.90E − 7
e2 1.79E − 5 2.62E − 5 3.92E − 5 5.98E − 5 1.14E − 4

Original
γ2 1.47E − 7 2.38E − 7 2.82E − 7 2.07E − 6 6.39E − 6
e2 2.35E − 5 8.65E − 5 2.06E − 4 4.32E − 3 1.77E − 2

NEW After Steps 1 1 1 2 3
iterative γ2 5.65E − 8 5.60E − 8 5.57E − 8 5.82E − 8 8.62E − 8
refinement e2 1.13E − 5 9.7E − 6 1.10E − 5 2.24E − 5 1.40E − 4

the accuracy. NEW is predicted to be much faster when n is large. A parallel code is
expected to be developed, so as to test larger matrices.

Example 2. Next, we show some broader applications by considering some 2D,
3D, and more general matrices, as listed in Table 5.5. They include matrices from
the University of Florida Sparse Matrix Collection [10] and from some finite element
methods with iterative mesh refinements [9], as well as a random sparse matrix.

In particular, we illustrate the potential of NEW for obtaining approximate so-
lutions with modest accuracy, using the adaptive Algorithm 5. From the switching
level l = ls to the root level l = 0 of T , we use sampling sizes rl, which are decided
adaptively based on the corresponding frontal matrix sizes. The relative tolerance in
the SPRR compression is about τ = 2× 10−3. Denote

[rmin, rmax] = [min0l=ls rl, max0l=ls rl].

We first show the efficiency improvement with NEW over MF. See Table 5.6. The
pairs [rmin, rmax] are also shown. Although the matrices are from different background
and the sizes are relatively small, NEW improves the costs by factors of 2.8, 1.9, 1.5,
1.4, 2.1, 1.9, 1.8, 7.4 for the matrices from the top to the bottom in Table 5.6. (The
timing is not shown since the matrices are relatively small and NEW has no significant
advantage in the timing over MF. See the previous example for the timing for larger
matrices.)

Specifically, for the SPD matrix ecology2 in Table 5.5, we show the effectiveness
of NEW as a preconditioner in the preconditioned conjugate gradient method (PCG). For
l = ls, ls−1, . . . , 0, we use the sampling sizes rl = 40, 46, 54, 62, 62, 61, 47. The largest
frontal matrix size is 1, 851. The cost to get the preconditioner is 1.32E10 flops, as
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Fig. 5.2. Example 1: Memory requirements of NEW for constructing an HSS approximation to
the last frontal matrix, as compared with that in the method in [39].

Table 5.5
Example 2: 2D, 3D, and more general test matrices, where 2cubes sphere, apache2, Dubcova3,

ecology2, and parabolic fem are from the University of Florida Sparse Matrix Collection [10],
crack and jumpMG are from a toolbox iFEM [9], and nnz denotes the number of nonzeros of the
matrix.

Matrix n nnz Description
2cubes sphere 101, 492 1, 647, 264 3D electromagnetic diffusion equation on

two cubes in a sphere

apache2 715, 176 4, 817, 870 3D SPD matrix from “APACHE small”

crack 280, 307 1, 410, 269 2D Poisson equation in a crack domain

Dubcova3 146, 689 3, 636, 643 Matrix collected by Dubcova

ecology2 106 − 1 4, 995, 991 Landscape ecology problem using electrical
network theory to model animal
movement and gene flow

jumpMG 114, 211 1, 303, 519 3D PDE with jump coefficients in an
L-shaped partial cubic domain

parabolic fem 525, 825 3, 674, 625 Parabolic FEM problem for a
diffusion-convection reaction in
computational fluid dynamics

random 216, 000 3, 154, 318 Ill-conditioned random matrix generated
by Matlab sprandsym with the nonzero
pattern following a 3D tetrahedral grid

compared with the exact factorization cost 2.59E10 and a randomized factorization
cost 1.46E10 with a uniform sampling size rl ≡ 62.

PCG with NEW as the preconditioner (PCG-NEW) converges significantly faster and
costs much less than the regular conjugate gradient method (CG) and PCG with a block
diagonal preconditioner (PCG-bdiag). See Figure 5.3. The total iterative solution
costs are shown in Table 5.7. For simplicity, the test is done in Matlab, and CG,
PCG-bdiag, and PCG-NEW take 4.29E2, 6.83E3, and 1.63E3 seconds, respectively. CG
is faster due to its simplicity and fast data access in Matlab and the relatively small
matrix size. We expect PCG-NEW to be faster in timing for larger tests, say, in Fortran,
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Table 5.6
Example 2: Costs and accuracies of NEW and MF for the matrices in Table 5.5.

Matrix lmax
MF NEW

Flops Flops [rmin, rmax] γ2
2cubes sphere 14 6.34E10 2.24E10 [45, 62] 2.03E − 3

apache2 16 2.82E11 1.50E11 [100, 140] 7.10E − 2

crack 16 2.84E9 1.91E9 [20, 30] 6.08E − 3

Dubcova3 16 1.89E9 1.34E9 [25, 32] 8.21E − 3

ecology2 16 2.59E10 1.24E10 [35, 62] 7.82E − 5

jumpMG 14 2.07E10 1.08E10 [30, 63] 5.09E − 3

parabolic fem 14 8.24E9 4.57E9 [25, 48] 9.19E − 4

random 15 3.04E11 4.09E10 [30, 54] 2.61E − 3

and for severely ill-conditioned problems (such as a linear elasticity problem near the
incompressible limit in [37]).
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Fig. 5.3. Example 2: Convergence of CG, PCG with a block diagonal preconditioner (PCG-bdiag),
and PCG with NEW as the preconditioner (PCG-NEW) for the matrix ecology2 in Table 5.5, where a
diagonal block size 20 is used in PCG-bdiag.

Table 5.7
Example 2: Convergence results for Figure 5.3.

Method Number of iterations Total cost (flops) γ2
CG 6, 821 1.43E11 9.98E − 14
CG-bdiag 4, 835 2.90E11 9.66E − 14
CG-NEW 38 2.20E10 3.86E − 14

6. Conclusions. This work brings randomized structured techniques into the
field of sparse solutions by presenting randomized direct factorizations for sparse ma-
trices. The methods convert complicated HSS operations in some structured factor-
izations into the operations of skinny matrix-vector products. A series of strategies
are used to enhance the efficiency. Additional structures and adaptive schemes are
introduced into structured multifrontal methods. The methods have significant ad-
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vantages over classical factorizations and similar structured ones. They can also work
for problems whose intermediate matrices in the factorizations do not have low-rank
off-diagonal blocks, especially 3D ones and more general sparse problems. Such ap-
proximate factorizations with modest accuracy are especially useful for problems such
as seismic imaging [36] and preconditioning.

Efficient implementations, especially parallel ones, are expected to be done for
large matrices. Our methods also have the potential to be generalized to matrix-
free sparse direct solvers, since various essential operations are already performed on
matrix-vector products. We seek to use sparse matrix-vector multiplications (and
possibly the stencil information) to obtain data-sparse factors for sparse matrices. A
fundamental idea is to construct HSS approximations to submatrices of A based on
matrix-vector products, and then perform the factorization as in the method here. The
matrix-free randomized HSS construction algorithm in [24] do not need to compute
selected entries of the frontal matrices, and can be applied to at least the leaf levels.
The work is in progress.
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