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Fast Reconstruction for Multichannel Compressed
Sensing Using a Hierarchically Semiseparable Solver
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Purpose: The adoption of multichannel compressed sensing

(CS) for clinical magnetic resonance imaging (MRI) hinges on
the ability to accurately reconstruct images from an under-

sampled dataset in a reasonable time frame. When CS is com-
bined with SENSE parallel imaging, reconstruction can be
computationally intensive. As an alternative to iterative meth-

ods that repetitively evaluate a forward CSþSENSE model, we
introduce a technique for the fast computation of a compact
inverse model solution.

Methods: A recently proposed hierarchically semiseparable
(HSS) solver is used to compactly represent the inverse of the

CSþSENSE encoding matrix to a high level of accuracy. To
investigate the computational efficiency of the proposed HSS-
Inverse method, we compare reconstruction time with the cur-

rent state-of-the-art. In vivo 3T brain data at multiple image
contrasts, resolutions, acceleration factors, and number of

receive channels were used for this comparison.
Results: The HSS-Inverse method allows for >6� speedup
when compared to current state-of-the-art reconstruction

methods with the same accuracy. Efficient computational scal-
ing is demonstrated for CSþSENSE with respect to image

size. The HSS-Inverse method is also shown to have minimal
dependency on the number of parallel imaging channels/
acceleration factor.

Conclusions: The proposed HSS-Inverse method is highly
efficient and should enable real-time CS reconstruction on

standard MRI vendors’ computational hardware. Magn
Reson Med 73:1034–1040, 2015. VC 2014 Wiley Periodicals,
Inc.
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INTRODUCTION

In clinical applications of structural magnetic resonance
imaging (MRI), there exists a multiobjective trade-off
between image quality, imaging time, and reconstruction
time. Reducing imaging time for a given protocol is
clearly beneficial from a cost perspective, and can also
facilitate more detailed studies with the same patient
throughput. Image quality tends to be a firm barrier
placed by radiologists or researchers based on require-
ments for data analysis. Finally, stringent hardware limi-
tations exist for clinical FDA approved scanners. It is
important to note that advances in MRI sequences and
hardware continue to increase the computational burden
for image reconstruction, e.g., large coil arrays, increased
resolution, and multicontrast studies. In this work, we
investigate a highly scalable inverse algorithm intended
to ameliorate the computational challenges associated
with accurate compressed sensing (CS) reconstruction.
As an alternative to reconstruction methods that repeti-
tively evaluate forward CS/parallel imaging models, we
introduce a technique for the computation of a compact
inverse model solution. This is achieved by using a
recently proposed hierarchically semiseparable (HSS)
solver (1), which compactly represents the inverse
encoding matrix to a high level of accuracy. Specifically,
using a prespecified level of accuracy the HSS solver
will systematically compress parameters from a decom-
position of the encoding matrix. When solving a two-
dimensional (2D) inverse encoding problem with N vox-
els, even optimized Cholesky decomposition-based solv-
ers such as (2) will require O N1:5ð Þ computation in the
best case. When the encoding matrix has certain low-
rank properties, the HSS method can achieve O Nð Þ.
Under these conditions, the HSS scaling is less than the
fast Fourier transform (FFT) complexity of O Nlog Nð Þ
while the optimized Cholesky is greater.

Sparse signal reconstruction has been introduced for
MRI (3) as a method to improve imaging time through
random undersampling of k-space. By assuming a spar-
sity inducing L1 image prior, the reconstruction problem
can be formulated as an unconstrained optimization
problem. This problem incorporates fidelity against the
observed k-space samples with a penalty imposed on the
sparsity prior. These methods have been shown to pro-
vide good image accuracy, but can significantly increase
the computational burden for image reconstruction. This
is especially evident with the inclusion of SENSE paral-
lel imaging (4). Several attempts have been made to
reduce the computational requirements associated with
sparse signal reconstruction (5–11). These iterative tech-
niques rely on repetitive evaluation of a forward
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CSþSENSE model. In this work, we propose an
alternative approach that solves for the actual inverse of
the encoding matrix using a direct (noniterative) HSS
solver.

To demonstrate the advantages of our HSS-Inverse
approach we will focus on the popular split Bregman
(SB) (8) formulation. Here, the authors presented a relax-
ation method for L1 penalties. The iterative SB approach
produces a series of targets for the sparsity of the image.
Each stage of the method involves solving an easier L2

optimization and quickly updating the sparsity target.
Our HSS-Inverse solver and several iterative conjugate
gradient (CG) approaches are embedded within the SB
formulation for comparison. This allows for us to isolate
the efficiency of solving the CSþSENSE model across
consistent optimization problems. To accurately compare
our method to state-of-the-art techniques, we will ensure
optimized CG performance through the use of Jacobi pre-
conditioning (9) and geometric coil compression (11)
where applicable.

In this work, we empirically verify the linear computa-
tional scaling shown in Ref. (1) with respect to the size
of the system being solved. The linear scaling is demon-
strated through CSþSENSE reconstructions across multi-
ple image resolutions, based on 32-channel 3T
acquisitions. Specifically, our HSS-Inverse approach
scales efficiently with the number of imaging voxels and
minimizes the influence of acceleration factor/the num-
ber of parallel imaging channels toward the reconstruc-
tion time. This results in >6� speedup over iterative
methods even when they take advantage of state-of-the-
art preconditioning (9) and coil compression (11)
techniques.

THEORY

As described in Ref. (3), CS reconstruction involves solv-
ing an inverse problem in order to match an observed sub-
set of data under an assumed sparsity prior. Here, MR
images are assumed to be sparse or compressible under a
total variation (TV) and/or wavelet transformation. We
begin by briefly reviewing optimization methods for CS
reconstruction. We will then summarize the application
of iterative CG-based approaches and our HSS-Inverse
technique within the reconstruction framework.

CS with Total Variation Penalty

The CS formulation for MRI, as presented in Ref. (3), is
an unconstrained optimization problem involving pen-
alty terms based on assumed TV and wavelet sparsity.
By predefining penalty weights a and c, the CS optimiza-
tion estimates the true image x 2 CN :

x̂ ¼ arg min
x

k FVx � y k2
2 þa k CTxk1 þ gTV xð Þ: [1]

Here, FV 2 CM�N is the undersampled Fourier operator
that transforms the image x into k-space to match the
observations y 2 CM . Therefore, the acceleration factor is
R¼N=M. The data fidelity is measured using the L2 met-
ric to represent root mean squared error (RMSE) against
the observations. C is the wavelet transform that is

applied to the image x and the L1 metric is used to pro-
mote sparsity in that domain. Similarly, the TV operator
computes a finite difference across the image x to pro-
mote sparsity in this spatial smoothness domain. In this
work, we will focus on the more general parallel imaging
problem and for ease of illustration only consider TV
sparsity. By introducing complex coil sensitivity profiles
fCigi¼1;K , the SENSE parallel imaging model can be
incorporated into the CS formulation (5,7,10):

x̂ ¼ arg min
x

XK

i¼1

kFVCix � yi k2
2 þg k Gvxk1þ k Ghxk1ð Þ:

[2]

Note that the TV operator has been rewritten as a sum
of horizontal and vertical finite difference operators Gh

and Gv. The SB approach from (8) relaxes the L1 penal-
ties through the iterative construction of L2 targets:

x̂ ¼ arg min
x

XK

i¼1

kFVCix � yi k2
2

þ b k Gvx � gv k2
2 þ k Ghx � gh k2

2

� �
:

[3]

The targets gv and gh can be updated simply using a
soft thresholding truncation parameter E. For example,
gv  max jGvxj � E=2; 0ð Þsign Gvxð Þ. This operation is lin-
ear time and thus the computational cost is dependent
on the quadratic minimization shown in (3). The explicit
solution of this minimization problem is:

XK

i¼1

CH
i FH

V FVCi

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
TF

þb GH
v Gv þ GH

h Gh

� �
�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ts

2
66664

3
77775x

¼
XK

i¼1

CH
i FH

V yi þ GH
v gv þ GH

h gh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

: [4]

Here, we denote TF as the Fourier operator which has been
combined with the Laplacian operator TS. We will refer to
the inverse problem as the solution of TF þ bTSð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

A

x ¼ b

or evaluating x ¼ A�1b. It is important to note that TF;TS,
and the parameter b are constant with respect to the SB
iteration and only depend on the protocol and coil sensi-
tivity maps.

Figure 1 shows the flow diagram for three possible
reconstruction scenarios. The Matrix Free and Matrix
implementations (12) utilize an iterative CG-based solver
and the direct HSS solver (1) is used for our proposed
HSS-Inverse method. As can be seen in Figure 1, the CG-
based methods require an evaluation of the forward
CSþSENSE operator. For the Matrix Free method, the
operator A is evaluated by looping across all coils and
performing FFT/sensitivity operations. Alternatively, the
Matrix method directly computes the operator A and
removes this dependency on the number of parallel
imaging channels. With the incorporation of channel
compression techniques, the dependency of Matrix Free
methods on the number of parallel channels can be
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reduced. Specifically, for the large array coils and Carte-
sian sampling used in this work, geometric coil compres-
sion (11) can be effectively used with only small loss in
reconstruction accuracy. In the case of our HSS-Inverse
method, a compact representation for the inverse opera-
tor A�1 is formed using the HSS linear solver. This is
accomplished by performing a structured factorization of
the matrix A into lower diagonal L and diagonal D com-
ponents: A¼ LDLH. Here, many of the terms in L can
either be inverted easily or represented using low-rank
modeling. This allows for efficient evaluation of the
inverse model.

The impact of hierarchical compression can be clearly
seen when comparing the HSS solver to optimized
Cholesky-based methods such as CHOLMOD (2).
Figure 2 shows the computational scaling of the algo-
rithms with respect to image size. Here, the size of the
matrix corresponds to the number of voxels in the 2D
images, which range from 112� 112 to 448� 448. To put
this in perspective, the largest image has 200K voxels
and an explicit representation of the dense matrix A�1

would require over 600GB of memory to describe the 40
�109 entries. Even if this matrix could be explicitly
formed, the numerical evaluation would be extremely
slow with a scaling of O N2ð Þ. Alternatively, the represen-
tations for A�1 using CHOLMOD and HSS are much
more compact and computationally efficient. The inverse
evaluation time is shown for CHOLMOD and the HSS
solver using a 10�6 tolerance across several relevant
image sizes. The matrices are associated with a R¼ 3
acceleration and 32 receive channels. The difference

between the O N1:5ð Þ scaling of CHOLMOD and the O Nð Þ
scaling of the HSS solver can be clearly observed. It is
important to note that our HSS solver is implemented in
MATLAB and the CHOLMOD solver we compared
against is a highly optimized Cþþ implementation of
(2). It is expected that a highly optimized Cþþ

FIG. 1. SB CSþSENSE implementa-
tions are illustrated. The required
precomputation is shown above the

corresponding flow diagrams. The
Matrix Free and Matrix methods rely

on iterative CG solutions, while the
HSS-Inverse method gives a direct
solution for each SB iteration. The

CG-based approaches are optimized
with the diagonal Jacobi

preconditioner.

FIG. 2. Computational scaling with respect to image size for noni-
terative inverse methods. The time for a single inverse evaluation
is shown for the optimized sparse Cholesky decomposition

CHOLMOD and the HSS solver using a 10�6 tolerance. The matrix
is associated with a R¼3 acceleration and 32 channels. The

images range in size from 112� 112 to 448� 448.
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implementation of the HSS solver will be faster for all
image sizes. As we will demonstrate, the HSS evaluation
of A�1 has minimal dependency on the number of paral-
lel imaging channels and the CS acceleration factor.

Finally, the precomputation trade-off for each method
is shown above the respective flow diagrams in Figure 1.
It is important to note that all of the CG methods can be
optimized to exploit the Jacobi preconditioner, i.e.,
diag Að Þ. Thus, the Matrix Free method computes the
least information prior to reconstruction and HSS-Inverse
precomputes the most information (requiring an efficient
representation for the inverse of the encoding matrix).

METHODS

The focus of this work is on the application of a HSS
solver for efficient SB reconstructions with SENSE paral-
lel imaging. We evaluate the performance of our HSS-
Inverse method against several CG-based approaches to
highlight the computational trade-offs for reconstruction.
The computational scaling for all approaches is analyzed
with respect to the image size and the number of parallel
imaging channels. The image accuracy for all methods is
computed as RMSE against the complex coil combined
images from the fully sampled data. Therefore, our
results include computational aspects for the algorithms
and analysis of the methods using the acquired data.
Exhaustive sweeps of TV and soft-thresholding parame-
ters were performed for “best case” accuracy. In practice,
methods such as (13,14) could be used. As both the CG
and HSS solvers have controllable accuracy, we choose a
typical 10�6 criteria for all methods to ensure consistent
results across the reconstructions.

To accurately compare the different CS approaches,
multicontrast in vivo data were acquired from a healthy
volunteer subject to institutionally approved protocol con-
sent. The data were acquired on a 3T Siemens Trio with
the standard Siemens 32-channel head array coil. T2-
weighted and fluid attenuated inversion recovery (FLAIR)
images were acquired with a 224� 224 mm 2 field of view,
across 35 slices with a 30% distance factor. The T2-
weighted scan uses a turbo spin echo sequence with imag-
ing parameters pulse repetition time (TR)¼ 6.1 s, echo
time (TE)¼ 98 ms, flip angle¼ 150�, and a resolution of
0:5� 0:5� 3:0 mm 3, with a matrix size of 448� 448. The
FLAIR scan uses a turbo spin echo sequence with an inver-
sion pulse and imaging parameters TR¼ 9.0 s, TE¼ 90 ms,
inversion time (TI)¼ 2.5 s, flip angle¼ 150�, and a resolu-
tion of 0:9� 0:9� 3:0 mm 3, with a matrix size of
256� 256. The fully sampled uncombined complex k-
space data were retrospectively undersampled for all com-
putational experiments. To examine the computational
scaling of the CS reconstruction algorithms, datasets of
consistent size were generated across the multiple imaging
contrasts. Where applicable, matrix sizes of
112� 112; 168� 168, 224� 224, and 280� 280 were con-
structed by down-sampling the coil data. We utilize these
images to represent resolutions of 0:8;1:0; 1:33; and 2:0
mm for the same field of view. In this work, data from two
representative imaging slices will be used as test cases for
the performance of the reconstruction methods. Sensitiv-
ity maps were created using JSENSE (15) estimation and

used for all reconstructions. A 10th -order polynomial was
used to fit the sensitivity profiles during the iterative
JSENSE sensitivity map estimation. The polynomial fitting
was performed only across a masked region of the brain.

We consider random undersampling schemes based on
the method described in (3), where a variable polynomial
density factor of 6 and a 1=R partial distance was used
to generate each of the one-dimensional (1D) undersam-
pling patterns. The results of the CS reconstructions are
compared to the SENSE reconstruction using fully
sampled data and the assumed sensitivity maps. In this
work, our error metric is defined as the normalized root
mean squared error against the SENSE images for any of
the contrasts. All algorithms were implemented in MAT-
LAB and numerical experiments were performed on
AMD Opteron 6282 SE 2.6 GHz processors. MATLAB
was run in single threaded mode to give accurate compu-
tational scaling for all of the methods. The standard
MATLAB implementation of CG was used with the
sparse Jacobi preconditioner. When investigating the
impact of coil compression for CG-based approaches, the
geometric coil compression MATLAB code associated
with (11) was used. The MATLAB implemented HSS
solver was provided through a request of the authors of
(1). Similar to the tree-based FFT algorithm, the HSS
solver used in this work can be easily made parallel for
improved performance. We consider this to be future
work for the proposed HSS-Inverse method.

RESULTS

Figure 3 shows the HSS-Inverse reconstructed images
and error for T2 and FLAIR imaging contrasts at resolu-
tions of 0:8� 0:8� 3:0 mm 3 and 1:0� 1:0� 3:0 mm 3,
respectively. In addition, Figure 3 illustrates the effect of
channel compression on the reconstruction error. Figure
3a shows the R¼1 sensitivity combined images from the
fully sampled 32-channel T2 data. The reconstructed
images and error are shown below for 32 and 8-channel
undersampled data, assuming R ¼ 3 and 4 accelerations,
respectively. The coil compression method (11) is used
to project the 32-channel undersampled data to eight
effective channels. This projection is also applied to the
sensitivity maps. The dynamic range for the error images
is scaled to 1/8 of the R¼ 1 images seen in Figure 3a.
Similar results are shown for the FLAIR images in Figure
3b. When considering the original 32 channels, the R ¼ 3
and 4 reconstructed T2 images had errors of 6.8 and
9.8% for the middle slice and 6.0 and 8.9% for the
upper slice. The reconstructed FLAIR images had errors
of 8.0 and 9.3% for the middle slice and 7.1 and 8.3%
for the upper slice. Error for the eight-channel com-
pressed reconstruction is measured against the fully
sampled combination across the original 32 channels.
Thus, this includes the error due to coil compression
loss which was under 0.2% across all cases considered
in this work. As alluded to above, the tolerance for the
linear solvers used in each CS strategy leads to nearly
identical reconstructions. Figure 4 shows the relative dif-
ference between the images reconstructed using the
Matrix Free and HSS-Inverse methods. These extremely
small differences are calculated by first subtracting the
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images and then scaling each voxel by the image
intensity.

Figure 5 illustrates the computational scaling of sev-
eral SB optimization techniques with respect to image
size. The Matrix Free and Matrix methods rely on pre-
conditioned CG to solve (4) and our HSS-Inverse method
uses the HSS direct solver, see Figure 1 for algorithm

flow-diagrams. To ensure consistent reconstruction error
all numerical approaches assume a 10�6 tolerance for the
solution (4). The times reported in Figure 5 correspond
to five iterations of SB with a TV weighting b ¼ 3� 10�3

and soft-thresholding e ¼ 2� 10�1. The Jacobi precondi-
tioner is used for all CG methods. The use of Cartesian
optimized coil compression from 32 to 8 channels is

FIG. 4. Relative difference in

CSþSENSE reconstructed
images for T2 and FLAIR imag-
ing contrasts between the

Matrix Free and HSS-Inverse
methods. The relative differ-
ence is shown for R ¼ 3 and 4

accelerations using either the
coil compressed eight-channel

undersampled data or the full
32-channel data.

FIG. 3. CSþSENSE reconstructed images and error for T2 and FLAIR imaging contrasts. The dynamic range for the error images is

scaled to 1/8 of the fully sampled and sensitivity combined ground truth images. (a) shows the R¼1 sensitivity combined images for
the T2 contrast at a resolution of 0:8� 0:8� 3 mm 3. The reconstructed images and error are shown below for R ¼ 3 and 4 accelera-
tions using either the coil compressed eight-channel undersampled data or the full 32-channel data. Similar results are shown for the

FLAIR images at a resolution of 1:0� 1:0� 3 mm 3 in (b).

1038 Cauley et al.



explored for the Matrix Free method. The HSS-Inverse
method had times of 1.1 and 5.4 s for in-plane resolu-
tions of 2� 2 to 0:8� 0:8mm 2. With the use of 4� chan-
nel compression the Matrix Free method became the best
performing alternative to HSS-Inverse. It is important to
note that the HSS-Inverse preprocessing time is not
included in the reconstruction time as this calculation is
independent of the acquired data and can be precom-
puted. It is, however, noted that the model inversion
time is small and increased linearly from 5 to 116 s for
these image sizes [and can be computed in parallel (1)].

Finally, Figure 6 demonstrates the lack of dependence
of the HSS-Inverse method on the number of parallel
imaging channels and acceleration factor. Here, recon-
struction parameters consistent with the results shown
in Figure 5 are used. R ¼ 2; 3; and 4 accelerations are
examined across in-plane resolutions from 2� 2 to
0:8� 0:8mm 2. The deviation in reconstruction time for
HSS-Inverse was under 0.7 s for all cases considered.
This small deviation in time should be considered a con-
stant based on the numerical conditioning of the matrix
A. The method from Ref. (1) automatically accounts for
numerical stability to grantee accuracy for all possible
linear system solutions. Alternatively, the Matrix Free
computation time will increase linearly as the number of
channels increases, see Figure 1.

DISCUSSION AND CONCLUSIONS

In this work, we propose an efficient CS reconstruction
strategy for MRI assuming SENSE parallel imaging. The
proposed HSS-Inverse method exploits the fact that the
SB framework produces a series of least squares prob-
lems with a fixed reconstruction operator. HSS-Inverse
computationally outperformed all methods at all image
sizes, with a reconstruction time of only 5.4 s for a 280

�280 image with 32 channels. When considering the full
32 channels, the speedup of Matrix compared to Matrix
Free reduced from 3:3� to 1:9� as the resolution
increased. This is due to the superior computational
scaling of the FFT operation for the Matrix Free method.
Compression from 32 to 8 channels was required for the
Matrix Free method to outperform the Matrix method at
all of the resolutions. The speedup for the 32-channel
HSS-Inverse over the eight-channel Matrix Free increases
from 5:7� to 6:3� when the in-plane voxel size was
reduced from 2� 2 to 0:8� 0:8 mm 2. This is a result of
the linear scaling of (1) and the nonlinear scaling for all
other methods. In addition, we demonstrate minimal
computational dependency with respect to both the
acceleration factor and the number of parallel imaging
channels for the proposed HSS-Inverse method. Given
the dependence of the CG-based Matrix Free method on
channel count, we expect this speedup to increase when
considering larger array coils as additional compressed
channels will be required for similar accuracy. It is
important to note that the Matrix Free methods also uti-
lize highly optimized FFT code and by reimplementing
our MATLAB code into a lower level programming lan-
guage we expect to see further improvement for the
speedup.

HSS solvers have been previously used to efficiently
solve large-scale 2D and three-dimensional (3D) prob-
lems in applied mathematics and physics. Linear-time
scaling has been proven for many relevant 2D problems
and O N4=3

� �
scaling for 3D problems. In this work, we

have shown the applicability of this compact modeling
strategy toward SB operators assuming 1D random
undersampling with in-plane resolutions up to
0:8� 0:8 mm 2. As was alluded to above, the efficiency of
HSS-Inverse does not substantially change as the CS
acceleration factor is increased which will ensure con-
sistent reconstruction time regardless of the protocol. In
addition, the HSS solver is noniterative and the compu-
tational time should not be significantly affected by
choice of CS penalty parameters. In the context of

FIG. 5. Computational scaling with respect to image size for CG-
and HSS-based reconstruction methods, see Figure 1 for algo-
rithm flow-diagrams. R¼3 acceleration is applied to the T2

weighted images. A 10�6 tolerance is assumed for all algorithms
to ensure consistent final image error. All methods include five
iterations of SB with a TV weighting b ¼ 3� 10�3 and soft-

thresholding e ¼ 2� 10�1. The Jacobi preconditioner is used for
all CG methods. The use of Cartesian optimized coil compression

from 32 to 8 channels is explored for the Matrix Free method. The
smallest and largest reconstruction times for HSS-Inverse are
identified with arrows.

FIG. 6. Computational scaling of the HSS-Inverse method with
respect to the number of parallel imaging channels and accelera-

tion factor. A 10�6 tolerance is assumed for five iterations of SB
with a TV weighting b ¼ 3� 10�3 and soft-thresholding
e ¼ 2� 10�1. Cartesian optimized coil compression is used to

reduce from 32 to 8 channels. R ¼ 2; 3; and 4 undersampling is
examined.
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prespecified MRI acquisition protocols, many factors for
the HSS-Inverse method can be precomputed and should
enable clinically relevant reconstruction times, e.g., the
computation of the inverse encoding matrix can be com-
puted as part of a separate adjustment scan.

We have introduced the idea of compact representa-
tions for the inverse of CSþSENSE reconstruction opera-
tors. This is accomplished through the use of a
noniterative HSS numerical technique. The methods pre-
sented here should be applicable to many reconstruction
operators that rely on locality of interactions, e.g., wave-
let transformations (16) and GRAPPA based parallel
imaging (17,18). Finally, the proposed HSS-Inverse
method should be amendable to computationally
demanding applications such as cardiac imaging (10)
wherein the problem size can become very large due to
the additional time dimension.
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