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PARALLEL RANDOMIZED AND MATRIX-FREE DIRECT SOLVERS
FOR LARGE STRUCTURED DENSE LINEAR SYSTEMS∗

XIAO LIU† , JIANLIN XIA‡ , AND MAARTEN V. DE HOOP†

Abstract. We design efficient and distributed-memory parallel randomized direct solvers for
large structured dense linear systems, including a fully matrix-free version based on matrix-vector
multiplications and a partially matrix-free one. The dense coefficient matrix A has an off-diagonal
low-rank structure, as often encountered in practical applications such as Toeplitz systems and dis-
cretized integral and partial differential equations. A distributed-memory parallel framework for
randomized structured solution is shown. Scalable adaptive randomized sampling and hierarchical
compression algorithms are designed to approximate A by hierarchically semiseparable (HSS) matri-
ces. Systematic process grid storage schemes are given for different HSS forms. Parallel hierarchical
algorithms are proposed for the resulting HSS forms. As compared with existing work on parallel
HSS methods, our algorithms have several remarkable advantages, including the matrix-free schemes
that avoid directly using dense A, a synchronized adaptive numerical rank detection, the integration
of additional structures into the HSS generators, and much more flexible choices of the number of
processes. Comprehensive analysis is conducted and shows that the communication costs are signif-
icantly reduced by up to an order of magnitude. Furthermore, we improve the original matrix-free
HSS construction algorithm by avoiding some instability issues and by better revealing the nested
rank structures. Tests on large challenging dense discretized matrices related to three-dimensional
scattering fully demonstrate the superior efficiency and scalability of the direct solvers. For example,
for a 106×106 dense discretized matrix, the partially matrix-free HSS construction takes about 4,500
seconds with 512 processes, while the solution takes only 0.63 second. The storage savings is more
than 30 times. The fully matrix-free solver takes slightly longer but is more flexible and accurate.
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1. Introduction. Dense linear system solvers are fundamental and critical tools
in scientific computing and numerical simulations. Many recent studies of dense di-
rect solvers focus on exploiting the rank structures in the systems. Our work is based
on hierarchically semiseparable (HSS) representations [6, 36], which are shown to be
very useful for solving some dense problems such as Toeplitz matrices (in Fourier
space) and certain discretized matrices (e.g., discretized integral equations and Schur
complements in the factorizations of discretized PDEs) [6, 27, 28, 38, 35]. HSS ma-
trices are closely related to other rank-structured representations such as H-matrices
[3, 13], H2-matrices [12], sequentially semiseparable matrices [5], and quasi-separable
matrices [8].

Some key HSS algorithms include HSS construction, HSS ULV factorization [6],
and ULV solution. For a given HSS form, the cost to factorize it is O(r2n), where n
is the matrix size and r is the maximum numerical rank of all the off-diagonal blocks.
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After the factorization, it takes O(rn) flops to solve a linear system. Therefore,
when r is small (we say that the matrix has a low-rank property), HSS solutions are
significantly faster than standard dense ones.

Thus, it is critical to quickly construct an HSS representation or approximation
for a given matrix A with the low-rank property. A direct construction from a dense
matrix costs O(rn2) flops [33, 36]. To enhance the efficiency, a parallel HSS construc-
tion algorithm is designed in [28], which still requires the formation of the explicit
dense matrix A. However, in many practical applications, A is usually unavailable
or too expensive to be formed explicitly, while its product with vectors can be con-
veniently obtained. Examples of such situations include some matrices from spectral
discretizations [24] and interface problems [37].

One way to avoid using the dense matrix A and to reduce the construction cost is
to use randomized low-rank compression with matrix-vector products [14, 19, 29]. For
a matrix block with numerical rank deficiency, an approximate low-rank decomposi-
tion can be computed with great efficiency and reliability via randomized sampling.
These techniques are used to develop randomized HSS constructions, including a par-
tially matrix-free scheme [18, 34, 38] and a fully matrix-free one [17, 32]. The partially
matrix-free scheme can further take advantage of additional special structures in the
HSS representation to reduce the subsequent computational cost. It uses only O(r)
matrix-vector multiplications and has an O(r2n) HSS construction cost. However,
it needs to access O(rn) entries of A during the compression process. The fully
matrix-free scheme acquires data via matrix-vector multiplications only and has an
O(r2n logn) HSS construction cost. It uses O(r logn) matrix-vector multiplications.
In [32], an adaptive procedure [14] to detect the numerical rank for a given tolerance
is also built into the HSS construction. The factorization of the resulting HSS form
also has better stability.

1.1. Main results. In this paper, we develop distributed-memory massively par-
allel randomized HSS constructions, as well as the factorization and solution based
on the resulting structures. To obtain essential improvements, we abandon the global
dense storage and the related dense operations. Distributed-memory parallelism and
data distribution strategies are designed for HSS operations based on randomized sam-
pling. The parallelization of a sequence of important computations is given, such as

• randomized compression, including a structure-preserving version and a ver-
sion with orthonormalization,
• synchronized adaptive numerical rank detection,
• randomized hierarchical compression, and
• factorization of the resulting structured representations.

Full parallelism and PBLAS-3 performance are exploited without any sacrifice in
the algorithm complexity. In addition, only compact structured matrices are stored.
Both partially and fully matrix-free parallel direct HSS solvers are designed, which
are suitable for different applications depending on the availability of A.

In the partially matrix-free version, distributed storage and computational schemes
are introduced to take advantage of the interior special structures in the HSS repre-
sentation. Another benefit in contrast with the parallel HSS algorithms in [28] is that
we allow more flexible choices of the number of processes, not necessarily restricted
by the hierarchical tree structure. The scheme in [28] instead requires the number
of processes to be larger than or equal to the number of leaf nodes used in the tree
structure corresponding to the HSS form.

For the fully matrix-free construction scheme, we make further improvements to
the original algorithms in [17, 32]. We avoid the use of pseudoinverses not only to gain
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better efficiency but also to eliminate a potential instability issue. The extraction of
low-rank bases is based on stable compression techniques. In [17, 32], the hierarchical
compression may yield low-rank approximations that are not compact enough. Here,
a new way of conducting hierarchical compression is used so that the nested off-
diagonal basis matrices fully respect the actual off-diagonal numerical ranks. We also
incorporate parallel synchronized rank detection into the hierarchical compression.

Careful analysis of the parallel performance is given, including the computational
costs, communication costs, and parallel runtime. As compared with the HSS com-
pression algorithms with global dense storage in [28], the new parallel randomized
approaches reduce the computation cost, storage, and communication cost by nearly
a factor of O(nr ). For structured matrices with fast matrix-vector products, our meth-
ods have the capability of solving much larger problems with the same computing
resources.

We test the performance of the parallel algorithms by solving challenging discre-
tized systems arising from Foldy–Lax equations with a two-dimensional (2D) config-
uration of scatterers in three dimensions. The tests show a nice scalability, and the
results match our theoretical estimates on both the computation and the communi-
cation costs. For example, for the partially matrix-free version with n = 106 and 512
processes, after about 4,500 seconds for the HSS construction and 280 seconds for
the factorization, it needs only 0.63 second to solve a linear system, or 8.92 seconds
for 128 right-hand sides. The fully matrix-free version takes slightly longer, but is
more flexible and a little more accurate. The tests also suggest that our solvers can
be naturally used to handle dense intermediate Schur complements in the direct fac-
torizations of some large sparse three-dimensional (3D) discretized problems such as
Helmholtz equations.

The outline of the presentation is as follows. Section 2 discusses a framework of
distributed-memory HSS structures via randomization. In section 3, we show how to
perform randomized low-rank compression in parallel. The two randomized matrix-
free HSS direct solvers are given in detail in section 4, followed by the analysis of the
performance in section 5. Some applications and numerical tests are then shown in
section 6.

2. A framework of distributed-memory HSS structures via randomiza-
tion. We first show the basic distributed-memory parallelism for HSS structures via
randomization. An HSS matrix A with a corresponding HSS tree T can be understood
as follows, and the reader is referred to [6, 33, 36] for a rigorous definition. Assume T
is a postordered binary tree with nodes i = 1, 2, . . . . Partition A following a sequence
of index subsets Ii ⊂ {1 : n}. Each parent/nonleaf node index subset Ii satisfies
Ii = Ic1 ∪ Ic2 , where c1 and c2 represent the left and right children of i, respectively.
The nodes are organized into L levels following the parent-child relationship, with
the root at level 0. An HSS form for A is defined by a sequence of HSS generators
Di, Bi, Ui, Vi, Ri,Wi:

• Di ≡ A|Ii×Ii is a diagonal block, where A|I×J represents a submatrix selected
from A based on the row index set I and the column index set J;
• Ui is a column basis matrix for A|Ii×Ici

, where Ici ≡ {1 : n}\Ii denotes the
complement of Ii in {1 : n};
• Vi is a column basis matrix for (A|Ici×Ii)

T .
The off-diagonal blocks A|Ii×Ici

and A|Ici×Ii are said to be HSS blocks, and their
maximum (numerical) rank is called the HSS rank of A.

These generators satisfy a nested property. That is, for any nonleaf node i, the
diagonal block and off-diagonal basis can be represented in terms of those associated
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with its children c1, c2:
• the diagonal block is recursively defined as

(2.1) Di =

(
A|Ic1×Ic1

A|Ic1×Ic2
A|Ic2×Ic1

A|Ic2×Ic2

)
=

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
;

• the off-diagonal basis matrices are recursively defined as

(2.2) Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,

where Uc1 , Uc2 , Vc1 , Vc2 are the off-diagonal basis matrices associated with the
children. Thus, upper level U, V matrices are available through the leaf-level
U, V generators together with all the R,W generators.

The HSS tree can be supplied by the user or can be generated from a recursive
bisection of the matrix index set. In our tests, we generate the tree in the code. If
no reordering of the matrix is needed, then the tree generation is trivial. Otherwise,
the matrix is reordered to enable effective compression of interactions corresponding
to different partitions. Geometrically, if A is a discretized matrix and if the mesh
connections are localized, we partition the domain along the most elongated direction.
This is quite convenient for one-dimensional (1D) problems and for multidimensional
problems on regular meshes, and the cost is negligible. For more general cases, this can
be done by applying various parallel graph partitioning packages such as ParMETIS
[21] and PT-Scotch [23] to bisect the mesh (or adjacency graph). This is a well-
studied topic, and the parallel performance depends on the actual problem and those
packages. As compared with the HSS compression, such graph partitioning cost is
usually much smaller in practice.

2.1. Distribution scheme for HSS structures. We are interested in design-
ing parallel HSS algorithms on distributed-memory computers with message-passing
communications. In [28], a nested parallel strategy is proposed for distributing HSS
operations. The outer layer parallelism is the distributed HSS tree, and the inner layer
is the distributed HSS generators. The two distribution schemes can be formulated
in a general setting.

1. Distributed HSS tree. Each node of the HSS tree T is mapped to a group of
processes. Let Gi denote the set of processes used for the matrices associated
with a node i. (Such matrices include the generators and the intermediate
matrices used for the HSS construction.) For parallel computations between a
pair of siblings c1 and c2, we requireGc1∩Gc2 = ∅. A parent set is constructed
from the child sets: Gi ⊂ Gc1 ∪ Gc2 . Such an idea is supported by the MPI
communicator [20] and the BLACS context [2].

2. Distributed HSS generators. To use the standard 2D block-cyclic distribu-
tion, Gi is organized as a 2D process grid. Existing optimized dense matrix
kernels can be used to speed up the dense matrix operations involving the
HSS generators.

Communicating a matrix to a different process grid is called redistribution. To
control the redistribution cost, vertical or horizontal concatenations are used to form
larger process grids from smaller ones:

Gi =

(
Gc1

Gc2

)
or Gi =

(
Gc1 Gc2

)
.
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This design reduces the redistribution amongGc1 , Gc2 , Gi to a point-to-point exchange
of local storage. The process grids used in [28] are roughly square.

Here, we illustrate the redistribution in terms of more general and flexible process
grid sizes. Look at a single matrix S distributed on a g1×g2 process grid Gc1 . The 2D
block-cyclic scheme partitions S into multiple blocks Sj,k and maps them cyclically
to Gc1 . A block Sj,k is stored in the process pl,m if

j ≡ l mod g1, k ≡ m mod g2.

• To communicate S from Gc1 to another g1 × g2 process grid Gc2 , a process
in Gc1 simply sends the local submatrix to the corresponding process in Gc2

with the same relative position.
• To communicate S from Gc1 to the parent grid Gi generated by vertical
concatenation and with size 2g1× g2, the (l,m)th process in Gc1 sends to the
(l,m)th process in Gc2 the concatenation of all the blocks Sj,k satisfying

j ≡ l + g1 mod 2g1, k ≡ m mod g2.

The storage before and after the redistribution can be illustrated by the
following example:

Gc1 :
p1,1 p1,2
p2,1 p2,2

S :

S1,1 S1,2 S1,3 S1,4 . . .

S2,1 S2,2 S2,3 S2,4 . . .

S3,1 S3,2 S3,3 S3,4 . . .

S4,1 S4,2 S4,3 S4,4 . . .

...
...

...
...

. . .

Gi :

p1,1 p1,2
p2,1 p2,2

p3,1 p3,2
p4,1 p4,2

S :

S1,1 S1,2 S1,3 S1,4 . . .

S2,1 S2,2 S2,3 S2,4 . . .

S3,1 S3,2 S3,3 S3,4 . . .
S4,1 S4,2 S4,3 S4,4 . . .
...

...
...

...
. . .

The process grids for the entire HSS tree can be constructed in the following way:
• Let the shape of all the bottom level (level-L) process grids be g1× g2, where
g1, g2 are integers chosen to evenly distribute the bottom level matrices.
• The upper level process grids are formed by an alternation between α vertical
and β horizontal concatenations, where α and β are integers chosen to fit the
growth rate of matrix shapes across different levels. The resulting process

grids have the growth rate of 2
α

α+β in the row size, and 2
β

α+β in the column
size. See Table 1 for some sample choices of α and β.

Table 1

Sample choices of the parameters α and β and the corresponding sizes of the process grids.

α β Level L Level L−1 Level L−2 Level L−3 Level L−4 Level L−5 Level L−6
1 0 g1 × g2 2g1 × g2 4g1 × g2 8g1 × g2 16g1 × g2 32g1 × g2 64g1 × g2
1 1 g1 × g2 2g1 × g2 2g1 × 2g2 4g1 × 2g2 4g1 × 4g2 8g1 × 4g2 8g1 × 8g2
2 1 g1 × g2 2g1 × g2 4g1 × g2 4g1 × 2g2 8g1 × 2g2 16g1 × 2g2 16g1 × 4g2

In order to give a quantitative study of our different parallel algorithms, we collect
our main assumptions and frequently used arguments to build a uniform framework.
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1. Collective communications. A message-passing collective broadcast or reduc-
tion algorithm requires log p messages and m log p words, where m is the size
of the matrix and p is the number of processes.

2. Parallel low-rank updates. Low-rank updates are frequently used in the matrix
factorizations and triangular matrix solutions with multiple right-hand sides.
On a g1×g2 process grid, we assume that the communication cost of a rank-r
update to an m×α matrix is uniformly bounded by the number of messages
(#messages) and the number of words (#words) as follows:

#messages = O(r log g1 + r log g2), #words = O

(
r
m

g1
log g1 + r

α

g2
log g2

)
.

These upper bounds are calculated from r rank-1 updates. At each step,
the column vector is broadcasted among the process rows, the row vector
is broadcasted among the process columns, and the local matrix is updated
with the local vectors.

3. Redistribution. As shown above, the redistribution cost can be reduced to
an exchange of local storage. To be precise, the redistribution of an m × α
matrix among node i and its children c1, c2 takes O(1) messages and O(mα

p )

words, where p = max{|Gi|, |Gc1 |, |Gc2 |} is the maximal size of the related
process grids.

2.2. Distribution scheme for randomized sampling. The randomized HSS
algorithms obtain data via the multiplication of A and random sampling vectors.
The data structures for the sampling vectors play a key role in our algorithms. To
take advantage of BLAS-3 and PBLAS-3 kernels, the sampling vectors are grouped
together into skinny sampling matrices. For the n× n matrix A, the global size of a
typical sampling matrix X is n× α, where α� n is the sampling size and is usually
slightly larger than the HSS rank r. In the fully matrix-free HSS construction in the
next section, one such sampling matrix is involved at each level of the HSS tree T . A
given number of processes is used to handle these matrices at each level.

Here, we lay out the distributed storage scheme for these sampling matrices. The
distributed storage of X needs to facilitate the multilevel off-diagonal compression in
HSS constructions, and also provide a simple interface for the user-supplied matrix-
vector multiplication routine. The sampling matrix X can be naturally partitioned
according to the bottom level Di generator sizes:

{Xi : i is a leaf of T , and Xi and Di have the same row size}.

For example, following a two-level HSS structure as follows, we can partition X ac-
cordingly:

A =

⎛⎜⎜⎝
(

D1 U1B1V
T
1

U2B2V
T
1 D2

)
U3B3V

T
6

U6B6V
T
3

(
D4 U4B4V

T
5

U5B4V
T
4 D5

)
⎞⎟⎟⎠ , X =

⎛⎜⎜⎝
X1

X2

X4

X5

⎞⎟⎟⎠ .

For a leaf node i, the sampling submatrix Xi is stored in the corresponding process
grid Gi for parallel HSS constructions.

1. If |Gi| = 1, no further distribution is performed on Xi. Then Xi actually
represents the local storage of one process, and this forms a global block-row
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distribution of X , where each process stores some rows of the matrix. Matrix-
free computation is possible here because in many applications a matrix-
vector product is readily available in block-row distribution.

2. If |Gi| > 1, it’s not as straightforward to perform matrix-free computations
because each Xi is distributed following the 2D block-cyclic scheme. Here,
we can extend the HSS tree T so that for the extended tree T̃ each leaf cor-
responds to only one process. Some extended nodes are introduced into T̃
and are not associated with any HSS generator. Then we distribute X ac-
cording to T̃ , and this case becomes the previous one. Now the user-supplied
matrix-vector multiplication routine is connected with the new partition

{Xj : j is a leaf node of T̃ }.

Since the extended nodes do not correspond to any HSS generator, after each
sampling step, the matrices Xj need to be redistributed to the nodes in the
original HSS tree T . Figure 1 demonstrates the extension of the tree and the
multilevel redistribution of the sampling matrices.
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Fig. 1. Illustration of the distribution of the sampling matrices at different HSS levels into the
process grids, where the HSS tree T is extended to ˜T to accommodate a block-row distribution for
user-supplied matrix-vector multiplications.

3. Parallel randomized low-rank compression schemes. A parallel com-
pression algorithm is used at each level of the HSS tree to obtain low-rank approxima-
tions to the corresponding off-diagonal blocks. For anm×k matrixH with (numerical)
rank r, traditional compression techniques usually compute a low-rank approximation
via rank-revealing factorizations. These methods are limited by the need to explicitly
store and process the entire matrix. Recent randomized techniques instead are based
on a randomized sampling process and the multiplication of H with random vectors.
Substantial improvements can be achieved if the matrix-vector multiplication is fast.
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The theoretical justification of randomized low-rank compression methods can be
found in [14]. Here, we only mention some basic ideas. From an SVD representation
H = UΣV T , a matrix-vector multiplication with a Gaussian random vector x is the
combination of the weighted singular vectors UΣ based on rotated Gaussian random
coefficients V Tx. Different random combinations tend to be linearly independent
and start to build a basis for the range space of H until the number of vectors gets
close to r. By sampling H with r + μ random vectors with μ an oversampling size,
the important basis vectors of H can be recovered from the sampling data, and the
probability of success is high even with small μ.

Two randomized compression schemes are used in this work. One is to select im-
portant rows ofH as the basis vectors from the product of H and r+μ random vectors
[16]. Another way is to construct basis vectors by adaptively multiplying H and ran-
dom vectors, followed by orthonormalization, until a desired accuracy is reached [14].
In this section, we present and analyze the parallel versions of these schemes. The
matrix H and the skinny sampling matrices are assumed to be distributed on the
same g1 × g2 process grid.

3.1. Parallel structure-preserving rank-revealing factorization. In vari-
ous applications, the low-rank compression of H may be achieved by selecting some
important rows or columns via rank-revealing factorizations [11]. This can be repre-
sented by

(3.1) H ≈ UH |Î, U ≡ P

(
I
E

)
,

where P is a permutation matrix, H |Î is the row basis matrix extracted from H

based on the index set Î, and E is a matrix with bounded entries. Since H |Î is
a submatrix of H and the column basis matrix is structured, (3.1) is also called a
structure-preserving rank-revealing (SPRR) factorization [38]. Related work includes
skeleton approximations [26] and interpolative decompositions [16].

When the size of H becomes large, a direct computation of (3.1) is inefficient.
If the product of H and vectors can be quickly computed (through a user-supplied
routine mat-vec), then randomized sampling can be used instead [16]. Given a trun-
cation tolerance τ , a numerical rank bound r for H , and an oversampling parameter
μ, we construct a Gaussian random matrix X with r + μ columns and compute

Y = HX.

An SPRR factorization is computed for Y :

Y ≈ P

(
I
E

)
Y |Î.

The same matrices P,E and row index set Î are then used in (3.1) for the approxi-
mation of H . For modest μ, it can be shown that this has a desired accuracy with a
high probability [16].

In the parallel implementation of this factorization, row pivoting is a key element.
In practice, we use existing column pivoting routines on the transpose matrix. To
avoid global transpose operations, we only transpose the process grid and the local
submatrix. This forms a transpose matrix with no communications. The details are
given in Algorithm 1.
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Algorithm 1. Parallel structure-preserving rank-revealing factorization.

Input: τ (approximation tolerance) and r + μ (number of sampling vectors)
Output: r (numerical rank) and the approximation (3.1)

1: procedure PSPRR(τ , l)
2: X ← m× (r + μ) Gaussian random matrix � Sampling matrix
3: Y ← mat-vec(H,X) � PBLAS-3 user-supplied matrix-vector multiplication
4: T ← Y T � Transpose of the process grid
5: T ≈ QRPT � Rank-revealing QR factorization of Y T with the tolerance τ ,

where PT is a permutation matrix for the column pivoting
6:

(
R1 R2

)
← R � Partition of R so that R1 is r × r and

corresponds to the column index set Î
7: T ← R−1

1 R2 � Triangular solution
8: E ← T T � Transpose of the process grid again
9: return r and the approximation (3.1)

10: end procedure

The computational cost of this algorithm is O(r2m), excluding an application-
dependent sampling cost for mat-vec. The QR factorization (step 5) with column
pivoting and the triangular matrix solution (step 7) share the same upper bound of
the communication cost:

#messages = O(r log g1 + r log g2), #words = O

(
r
m

g1
log g1 + r

r

g2
log g2

)
,

where g1 × g2 is the shape of the process grid.

3.2. Parallel adaptive randomized orthogonalization. The second scheme
for computing a low-rank approximation of H is via randomized orthonormalization.
We find a column basis matrix with orthonormal columns. This strategy can be
combined with randomized adaptive rank estimation. That is, it does not need a
numerical rank bound of H in advance. Instead, H is gradually multiplied with new
random vectors xj as needed until the desired accuracy τ is met. The criterion to
quickly check the accuracy (with high probability) is [14]

||H − H̃ ||2 ≤ c max
j=α−μ+1,...,α

||(H − H̃)xj ||2 ≤ τ,

where c is a certain real number and H̃ is the low-rank approximation.
Here, we perform a modified Gram–Schmidt process and the rank estimation

in parallel. To take full advantage of PBLAS-3 kernels, we include a small number
of additional random vectors each time and group the random vectors to perform
a matrix-matrix multiplication and a block version of the modified Gram–Schmidt
process with reorthogonalization. See Algorithm 2. For notational convenience, later
we will refer to this algorithm as

(3.2) Q = PRAO(HX).

Once the column basis matrix Q is found, it is suggested in [14] that a good
approximation of H is

(3.3) H ≈ Q(QTH).
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Algorithm 2. Parallel adaptive randomized orthogonalization.

Input: τ (approximation tolerance), s (number of additional vectors to be included),
and μ (oversampling size for accuracy check)
Output: Q (a column basis matrix with orthonormal columns for H)

1: procedure PARO(τ, s, μ)
2: Y ← [], Q← [] � Empty initial matrices
3: α← s � Number of random vectors for the initial round
4: loop
5: X ← m× s Gaussian random matrix � Sampling matrix
6: Y ←

(
Y mat-vec(H,X)

)
� PBLAS-3 user-supplied matrix-vector multiplication

7: Y ← (I −QQT )Y via block Gram–Schmidt with reorthogonalization
� PBLAS-3

8: for j = 1, 2, . . . , α− μ+ 1 do
9: if max{‖(Y |:×j)‖2, ‖(Y |:×j+1)‖2, . . . , ‖(Y |:×j+μ−1)‖2} ≤ τ then

� Y |:×j denotes column j of Y
10: return Q � Desired accuracy reached
11: end if
12: Y |:×j ← (I −QQT )Y |:×j � Reorthogonalization of Y |:×j

13: q ← Y |:×j/‖Y |:×j‖2 � Normalization of Y |:×j

14: Y |:×(j+1:α) ← (I − qqT )Y |:×(j+1:α) � Rank-1 update

15: Q← ( Q q ) � Expansion of the basis
16: end for
17: Y ← the last μ− 1 columns of Y � First few vectors for the next round
18: α← s+ μ− 1 � Number of vectors for the next round
19: end loop
20: end procedure

In practice, the reorthogonalization operations can guarantee the quality of the basis
matrices Q and QTH .

We give an estimate of the computational and communication costs of this al-
gorithm. Let the output matrix Q be m × r. Apart from an application-dependent
sampling cost in mat-vec, the leading computational cost of this algorithm is O(r2m)
for the block Gram–Schmidt process. The computational cost of the remaining vec-
tor operations is O(rm). For each column of Q, computing and broadcasting vector
norms need O(log g1 + log g2) messages and O(log g1 + log g2) words, and the rank-1
update needs O(log g1+log g2) messages and O(mg1 log g1+

r
g2

log g2) words. The block
Gram–Schmidt needs to be performed r

s times, and each step is based on a rank-s
update. From our assumptions of collective communications and low-rank updates at
the end of section 2.1, the total communication cost is

#messages = O(r log g1 + r log g2), #words = O

(
r
m

g1
log g1 + r

r

g2
log g2

)
.

Remark 3.1. Later, for notational convenience, we write (3.1) from the scheme in
section 3.1 and (3.3) from the scheme in section 3.2 as equalities (as if the blocks were
exactly rank-deficient). This avoids the unnecessary confusion between the notation
for A and for its HSS approximation.
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Remark 3.2. In our algorithms, Gaussian random matrices are used. It is well
known that these randomized low-rank approximation methods can use various types
of random sampling techniques, and the approximation quality is relatively insensitive
and very reliable [14]. With Gaussian random matrices, existing studies have already
provided comprehensive accuracy and probability results. In particular, the stopping
criterion we use in the adaptive rank detection is based on Gaussian random matri-
ces. We have also tried other sampling techniques. For example, if the matrix to be
compressed is a general dense matrix, then the subsampled random Fourier transform
[16, 29] may be used to save the memory and computational costs. Here, our prob-
lems are not necessarily restricted to general dense matrices. In addition, our HSS
construction algorithms below only need about (r + μ)n random numbers because of
data reuse. Generating these random numbers is much faster than computing the re-
quired O(r) or O(log n) matrix-vector products. Therefore, we use Gaussian random
matrices for convenience. When necessary, it is not hard to replace these by other
random matrices, depending on the actual applications.

4. Parallel randomized and matrix-free HSS direct solvers. In this sec-
tion, we discuss our parallel randomized and matrix-free HSS direct solvers for large
dense matrices with the low-rank property. The solvers consist of HSS constructions,
HSS factorizations, and HSS solutions.

HSS construction algorithms provide the foundation of the HSS solutions. The
traditional construction from the dense n×nmatrix A is limited by the quadratic com-
putational cost and storage. For the parallel HSS algorithms, the computing resource
needs to be allocated according to the most expensive global dense matrix operations
during the construction [28]. Such a choice limits other HSS related operations from
reaching their peak performance. Our new parallel randomized HSS construction al-
gorithms no longer have this limitation because each off-diagonal block is compressed
from the sampling data. Also for the same reason, these algorithms are less straight-
forward to understand. For a better exposition of the algorithms, we will usually use
part of the original matrix for illustration, but the original full dense matrix is never
explicitly stored.

We present two parallel randomized HSS construction algorithms based on the
two types of low-rank compression schemes in section 3. The partially matrix-free
construction in [18, 38] uses SPRR factorizations for the off-diagonal compression
and needs to access some entries of A. It needs fewer matrix-vector products and has
a cheaper compression cost. The structures in the SPRR representations are used
later to accelerate HSS factorizations and solutions.

The fully matrix-free construction in [17, 32] is based on randomized orthogonal-
ization. It is more flexible since it uses only matrix-vector products and integrates
adaptive rank detection. Because of the nice orthonormal basis matrices, this HSS
structure has potentially more accurate ULV factorizations and solutions. With an
additional logarithmic factor in the cost, the fully matrix-free construction is still com-
petitive in performance. The adaptive rank detection also often yields more compact
HSS representations.

Remark 4.1. The accuracies of HSS approximations with the two types of con-
struction methods have been thoroughly studied in [30, 31]. In fact, it is shown that
the HSS approximation error is well controlled by the tolerance for the off-diagonal
compression, with a small magnification factor that depends on the off-diagonal nu-
merical rank bound r and logn. The HSS solution accuracy is also discussed in [30].
Our numerical tests also confirm that the accuracy is well controlled.
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In our discussions of the algorithms, the following two types of parallel operations
are needed, based on the distribution scheme in section 2:

1. An intergrid redistribution copies a matrix from one process grid to another.
At each step, our algorithms only redistribute data among Gc1 , Gc2 , and Gi,
where i is the parent of c1 and c2. Section 2 provides the way to control
the communication cost. In practice, ScaLAPACK [22] has a general routine
PxGEMR2D for such operations.

2. An intragrid operation performs dense matrix computations in a single pro-
cess grid. Two low-rank compression routines PSPRR and PRAO (section 3)
and a dense matrix multiplication routine PxGEMM are used in the random-
ized HSS construction algorithms. The LU factorization routine PxGEQPF is
used in an HSS factorization algorithm.

4.1. Partially matrix-free HSS construction. In the partially matrix-free
HSS construction, suppose the HSS rank is bounded by r and the entries of A are
conveniently accessible. The SPRR factorization in Algorithm 1 is used to compress
the HSS blocks in parallel. This construction needs only r+μ sampling vectors, where
μ is the oversampling size as before.

We first describe the parallel storage scheme for the HSS form resulting from this
construction, where the column basis matrices look like that in (3.1). Figure 2 shows
how the generators are stored in the related process grids.

1. If i is a leaf node, the SPRR factorizations of the HSS blocks A|Ii×Ici
and

(A|Ici×Ii)
T yield the column basis matrices Ui and Vi, respectively:

(4.1) Ui = Pi

(
I
Ei

)
, Vi = Qi

(
I
Fi

)
,

where Pi, Qi are permutation matrices. Thus, we store Ei, Fi as well as the
diagonal block Di in the process grid Gi, which is described in section 2.1.

2. If i is a nonleaf node with children c1 and c2, the construction process below
yields the following generators:

(4.2)

(
Rc1

Rc2

)
= Pi

(
I
Ei

)
,

(
Wc1

Wc2

)
= Qi

(
I
Fi

)
.

The matrices Ei, Fi as well as the generatorsBc1 , Bc2 are stored in the process
grid Gi. Note that Bc1 , Bc2 are associated with the children of i, but are
stored in Gi.

We then describe our parallel implementation of the partially matrix-free HSS
construction in [18, 38]. Initially, construct an n × (r + μ) global random matrix X
in a block-row distribution, and compute PBLAS-3 products

Y = AX, Z = ATX.

This needs 2(r+ μ) matrix-vector products. Then within the process grid Gi of each
HSS leaf node i, get the partitioned sampling matrices

Xi = X |Ii , Yi = Y |Ii , Zi = Z|Ii .

A redistribution of X,Y, Z within Gi may be needed if Gi contains more than one
process (Figure 1). Note that the sampling data Y, Z contain both full-rank diagonal
contributions and low-rank off-diagonal contributions from multiple levels. A critical
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Fig. 2. Illustration of the distributed storage of the HSS generators resulting from SPRR
factorizations.

task in the algorithm is to form the sampling information of the targeting HSS blocks.
This is achieved by updating and reusing the sampling data.

The algorithm performs a parallel bottom-up traversal of the HSS tree, and we
perform the following computations at each node i:

1. If i is a leaf, the diagonal block is acquired in the process grid Gi via

Di = A|Ii×Ii .

The sampling data of the off-diagonal blocks are formed indirectly by the
PBLAS-3 multiplications:

Φi = A|Ii×Ici
X |Ici = Yi −DiXi,

Ψi = (A|Ici×Ii)
TX |Ici = Zi −DT

i Xi.

Then compute SPRR factorizations (as in Algorithm 1)

Φi = UiΦi|Îi , Ψi = ViΨi|Ĵi
,

where Ui, Vi are given in (4.1) and the index sets Îi, Ĵi are associated with
the local matrices Φi,Ψi. They correspond to the important rows of A|Ii×Ici

and important columns of A|Ici×Ii . We then find the global index sets Ĩi, J̃i

in A corresponding to these important rows and columns (selected by Îi, Ĵi),
respectively. For future reuse, we compute the products UT

i Xi, V
T
i Xi from

the SPRR factors. All the intragrid operations are contained in the process
grid Gi. No intergrid redistribution is performed at this step.

2. If i is a nonleaf node with children c1, c2, extract Bc1 , Bc2 in the process grid
Gi as

(4.3) Bc1 = A|Ĩc1×J̃c2
, Bc2 = A|Ĩc2×J̃c1

.

Bc1 , Bc2 are used only in the parent node, so we store them in Gi to avoid
unnecessary redistributions. This is one major consideration in designing the
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storage scheme as in Figure 2. Then form the sampling data

Φi =

(
Φc1 |Îc1
Φc2 |Îc2

)
−
(

Bc1( I ET
c2 )PT

c2Xc2

Bc2( I ET
c1 )PT

c1Xc1

)
,

Ψi =

(
Ψc1 |Îc1
Ψc2 |Îc2

)
−
(

BT
c2( I FT

c2 )QT
c2Xc2

BT
c1( I FT

c1 )QT
c1Xc1

)
,

where the matrices on the right-hand sides are merged by the intergrid re-
distribution from Gc1 , Gc2 to Gi. Then compute SPRR factorizations (as in
Algorithm 1)

Φi =

(
Rc1

Rc2

)
Φi|Îi , Ψi =

(
Wc1

Wc2

)
Ψi|Ĵi

,

where the R,W generators are given in (4.2). The derivation of this procedure
is given in [38].

The algorithm then proceeds with the same strategies. It stops when the root
node is reached and the generators (4.3) are retrieved.

4.2. Improved fully matrix-free HSS construction. The partially matrix-
free construction above is effective when the user can provide a reasonable rank bound
and a fast way of accessing the matrix entries. The fully matrix-free HSS construction
algorithm does not have these restrictions. Here, other than presenting a scalable
implementation, we also make some novel improvements to the original matrix-free
HSS constructions in [17, 32] as follows:

1. We avoid multiple pseudoinverses used in [17, 32] to gain better stability and
efficiency for the compression of the off-diagonal blocks.

2. Our compression yields more compact nested basis matrices.
3. We incorporate parallel synchronized rank detection in the hierarchical com-

pression.
For each level l = 0, 1, . . . , L of the HSS tree, the diagonal blocks Di form a

block-diagonal matrix

(4.4) D(l) = diag (Di = A|Ii×Ii : i at level l) .

Because of the nested index partitioning, D(l) contains the next-level matrix D(l+1)

as smaller diagonal blocks and D(l) − D(l+1) as off-diagonal blocks. At each level,
the individual off-diagonal blocks within D(l) −D(l+1) need to be compressed, and
the compression information needs to be integrated into the HSS form. Thus, the
matrix-free construction algorithm has the following major steps:

1. For level l, compress the off-diagonal blocks within D(l) − D(l+1) based on
the HSS form of A−D(l) and randomization.

2. Construct the HSS form of A−D(l+1) by combining the HSS form of A−D(l)

and the basis matrices of D(l) −D(l+1).
3. Extract the diagonal blocks D(L) at the leaf level l = L.

4.2.1. Off-diagonal compression at one level. Assuming we have the HSS
form of A −D(l) for l = 0, 1, . . . , we show how to compress the off-diagonal blocks
within D(l)−D(l+1) via randomization. (For the initial case l = 0, the matrix A−D(l)

is empty since A = D(0).)
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The block-diagonal structure of D(l) as in (4.4) allows us to focus on a single node
i at level l with children c1, c2. We want to compress the off-diagonal blocks of Di as
follows:

Di =

(
∗ A|Ic1×Ic2

A|Ic2×Ic1
∗

)
=

(
∗ Ũc1 Ṽ

T
c2

Ũc2Ṽ
T
c1 ∗

)
,

where A|Ic1×Ic2
and A|Ic2×Ic1

are two individual off-diagonal blocks in D(l) −D(l+1).

The basis matrices Ũ , Ṽ are obtained simultaneously for the children of all the nodes
i at level l based on randomized sampling. That is, choose a random matrix X̂ with
a global block-row distribution,

X̂|Ii =
(

X |Ic1 0
0 X |Ic2

)
for all i at level l,

and compute

(4.5) (D(l))T X̂ = AT X̂ − (A−D(l))T X̂.

In this multiplication, AT X̂ is done through a parallel PBLAS-3 user-supplied matrix
multiplication at the bottom level of the extended tree T̃ (Figure 1), and (A−D(l))T X̂
is done through a PBLAS-3 HSS matrix-vector multiplication routine that involves
only small matrix multiplications.

Thus, we obtain from (4.5)

DT
i X̂|Ii =

(
∗ (A|Ic2×Ic1

)TX |Ic2
(A|Ic1×Ic2

)TX |Ic1 ∗

)
≡
(
∗ Yc1

Yc2 ∗

)
.

Based on Algorithm 2, we can compute

(4.6) Ṽc1 = PRAO(Yc1), Ṽc2 = PRAO(Yc2).

These computations are done in parallel in the child process grids Gc1 , Gc2 , and paral-
lel synchronized rank detection is used. Similarly to [37], Ṽc1 , Ṽc2 can then be obtained
in a deterministic way:

(4.7) Ũc1 = A|Ic1×Ic2
Ṽc2 , Ũc2 = A|Ic2×Ic1

Ṽc1 ,

where the matrix-vector multiplications on the right-hand sides are obtained via the
multiplication of D(l) and a matrix Ṽ defined by

Ṽ |Ii =
(

Ṽc1 0

0 Ṽc2

)
for all i at level l.

Thus, we obtain the low-rank forms of the off-diagonal blocks within D(l)−D(l+1)

for all i at level l. The number of matrix-vector multiplications used at this step is at
most 4r + 2μ. A pictorial illustration for l = 1, 2 is given in Figure 3(a)–(b).

4.2.2. Nested off-diagonal basis for HSS construction. We can then get
an HSS form of A−D(l+1) based on the HSS form of A−D(l) and the low-rank forms
of the blocks within D(l) −D(l+1) from the previous step. This requires converting
the off-diagonal basis matrices into nested forms as in (2.2).

For l = 1, the off-diagonal compression scheme in the previous subsection yields

A−D(1) =

(
0 Ũc1 Ṽ

T
c2

Ũc2 Ṽ
T
c1 0

)
.
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(c) Second-level nested basis construction

Fig. 3. An example of the top-down matrix-free HSS construction, where A is used for illus-
tration purposes and is accessed only through a user-supplied matrix-vector multiplication.

In order to transform this form into an HSS representation

A−D(1) =

(
0 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 0

)
,

we simply set Vc1 = Ṽc1 , Vc2 = Ṽc2 , and compute QR factorizations

Ũc1 = Uc1Bc1 , Ũc2 = Uc2Bc2 .

See Figure 3(a).
For a general level l (1 < l < L) and a nonleaf node i at level l, since {1 : n} =
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Ii ∪ Ici , Ii = Ic1 ∪ Ic2 , the compression from the previous steps yields

(A−D(l+1))|Ii×{Ii∪Ici} =

((
0 Ũc1 Ṽ

T
c2

Ũc2 Ṽ
T
c1 0

)
Ui(U

T
i A|Ii×Ici

)

)
,

(A−D(l+1))T |Ii×{Ii∪Ici} =

((
0 Ṽc1 Ũ

T
c2

Ṽc2Ũ
T
c1 0

)
Vi(V

T
i AT |Ii×Ici

)

)
.

Ũ , Ṽ are temporary basis matrices (Figure 3(b)), and we still need to convert them
into nested forms as in (2.1)–(2.2). That is, we find orthonormal basis matrices
Uc1 , Uc2 , Vc1 , Vc2 from Ui, Vi and the temporary basis matrices. In [17, 32], the col-
umn basis matrix Ũc1 and a part of Ui are put together and then compressed to
compute Uc1 . However, this may yield Uc1 that is not compact enough, and a more
sophisticated recompression scheme is needed to reveal the right rank [33].

Here, we resolve this issue with randomization. Note that Uc1 and Uc2 are essen-
tially basis matrices of some block rows of A −D(l+1), because the diagonal blocks
are zeros. We can then apply randomized sampling to the block rows of A −D(l+1)

to get Uc1 and Uc2 . For this purpose, compute

(4.8) Y = (A−D(l+1))X = (A−D(l))X + (D(l) −D(l+1))X.

Based on the previous compression results, this just requires a PBLAS-3 HSS matrix-
vector multiplication using the upper-level HSS structure of A−D(l) and the low-rank
forms in D(l) −D(l+1).

Then compute

Uc1 = PRAO(Y |Ic1 ), Uc2 = PRAO(Y |Ic2 ).

We can similarly find Vc1 , Vc2 . After these computations, we update the previous

representation using the new basis. Partition Ui as
( Ui,1

Ui,2

)
following the row sizes of

Uc1 and Uc2 . The remaining generators can be obtained via matrix multiplications
(unlike in [17, 32], no pseudoinverse is needed to compute the B generators):

Rc1 = UT
c1Ui,1, Wc1 = V T

c1Vi,1, Bc1 = (UT
c1Ũc1)(V

T
c2 Ṽc2)

T ,

Rc2 = UT
c2Ui,2, Wc2 = V T

c2Vi,2, Bc2 = (UT
c2Ũc2)(V

T
c1 Ṽc1)

T .

The R,W generators require the redistribution between a parent and its children. The
B generators involve the redistribution between two sibling nodes. It is easy to verify
that this builds the HSS form of A−D(l+1). Figure 3(c) gives an illustration. When
the leaf level is reached, we have the nested off-diagonal basis for all the off-diagonal
blocks as in the HSS form of A.

4.2.3. Extraction of leaf-level diagonal blocks. Finally, the only task left
is to extract the leaf-level diagonal blocks. This follows from [17]. Choose a skinny
matrix S that satisfies S|Ii = I for each leaf node (though appropriate zeros may need
to be inserted into S|Ii if the leaf-level diagonal blocks do not have the same block
sizes), and compute the product

Y = AS − (A−D(L))S,

where (A − D(L))S is done via HSS matrix-vector multiplications. The number of
matrix-vector products needed is bounded by the leaf-level diagonal block sizes, which
are usually chosen to be O(r). Then set Di = Y |Ii .
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4.3. HSS factorization and solution. For the HSS form resulting from the
fully matrix-free construction, we can use the parallel HSS ULV factorization and
solution in [28]. The HSS form from the partially matrix-free construction has addi-
tional structures in the basis generators as in (4.1) and (4.2). A ULV factorization
scheme is designed in [34, 38] to take advantage of the additional structures. One basic
operation is to introduce zeros to the off-diagonal block rows A|Ii×Ici

by noticing

(4.9)

[(
−Ei I
I 0

)
PT
i

]
Ui =

(
0
I

)
.

This does not involve any actual computation.
We slightly extend the factorization scheme in [34, 38] for general nonsymmetric

cases. That is, zeros are also introduced into the off-diagonal block column A|Ici×Ii

similarly to (4.9). The actual operations are performed in parallel in a bottom-up
traversal of the HSS tree.

1. If i is a leaf node, update the diagonal block Di on both sides:

D̄i =

(
−Ei I
I 0

)
PT
i DiQi

(
−FT

i I
I 0

)
.

Then compute a partial LU factorization

D̄i =

(
Li,1

Li,2 I

)(
Ti,1 Ti,2

D̂i

)
,

where D̂i is the Schur complement. Since all the relevant matrices are stored
in the process grid Gi, no intergrid communication is needed.

2. If i is a nonleaf node with children c1 and c2, set

Ũi = Pi

(
I
Ei

)
, Ṽi = Qi

(
I
Fi

)
,

and merge the remaining blocks as

(4.10) D̃i =

(
D̂c1 Bc1

Bc2 D̂c2

)
.

Since Ei, Fi, Bc1 , Bc2 are already stored in the process grid Gi (section 4.1),
we just need to redistribute D̂c1 , D̂c2 from the child process grids to Gi. The
scheme is illustrated in Figure 4. Then remove c1 and c2 from the tree. As
mentioned in [38, 34], i then becomes a leaf corresponding to the generators
D̃i, Ũi, Ṽi, and the HSS matrix is reduced to a smaller one.

The process can then be repeated. If i is the root node, a complete LU factoriza-
tion of D̃i finishes the algorithm.

Compared with the parallel HSS ULV factorization in [28], we see that many
operations with the off-diagonal blocks have been avoided, and the redistribution is
limited to only two matrices D̂c1 , D̂c2 in (4.10). Therefore, this scheme has both
lower complexity and better scalability, in general. As discussed in [32], the stability
of this factorization is comparable to that of the case where the U, V generators have
orthonormal columns and is only slightly worse.

Moreover, in this version, we allow each process to handle multiple nodes (or a
subtree) of T . This is also much more flexible than the scheme in [28]. The parallel
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Fig. 4. ULV factorization of the HSS form resulting from the partially matrix-free construction:
introducing zeros into both the HSS block row and the HSS block column.

scheme in [28] requires p to be larger than or equal to the number of leaves in T .
This limits the parallel performance, since either large p is required for small r, or a
process needs to handle a large dense subproblem that is not structured or sufficiently
compressed.

The corresponding solution algorithm for a linear system Ax = b consists of
multilevel forward and backward substitutions. With b partitioned into appropriate
pieces bi [38], at each step the forward substitution solves a system(

Li,1

Li,2 I

)
yi =

(
−Ei I
I 0

)
PT
i bi.

The backward substitution solves(
Ti,1 Ti,2

I

)
zi = yi

and computes

xi = Qi

(
−FT

i I
I 0

)
zi.

No intergrid communications are needed for these operations. Intergrid operations
occur only when appropriate intermediate solution pieces are merged or split, which
is very fast.

5. Analysis of the parallel algorithms. In this section, we give a theoretical
estimate of the parallel performance of our algorithms. Instead of requiring the user
to test and find the right parameters, we hope to give the theoretical guidelines on
how to choose the number of processes p and the shape of the process grids Gi for a
given problem size to obtain the best scaling.

The optimal HSS partition occurs when the sizes of the leaf-level Di generators
are O(r) [33]. This size is often chosen to be around 2r. Thus, the height of the
HSS tree is controlled by log n

2r . To simplify the representations in our estimates, we
assume that T is a perfect binary tree and the process grids at the same level have
the same shape. The number of parallel levels L is bounded by both log p and the
height of the HSS tree:

L ≤ log p, L ≤ log
n

2r
.
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Thus at level l = 1, 2, . . . , L, each process grid contains pl processes and the sizes of
the D generators are nl, where

(5.1) pl =
p

2l
, nl =

n

2l
.

Note that pL = p/2L is the minimal size of all the process grids and nL = n/2L is the
leaf-level diagonal block size.

The randomized HSS construction algorithms combine the sampling operations
for acquiring the data and the compression operations for processing the data. We
analyze them separately as follows.

5.1. Sampling cost. Any operation for acquiring information about the matrix
A is counted as sampling cost. The typical operations involved are matrix-vector mul-
tiplications and submatrix extractions. The computational costs of these operations
are application-dependent, and the communication costs differ with respect to parallel
distribution strategies. Still, we can compare how many times these operations are
used in the two HSS construction algorithms.

The partially matrix-free construction algorithm needs
• 2(r + μ) matrix-vector products for the U, V,R,W generators;
• O(rn) entries of A for the B generators and the leaf-level D generators.

The fully matrix-free construction algorithm needs
• 2L(2r + μ) matrix-vector products for the U, V,R,W and B generators;
• nL matrix-vector products for the Di generators.

The fully matrix-free version needs 2L times more matrix-vector products than
the partially matrix-free version. This only introduces a logarithmic factor, and the
impact on the scaling properties of the algorithms is minor. The benefit is that it
avoids the direct access of the entries of A. The partially matrix-free version needs
the extra time to extract O(rn) entries of A.

In the following subsections, we then exclude these application-dependent costs
for the matrix-vector multiplications and the extraction of matrix entries.

5.2. Analysis of the partially matrix-free algorithms.

5.2.1. Computational cost and storage requirement. All the local matri-
ces involved in the partially matrix-free compression and factorization, including the
partitioned sampling data within Gi, the HSS generators, and the factors, have sizes
O(r)×O(r). The computational costs of randomized HSS construction (excluding the
application-dependent matrix-vector multiplication cost), factorization, and solution
are O(r2n), O(r2n), and O(rn) flops, respectively. The storage cost of the skinny
sampling matrices, the HSS generators, and the factors is all O(rn). The detailed jus-
tifications are given in [38]. The parallel strategy based on the distributed HSS tree
and the block-cyclic storage scheme of the generators can distribute the computational
and storage costs evenly to each processor.

5.2.2. Communication cost. The communications during the partially matrix-
free HSS construction include intergrid ones and intragrid ones.

1. Intergrid redistribution. The redistribution between a process grid and its
parent level process grid involves only a pairwise exchange costing O(1) mes-

sages and at most O( r2

pL
) words. Taking a summation over all the levels

yields

#messages =

L∑
l=1

O(1) = O(log p), #words =

L∑
l=1

O

(
r2

pL

)
= O

(
r2

pL
log p

)
.
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2. Intragrid dense matrix kernels. For an O(r) × O(r) matrix distributed on a
g1×g2 grid, the SPRR algorithm (Algorithm 1) and other typical factorization
algorithms [1] needO(r log g1+r log g2) messages andO(r r

g1
log g1+r r

g2
log g2)

words. The expression shows that it is beneficial to choose g1 ≈ g2, which
means that the process grid is approximately square at each level l and g1, g2
are roughly equal to

√
pl. The intragrid communication cost is then given by

#messages =
L∑

l=1

O(r log
√
pl) = O(r log2 p),

#words =
L∑

l=1

O

(
r2
√
pl

log
√
pl

)
= O

(
r2
√
pL

log2 p

)
.

The communication cost of the factorization of the resulting HSS matrix is similar.
These costs are summarized as the following proposition.

Proposition 5.1. Let p be the total number of processes, and let pL be the min-
imum size of each process grid. The partially matrix-free randomized HSS construc-
tion and factorization both have the communication cost of O(r log2 p) messages and

O( r2√
p
L

log2 p) words. As a comparison, recall that the direct HSS construction algo-

rithm based on dense A needs O(r log2 p) messages and O( rn√
pL

log p) words [28]. With

the help of the skinny sampling matrices, the number of words in the construction is
significantly reduced by nearly a factor of O(nr ).

Remark 5.1. The construction and factorization algorithms not only have the
same order of arithmetic operations but also share the same order of communication
cost. In [28], the construction has both significantly higher flop counts and commu-
nication costs.

5.3. Analysis of the fully matrix-free algorithms.

5.3.1. Computational cost and storage requirement. The counts of the
complexity and storage are similar to those of the original matrix-free HSS construc-
tion in [32]. Each node at level l is associated with matrix operations with costs
O(r2nl), where nl is given in (5.1). The total computational cost is thus O(r2n logn).
This has an extra logn factor compared with the cost of the partially matrix-free
HSS construction. The storage requirement is still O(rn). The HSS factorization and
solution costs remain O(r2n) and O(rn), respectively.

5.3.2. Communication cost. In the fully matrix-free HSS construction, tem-
porary basis matrices as in (4.6) and (4.7) are computed. The process grid associated
with each node at level l contains pl processes, with pl given in (5.1). The process grid
is constructed to be of size 2L−l√pL ×

√
pL so as to match the elongated temporary

basis matrices. Then at every level, a distributed basis matrix needs nL√
pL
× r√

pL
local

storage with each process.
1. Multilevel intergrid redistributions. At a sampling step corresponding to a

level l, a skinny sampling matrix needs to be redistributed to the block-row
distribution at the bottom level of the extended tree T̃ (Figure 1), and the
sampling result at the bottom level needs to be redistributed back to the cur-
rent level. After an upper-level HSS off-diagonal matrix-vector multiplication
involving A −D(l) (e.g., (4.5) and (4.8)), the temporary result needs to be
redistributed up to the top level and then back down to the current level.
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The cost for such redistributions is

#messages =

L∑
l=1

O(L) = O(log2 p),

#words =

L∑
l=1

O

(
rnl

pl
L

)
= O

(
rn

p
log2 p

)
.

2. Intragrid dense operations. For an nl× r matrix distributed on a 2L−l√pL×√
pL grid, the adaptive randomized orthogonalization requires O(r log p) mes-

sages and O( rnL√
pL

log p) words. The intragrid communication cost at all the

levels is

#messages =
L∑
l=1

O(r log p) = O(r log2 p),

#words =

L∑
l=1

O

(
rnL√
pL

log p

)
= O

(
rn

p

√
pL log2 p

)
.

3. Upper-level off-diagonal multiplication. Then consider the communication
at level l for the upper-level HSS off-diagonal matrix-vector multiplication
involving

(
A−D(l)

)
(e.g., (4.5) and (4.8)).

The largest matrix-matrix multiplication occurs at the current level between
the transpose of an nl × r matrix and another nl × r matrix. This costs
O(r log p) messages and O( rnL√

pL
) words. For the upper levels, all the matrices

areO(r)×O(r), and each multiplication costs O(r log p) messages andO( r2√
pL

)

words. The communications cost

#messages =

L∑
l=1

(
O(r log p) +

L∑
j=l+1

O(r log p)

)
= O(r log3 p),

#words =
L∑

l=1

(
O

(
rnL√
pL

)
+

L∑
j=l+1

O

(
r2
√
pL

))
= O

(
rn

p

√
pL log2 p

)
.

We can then sum up all the communication costs during the fully matrix-free HSS
algorithms as the following proposition.

Proposition 5.2. Assume that larger process grids are formed by stacking smaller
ones along the columns. Then the fully matrix-free HSS construction has the commu-
nication cost of O(r log3 p) messages and O( rnp

√
pL log2 p) words. Again, these costs

are smaller than those in [28] by nearly a factor of O(nr ). The communication cost of
the factorization is about the same as that in Proposition 5.1.

Although the matrix-free HSS construction involves more complicated operations,
by a careful choice of process grids we obtain a communication cost similar to the
partially matrix-free one up to a logarithmic factor.

5.4. Parallel runtime. Combining our estimates of the computation and com-
munication costs, we can give estimates for the parallel runtime, and with that we
can find out how to achieve nearly optimal performance for a given problem size n.
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The partially matrix-free HSS construction time is

T1 = O

(
r2n logn

p

)
+O(r log2 p) +O

(
r2
√
pL

log2 p

)
.

The fully matrix-free construction HSS construction time is

T2 = O

(
r2n logn

p

)
+O(r log3 p) +O

(
nr

p

√
pL log2 p

)
.

In practice, the HSS rank bound r depends on the application and even on n, and
then we can choose p accordingly to balance the computational time and communi-
cation time. Some examples are as follows:

• One case is r = O(logμ n), μ ≥ 1 (e.g., μ = 1 as encountered in the discre-
tization of some 1D kernels [10, 25, 38]). Then we choose p to be

p = O(rn) = O(n logμ n),

so that

(5.2) pL = O(log2μ n), T1 = O(r log2 n), T2 = O(r log3 n).

• Another case is r = O(nμ), μ ≤ 1/2 (e.g., μ = 1/2 as encountered in the
discretization of some 2D kernels [10]). Then we choose p to be

p = O(rn) = O(nμ+1),

so that

(5.3) pL = O(n2μ), T1 = O(r log2 n), T2 = O(r log3 n).

For these cases, we come to the conclusion that we can use O(rn) processes and
O(r log2 n) or O(r log3 n) time for the HSS construction. The logarithmic terms result
from HSS tree traversals and dense matrix kernels. The fully matrix-free version has
an additional logn factor because of the multilevel redistribution. In addition, since
the total storage is O(rn), the O(rn) processes also match the intuition that each
process should store a constant amount of data.

The factorization time can be similarly studied and is omitted.

6. Applications and performance tests. In this section, we systematically
test the performance of our massively parallel randomized direct solvers and verify our
analysis. We show the direct solution of some important and challenging dense linear
systems. In general, our methods can be used to solve large-scale dense systems with
the low-rank structures and preferably fast matrix-vector products. Typical examples
include Toeplitz problems, n-body systems, and Fredholm integral equations of the
second kind. We consider a challenging discretized equation here.

6.1. Foldy–Lax equations modelling wave propagation with multiple
scattering. In the acoustic scattering theory, the kernel function is related to the
fundamental solution of the 3D Helmholtz equation for a given wavenumber k:

G(x, y) =
eik|x−y|

4π|x− y| , x, y ∈ R
3.
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Here, we consider the Foldy–Lax formulation [4, 9, 15], which is often used for analyz-
ing multiple scattering effects among point scatterers. Given the incident field uinc,
the total field u satisfies

−Δu−
(
k2 +

n∑
j=1

σjδ(x− xj)

)
u = 0,

where xj is the location of a scatterer and σj is its scattering strength. The scattered
field can be represented by

u(x)− uinc(x) =

n∑
j=1

G(xj , x)σju(x).

Restricting the representation to the scattering points, we can obtain an n-body
system of the form

(6.1) (I +K)u = f,

where the kernel matrix K and the right-hand side vector f are defined as

Kjk =

{
0 if j = k,

−G(xj , xk)σk otherwise,
fj = uinc(xj).

The solution is uj = u(xj). The dense oscillatory kernel posts difficulties for both
direct and iterative solvers.

Our matrix-free direct solver is a natural candidate. Fast matrix-vector products
can be achieved via the fast multipole method (FMM) [10, 7] or the fast discrete
convolution method. The performance of our direct solver is primarily determined by
three quantities: the matrix size n, the HSS rank r, and the number of processes p.
In order to focus our attention on these quantities, we further simplify the physical
system by restricting the positions of the scatterers to a 2D M×N mesh with M ≤ N .
By choosing the mesh size we have full control of the algebraic properties based on
the following relation:

(6.2) n = MN, r = O(M logN),

where the estimate of r follows from standard FMM techniques. In addition, on a 2D
mesh, the discretized kernel function G has a Toeplitz-block-Toeplitz (TBT) struc-
ture. A TBT matrix can be extended to a discrete 2D convolution which can be
diagonalized by a fast Fourier transform (FFT). By using the well-studied parallel
2D FFT algorithm, we have an O(n log n) complexity kernel-independent way of per-
forming parallel matrix-vector multiplications. Note that even with the restrictions
to regular grids, by far a fast direct TBT matrix solver remains a challenging topic in
structured matrix computations. On the other hand, our parallel matrix-free direct
solvers can find the solutions with high efficiency.

We ran two types of tests on Purdue’s community cluster Conte with Intel Fortran
compiler and Intel Math Kernel Library. Conte has HP compute nodes each containing
two 8-core Intel Xeon-E5 processors and 64GB of memory. To conveniently assess the
accuracy, we generate the right-hand side vector b by computing Au for a given vector
u, and then measure the relative error

‖u− ũ‖
‖u‖ ,

where ũ is the approximate solution obtained with our HSS solvers.
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6.2. Quasi-1D weak and strong scaling tests. We first fix the mesh size M
along one dimension and increase the mesh size N along the other dimension by a
factor of 2. The problem still corresponds to 2D domains, but it has a quasi-1D rank
structure in the sense that r in (6.2) does not grow much with respect to n. According
to the estimate (5.2), if we choose p = O(n), the compression times of the partially
and fully matrix-free HSS constructions should be controlled by

T1 = O(r log2 n) = O(log3 n), T2 = O(r log3 n) = O(log4 n),

respectively. (Note that this example has rank behaviors similar to those of the case
of Toeplitz problems [38], but the ranks are much higher. Thus, this example is a
more interesting test for our scalable solvers.)

The results are listed in Table 2. The matrix size n ranges from 40,000 to 640,000.
In terms of the physical scales, the shorter side of the mesh spans 20 wavelengths,
and the longer side increases from 20 to 320 wavelengths. The compression tolerance
is 10−6. We use the rank bound 3200 for the partially matrix-free construction, and
the actual numerical rank r is returned by the rank-revealing factorization. For the
fully matrix-free construction, r is determined adaptively in randomized sampling,
and each sampling group has 128 vectors (s = 128 in Algorithm 2).

The costs and storage scale nearly linearly in n. Moreover, the desired polylog-
arithmic type runtime is observed for both the partially and the fully matrix-free
solutions, which would not be achieved by directly compressing the global dense stor-
age. Figure 5 shows the scaling of the construction time and the factorization time.
Reference lines for our predictions are included. The actual performance of both
methods matches or even exceeds the predictions.

As predicted, the partially matrix-free algorithm has a smaller storage require-
ment and a faster runtime due to the smaller number of matrix-vector products and
the additional structures within the generators. The fully matrix-free algorithm gives
a tighter HSS rank r, and the accuracy is a little higher due to the better stability.

It is worth pointing out that once the construction and the factorization are
done, the solution is very fast due to the structure and the scalability. For example,
for n = 640,000, the partially matrix-free version costs around 10 minutes to construct
the HSS form, around 24 seconds to factorize it, and only 0.2 second to solve a system.

Furthermore, much higher flop rates can be achieved by solving multiple right-
hand sides. For n = 640,000 and 128 right-hand sides, the partially matrix-free
solution time is only 2.92 seconds. See the last rows of Table 2(b)–(c). Thus, it is
very attractive to apply the direct solvers to problems with multiple right-hand sides
or to use them (with low-accuracy compression) as preconditioners.

In addition, both methods are significantly faster and require much less memory
than a standard direct solver such as the ScaLAPACK LU factorization. See Table
2(d). As the problem size increases, the ScaLAPACK LU solver becomes very slow
and soon runs out of memory.

To see the tradeoff between the accuracy and the computation time/storage/r,
we also test the fully matrix-free solver with different compression tolerances. See Ta-
ble 3. By varying the compression tolerance, we can conveniently control the solution
accuracy, cost, and storage. As expected, the HSS ranks are smaller, and the solver
is faster for larger tolerances.

Last, we show the strong scaling test. For the 200 × 400 mesh in Table 2, we
use different numbers of processes and report the runtime. See Table 4. The HSS
construction and factorization scale reasonably well for both methods. (The scaling
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Table 2

Quasi-1D weak scaling test with compression tolerance 10−6, where mat-vec stands for a matrix-
vector multiplication and RHS stands for a right-hand side f in (6.1).

(a) Problem setup

Mesh size (M ×N) 200× 200 200× 400 200× 800 200 × 1600 200× 3200

Number of wavelengths 20× 20 20× 40 20× 80 20 × 160 20× 320

Matrix size n = MN 40,000 80,000 160,000 320,000 640,000

Number of processes p 16 32 64 128 256

Total HSS tree levels L 5 6 7 8 9

(b) Partially matrix-free direct solution

Mesh size (M ×N) 200× 200 200× 400 200× 800 200 × 1600 200× 3200

Number of mat-vecs 6,400 6,400 6,400 6,400 6,400

Sampling time 8.31s 20.58s 28.12s 48.50s 90.08s

HSS construction time 295.52s 417.41s 488.64s 504.47s 570.66s
HSS construction flops 5.31E12 1.15E13 2.42E13 5.01E13 1.02E14

HSS rank r 1,490 1,824 2,532 2,996 3,153
HSS storage size 2.24E8 4.88E8 1.04E9 2.17E9 4.43E9

Factorization time 11.66s 14.92s 17.70s 21.82s 23.79s
Factorization flops 8.08E11 2.54E12 8.92E12 2.59E13 5.89E13

Solution time (1 RHS) 0.07s 0.10s 0.12s 0.17s 0.20s
Solution flops (1 RHS) 4.49E8 9.76E8 2.08E9 4.33E9 8.86E9
Relative error (2-norm) 1.39E − 7 1.70E − 7 2.51E − 7 9.56E − 7 1.37E − 5
Relative error (∞-norm) 4.72E − 7 7.40E − 7 1.66E − 6 5.50E − 6 5.18E − 5

Solution time (128 RHSs) 1.45s 1.77s 2.08s 2.79s 2.92s
Solution flops (128 RHSs) 5.75E10 1.25E11 2.66E11 5.54E11 1.13E12

(c) Fully matrix-free direct solution

Mesh size (M ×N) 200× 200 200× 400 200× 800 200 × 1600 200× 3200

Number of mat-vecs 16,116 20,858 26,351 32,465 39,019

HSS construction time 263.36s 419.22s 637.88s 902.61s 1416.90s
HSS construction flops 9.14E12 2.77E13 7.61E13 1.96E14 4.85E14

HSS rank r 1,411 1,518 1,576 1,627 1,674
HSS storage 3.08E8 6.82E8 1.45E9 3.03E9 6.20E9

Factorization time 48.11s 56.25s 64.87s 71.02s 78.08s
Factorization flops 1.89E12 4.43E12 9.78E12 2.08E13 4.31E13

Solution time (1 RHS) 0.84s 1.02s 1.34s 1.63s 1.97s
Solution flops (1 RHS) 8.68E8 1.92E9 4.11E9 8.54E9 1.75E10
Relative error (2-norm) 8.89E − 8 9.58E − 8 1.06E − 7 1.17E − 7 1.28E − 7
Relative error (∞-norm) 3.28E − 7 3.89E − 7 6.37E − 7 8.63E − 7 1.34E − 6

Solution time (128 RHSs) 3.04s 3.41s 4.13s 4.60s 5.12s
Solution flops (128 RHSs) 1.11E11 2.46E11 5.26E11 1.09E12 2.24E12

(d) ScaLAPACK LU

Factorization time 568.88s 2739.15s 8679.70s \
Storage 1.60E9 6.40E9 2.56E10 out of memory

of the sampling in the partially matrix-free solver is worse due to the overhead in the
2D FFT algorithm. This is, of course, problem dependent.)

6.3. 2D weak scaling test. We then use square domains (M = N) and double
M,N each time. The leading factor governing the HSS rank growth is O(

√
n) and

is not necessarily small. Our estimates suggest that speedup can be observed in the
HSS operations forO(n1.5) processes. Considering the distributed transpose algorithm
used in the parallel 2D FFT, we choose p = O(

√
n). The partially matrix-free HSS

construction time is about O(n1.5) (with some logarithmic terms ignored), and the
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Fig. 5. Quasi-1D weak scaling test.

Table 3

Quasi-1D weak scaling test for the fully matrix-free HSS solver with different compression
tolerances.

(a) Compression tolerance 10−2

Mesh size (M ×N) 200 × 200 200× 400 200 × 800 200 × 1600

Number of mat-vecs 8,981 11,443 14,271 17,113

HSS construction time 58.95s 109.13s 179.62s 296.91s

HSS rank r 495 527 551 564
HSS storage 1.46E8 3.04E8 6.25E8 1.27E9

Factorization time 15.19s 15.63s 17.98s 18.06s

Relative error (∞-norm) 3.75E − 3 5.79E − 3 7.82E − 3 1.42E − 2

(b) Compression tolerance 10−4

Mesh size (M ×N) 200 × 200 200× 400 200 × 800 200 × 1600

Number of mat-vecs 12,364 16,057 20,373 24,967

HSS construction time 147.99s 247.47s 386.87s 591.04s

HSS rank r 946 1, 020 1, 072 1, 109
HSS storage 2.15E8 4.64E8 9.76E8 2.01E9

Factorization time 27.06s 29.66s 34.00s 37.39s

Relative error (∞-norm) 2.83E − 5 4.06E − 5 5.96E − 5 8.14E − 5

(c) Compression tolerance 10−8

Mesh size (M ×N) 200 × 200 200× 400 200 × 800 200 × 1600

Number of mat-vecs 19,626 25,492 32,592 39,802

HSS construction time 433.63s 670.18s 1011.89s 1494.98s

HSS rank r 1,832 1,959 2,031 2,111
HSS storage 4.00E8 9.01E8 1.94E9 4.07E9

Factorization time 76.92s 88.60s 106.33s 117.29s

Relative error (∞-norm) 2.61E − 9 3.36E − 9 5.54E − 9 6.65E − 9

fully matrix-free construction has one more logn factor.
The results are included in Table 5. The matrix size n ranges from 15,000 to

106. The physical scales of the problems are from 12.5 to 100 wavelengths. The
compression tolerance is 10−4. The rank bound of the partially matrix-free algorithm
starts from 2,000 and doubles each time. For the fully matrix-free construction, the
HSS rank is determined adaptively as in the previous test. Figure 6 shows that the
scaling of the parallel runtime matches very well with our prediction. Both methods
give remarkable results for large systems, and the partially matrix-free version is about
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Table 4

Quasi-1D strong scaling test with compression tolerance 10−6.

(a) Partially matrix-free HSS solver

Number of processes p 16 32 64 128

Sampling time 10.68s 10.36s 10.55s 14.45s

HSS construction time 222.02s 122.37s 66.74s 34.12s

Factorization time 23.43s 16.46s 8.69s 6.05s

Solution time (1 RHS) 0.14s 0.08s 0.07s 0.07s

Solution time (128 RHS) 2.25s 1.50s 1.12s 0.82s

(b) Fully matrix-free HSS solver

Number of processes p 16 32 64 128

HSS construction time 353.13s 198.15s 174.69s 144.58s

Factorization time 69.36s 45.01s 22.15s 15.44s

Solution time (1 RHS) 1.66s 1.03s 0.75s 0.83s

Solution time (128 RHS) 4.36s 2.78s 1.64s 1.59s

two times faster in the construction and the factorization.
The largest matrix has 1012 entries, and the dense storage would require 7,451

GB of storage. However, with our structured solvers, we are able to give a direct
solution with only 32 nodes and their limited memory. In fact, we need to store only
3.25× 1010 nonzeros, which is a saving of over 30 times. In the partially matrix-free
solution, the HSS construction and factorization take about 4,500 seconds and 280
seconds, respectively, and the solution takes only 0.63 second for one right-hand side
and 8.92 seconds for 128 right-hand sides. The solution error is comparable to the
compression tolerance for all the tests.

7. Conclusions. We have designed two types of distributed-memory random-
ized matrix-free direct solvers with high efficiency, scalability, and flexibility. We
demonstrate a series of significant advantages over existing parallel HSS work. The
fully matrix-free solver uses matrix-vector products only, while the partially matrix-
free version provides a slightly faster option for matrices with their entries easily
accessible. For the fully matrix-free solver, we improve the original algorithm by
eliminating the pseudoinverses and introducing a way of constructing more compact
nested off-diagonal basis matrices. The parallel implementation features a PBLAS-3
synchronized adaptive rank detection. Detailed analyses of the algorithms show a sig-
nificant reduction of the computational cost, storage requirement, and communication
cost as compared with traditional direct HSS constructions based on the dense ma-
trix. The weak scaling tests verify our estimates and demonstrate a good scalability
for large problems.

We test the solvers on Foldy–Lax equations with a 2D configuration of scatterers
in three dimensions. For dense discretized matrices of sizes up to 106, we observe
significant advantages in the storage and computation time. This also suggests that
the randomized algorithms can be naturally integrated into structured multifrontal
solvers [34] for 3D sparse problems. That is, they can be used to factorize the dense
intermediate Schur complements. This strategy would lead to fast direct solutions of
sparse discretized problems (e.g., Helmholtz equations) of sizes in the magnitude of
109. This will be addressed in separate work. For more general dense problems, the
solvers may serve as preconditioners when low-accuracy off-diagonal compression is
used.
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Table 5

2D weak scaling test, where mat-vec stands for a matrix-vector multiplication, and RHS stands
for a right-hand side f in (6.1).

(a) Problem setup

Mesh size (M ×N) 125 × 125 250 × 250 500 × 500 1000 × 1000

Number of wavelengths 12.5 × 12.5 25× 25 50× 50 100 × 100

Matrix size n 15,625 62,500 250,000 1,000,000

Number or processes p 64 128 256 512

Total HSS tree levels L 4 5 6 7

(b) Partially matrix-free direct solution

Mesh size (M ×N) 125 × 125 250 × 250 500 × 500 1000 × 1000

Number of mat-vecs 2,000 4,000 8,000 16,000

Sampling time 3.60s 14.45s 70.81s 345.73s

HSS construction time 3.60s 34.12s 292.89s 4509.73s
HSS construction flops 2.48E11 4.22E12 7.07E13 1.17E15

HSS rank 566 1,348 3,505 7,827
HSS storage 4.67E7 3.97E8 3.31E9 2.73E10

Factorization time 1.27s 6.05s 37.52s 282.23s
Factorization flops 1.15E11 2.97E12 8.47E13 1.74E15

Solution time (1 RHS) 0.02s 0.07s 0.29s 0.63s
Solution flops (1 RHS) 9.34E7 7.93E8 6.63E9 5.45E10
Relative error (2-norm) 1.44E − 5 2.10E − 5 4.13E − 5 3.74E − 4
Relative error (∞-norm) 4.24E − 5 9.42E − 5 2.48E − 4 2.27E − 3

Solution time (128 RHSs) 0.22s 0.82s 2.41s 8.92s
Solution flops (128 RHSs) 1.20E10 1.02E11 8.48E11 6.98E12

(c) Fully matrix-free direct solution

Mesh size (M ×N) 125 × 125 250 × 250 500 × 500 1000 × 1000

Number of mat-vecs 6,312 16,306 41,434 103,939

HSS construction time 23.44s 144.58s 1116.80s 8783.49s
HSS construction flops 4.59E11 1.09E13 2.55E14 5.57E15

HSS rank 577 1, 222 2, 559 5, 450
HSS storage 5.29E7 4.60E8 3.90E9 3.25E10

Factorization time 2.31s 15.44s 93.86s 659.22s
Factorization flops 1.91E11 3.38E12 5.79E13 9.71E14

Solution time (1 RHS) 0.14s 0.83s 3.31s 16.74s
Solution flops (1 RHS) 1.54E8 1.33E9 1.13E10 9.39E10
Relative error (2-norm) 6.52E − 6 8.30E − 6 1.09E − 5 1.48E − 5
Relative error (∞-norm) 2.23E − 5 3.69E − 5 5.92E − 5 1.11E − 4

Solution time (128 RHSs) 0.35s 1.59s 5.56s 25.58s
Solution flops (128 RHSs) 1.97E10 1.71E11 1.45E12 1.20E13
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Fig. 6. 2D weak scaling test.
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[3] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with

applications, Eng. Anal. Bound. Elem., 27 (2003), pp. 405–422.
[4] A. Chai, M. Moscoso, and G. Papanicolaou, Imaging strong localized scatterers with sparsity

promoting optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1358–1387.
[5] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[6] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[7] R. Coifman, R. Vladimir, and S. Wandzura, The fast multipole method for the wave equa-
tion: A pedestrian prescription, IEEE Antennas Propagat. Mag., 35 (1993), pp. 7–12.

[8] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations
Opererator Theory, 34 (1999), pp. 293–324.

[9] L. L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by
randomly distributed scatterers, Phys. Rev. (2), 67 (1945), pp. 107–119.

[10] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[11] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong-rank revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.
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