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Abstract

We present effective and efficient matrix-free preconditioning techniques for the augmented im-
mersed interface method (AIIM). AIIM has been developed recently and is shown to be very effec-
tive for interface problems and problems on irregular domains. GMRES is often used to solve for
the augmented variable(s) associated with a Schur complement A in AIIM that is defined along the
interface or the irregular boundary. The efficiency of AIIM relies on how quickly the system for A
can be solved. For some applications, there are substantial difficulties involved, such as the slow
convergence of GMRES (particularly for free boundary and moving interface problems), and the
inconvenience in finding a preconditioner (due to the situation that only the products of A and vec-
tors are available). Here, we propose matrix-free structured preconditioning techniques for AIIM
via adaptive randomized sampling, using only the products of A and vectors to construct a hierar-
chically semiseparable matrix approximation to A. Several improvements over existing schemes
are shown so as to enhance the efficiency and also avoid potential instability. The significance of
the preconditioners includes: (1) they do not require the entries of A or the multiplication of AT

with vectors; (2) constructing the preconditioners needs only O(log N) matrix-vector products and
O(N) storage, where N is the size of A; (3) applying the preconditioners needs only O(N) flops;
(4) they are very flexible and do not require any a priori knowledge of the structure of A. The
preconditioners are observed to significantly accelerate the convergence of GMRES, with heuris-
tical justifications of the effectiveness. Comprehensive tests on several important applications are
provided, such as Navier-Stokes equations on irregular domains with traction boundary condi-
tions, interface problems in incompressible flows, mixed boundary problems, and free boundary
problems. The preconditioning techniques are also useful for several other problems and methods.
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1. Introduction

In recent years, the augmented immersed interface method (AIIM) has been shown to be very
effective for the solution of many interface problems and problems on irregular domains. The
method is first developed for elliptic interface problems with discontinuous and piecewise constant
coefficients [19]. Later, the idea is extended to moving interface problems on irregular domains
[26] and incompressible Stokes equations with discontinuous viscosities [22]. We refer the readers
to [21] for more information about AIIM.

Augmented strategies can be naturally used to design efficient and accurate algorithms based
on existing fast solvers. As an example, for incompressible Stokes equations with a discontinuous
viscosity across the interface, the discontinuous pressure and velocity can be decoupled by aug-
mented strategies. The immersed interface method can then be applied conveniently with a fast
Poisson solver in the iterative solution of the Schur complement system.

In augmented strategies, a large linear system is formed for the approximate solution u to the
original problem together with an augmented variable g (which may be a vector) of co-dimension
one. Eliminating the block corresponding to u from the coefficient matrix yields a Schur com-
plement system for g, which is often much smaller compared with u. Finding g can then make it
convenient to solve for u.

Thus, it is critical to quickly solve the Schur complement system, which can be done via direct
or iterative solvers. Direct solvers can be used for some applications when the Schur complement
matrix A is a constant matrix, for example, for a fixed interface or boundary. If A is not a constant
matrix, typically for free boundary and moving interface problems, efficient iterative solvers may
be preferred. Iterative solvers such as GMRES [37] do not require the explicit formation of the
Schur complement matrix A, and are thus often used. In addition, the solution often needs just
modest accuracies, and iterative methods make it convenient to control the accuracy and the cost.
Iterative solvers only need the product of A and vectors. This is usually done as follows. First,
assume g is available and solve the original problem for an approximate solution u. Next, use the
approximate solution to compute the residual and thus the matrix-vector product.

AIIM can be considered as a generalized boundary integral method without explicitly using
Green functions. The augmented variable can be considered as a source term. If the system
behaves like an integral equation of the first kind, then GMRES converges slowly in general as
described in several applications in this paper. For these applications, effective preconditioners are
then needed.

Our work here is initially motivated by the application of AIIM to Navier-Stokes equations
with a traction boundary condition. Explicit numerical tests indicate that, for some applications,
the condition number of the Schur complement matrix A is of size O(1), and ||AT A−AAT ||2 is also
very small. Nevertheless, GMRES still either takes too many steps to converge or simply stalls.
Finding a preconditioner that can greatly improve the convergence of GMRES and is easy to apply
becomes crucial for augmented methods.

However, there are some substantial difficulties in constructing suitable preconditioners. In
fact, it may be difficult to even obtain a simple preconditioner such as the diagonal of A. The rea-
sons are: (1) A is generally dense and the entries are not known explicitly in augmented methods,
as mentioned above; (2) we can quickly multiply A and vectors, but not AT and vectors. Prelimi-
nary attempts have been made, such as extracting few columns of A or multiplying A with special
vectors, and then converting the results into a block diagonal preconditioner. The preconditioner
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may work for a particular problem or right-hand side, but often fails. Thus, it is necessary to design
reliable matrix-free preconditioning techniques based on only matrix-vector products. Previously,
some matrix-free preconditioners are designed for certain sparse problems and specific applica-
tions [2, 4, 7, 10, 31]. The ideas are to extract partial approximations or to compute incomplete
factorizations via matrix-vector multiplications.

The objective of this work is to construct effective and efficient structured matrix-free precon-
ditioners solely based on the products of A and vectors. This is achieved by taking advantage of
some new preconditioning techniques introduced in recent years, such as rank structured precon-
ditioning [5, 8, 11, 14, 18, 47] and randomized preconditioning [33, 34].

The idea of rank structured preconditioning is to obtain a preconditioner via the truncation
of the singular values of appropriate off-diagonal blocks. If the off-diagonal singular values decay
quickly (the problem is then said to have a low-rank property), it is known that this truncation strat-
egy can be used to develop fast approximate direct solvers. On the other hand, if the off-diagonal
singular values are aggressively truncated regardless of their decay rate, structured precondition-
ers can be obtained. The effectiveness is studied for some cases in [18, 47]. Among the most
frequently used rank structures is the hierarchically semiseparable (HSS) form [6, 46]. Unlike
standard dense matrix operations, structured methods in terms of compact HSS forms can achieve
significantly better efficiency. In fact, the factorization and solution of an HSS matrix need only
about O(N) flops and O(N) storage, where N is the matrix size.

In some latest developments, randomized sampling is combined with rank structures to obtain
enhanced flexibility [28, 32, 42, 48]. That is, the construction of rank structures (e.g., HSS) may
potentially use only matrix-vector products instead of the original matrix itself. The methods in
[32, 48] use both matrix-vector products and selected entries of the matrix. The one in [28] is
matrix-free, although requiring slightly more matrix-vector products. In [42], a fully matrix-free
and adaptive HSS construction scheme is developed. It uses an adaptive rank detection strategy in
[15] to dynamically decide the off-diagonal ranks based on a pre-specified accuracy.

However, all the randomized methods in [28, 32, 42, 48] require the products of both A and
AT with vectors if A is nonsymmetric, and are thus not applicable to AIIM. Here, we seek to
precondition A with an improved adaptive matrix-free scheme, using only the products of A and
vectors. Due to the special features of AIIM as mentioned above, we construct a nearly symmetric
HSS approximation H to A via randomized sampling. In the construction, A replaces AT for the
multiplication of AT and vectors. Thus, the column basis of an off-diagonal block of A obtained by
randomized sampling is used to approximate the row basis of the off-diagonal block at the symmet-
ric position of A. This enables us to find low-rank approximations to all the off-diagonal blocks.
We explicitly specify a small (O(1)) rank or a low accuracy in the approximation. The off-diagonal
approximations are then combined with the matrix-vector products to yield approximations of the
diagonal blocks. This is done in a hierarchical fashion so that the overall HSS construction process
needs only O(log N) matrix-vector products.

Several other improvements to the schemes in [28, 42] are made. We replace half of the ran-
domized sampling by deterministic QR factorizations. We also design a strategy to reduce the
number of matrix multiplications and avoid the use of pseudoinverses that are both expensive and
potentially unstable.

H is then quickly factorized, and the factors are used as a preconditioner. Existing HSS al-
gorithms are simplified to take advantage of the near symmetry, and the factorization and the
application of the preconditioner have only O(N) complexity and O(N) storage. Since A corre-
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sponds to the interface, its size N is much smaller than the Poisson solution needed to compute a
matrix-vector product. Thus, the preconditioning cost is negligible as compared with the matrix-
vector multiplication cost in the iterations. We also provide a simplified preconditioner given by
the diagonal blocks of H that is easier to use and sometimes has comparable performance.

The effectiveness of the preconditioners is discussed in terms of several aspects of structured
and randomized preconditioning, such as the benefits of low-accuracy rank structured precondi-
tioners in reducing condition numbers. The preconditioners also share some ideas with the additive
preconditioning techniques in [33, 34], where random low-rank matrices are added to the original
matrix to provide effective preconditioners. In addition, since a low-accuracy HSS approximation
tends to preserve well-separated eigenvalues [39], it can bring the eigenvalues together when used
as a preconditioner. Although the convergence of GMRES does not necessarily rely on the eigen-
value distribution [12, 38], the eigenvalue redistribution provides an empirical explanation for the
preconditioner, as used in practice.

The effectiveness and the efficiency are further demonstrated with a survey of several important
applications, such as Navier-Stokes equations on irregular domains with traction boundary condi-
tions, an incompressible interface in incompressible flow, a contact problem of drop spreading, and
a mixed boundary problem. For the Schur complement matrix A in AIIM, GMRES (with restart)
generally stalls. Even non-restarted GMRES barely converges unless the number of iterations
reaches nearly N. However, after our matrix-free preconditioning, GMRES converges quickly.
The convergence is also observed to be relatively insensitive to N and some physical parameters.

We also give a comprehensive test for a free boundary problem that involves multiple stages
of GMRES solutions within the iterative solution of a nonlinear equation. The problem involves
mixed boundary conditions, and the system behaves like integral equations of both first and second
kinds. With our preconditioner, the overall performance GMRES solutions for all the stages is
significantly improved.

The presentation is organized as follows. In Section 2, the features of the Schur complements
and the motivation for our work are discussed, together with a brief review of the idea of AIIM.
In particular, the linear system with the Schur complement matrix A is explained in detail, includ-
ing the fast multiplication of A with vectors and the formation of the right-hand side. Section 3
presents the matrix-free structured preconditioner and the detailed algorithms, and the effective-
ness is discussed. Section 4 lists the applications, summarizes the numerical tests, and discusses
the generalizations. Some conclusions are drawn in Section 5.

2. Features of the Schur complement systems in AIIM and motivation for the work

AIIM usually has two discretizations. One is for the governing PDE with the assumption that
the augmented variable is known. The second is for the augmented equation such as the bound-
ary condition or the interface condition. In this section, as a preparation for our preconditioning
techniques, we use the example of solving a Poisson equation on an irregular domain in [19, 21]
to demonstrate the idea of AIIM, and show the form of the Schur complement A and its multipli-
cation with vectors. We then discuss some useful features of the Schur complement system. These
features are based on both mathematical and numerical observations, and provide a motivation for
the development of our preconditioners.
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2.1. Finite difference method for elliptic problems with singular source terms
In this subsection, we review the discretization of the governing PDE as in [19, 21], assuming

the augmented variable is known. Let R = {(x, y), a < x < b, c < y < d} be a rectangular domain.
Consider an elliptic interface problem with a specified boundary condition on ∂R:

∆u = f (x, y), (x, y) ∈ R − ∂Ω,
[u] = w, [un] = v, (1)

where ∂Ω = (x̂(s), ŷ(s)) is a curve or interface within R with a parameter s (such as the arc-length),
[u] is the jump of the solution across the boundary ∂Ω, n is the unit direction pointing outward of
∂Ω, and [un] = [∇u · n] is the jump in the normal derivative of u across ∂Ω. If w ≡ 0, (1) can be
rewritten as Peskin’s model [35]

∆u = f (x, y) +
∫
∂Ω

v(s)δ(x − x̂(s))δ(y − ŷ(s)) ds.

We have a single equation for the entire domain. The second term on the right-hand side involves
the two-dimensional Dirac delta function, which is called a singular source term or a source dis-
tribution along the curve ∂Ω. If w , 0, then it is called a double layer, similar to the derivative
of the Dirac delta function, which is again called a singular source. To solve the equation above
numerically, either the immersed boundary method or the immersed interface method (IIM) can be
used. For example, following the standard five-point finite difference discretization on a uniform
mesh, we can write both methods as

ui−1, j + ui+1, j + ui, j−1 + ui+1, j − 4ui, j

h2 = fi j + ci j,

where h is the uniform mesh size, ui j ≈ u(xi, y j) is the discrete solution, fi j = f (xi, y j), and ci j is the
discrete delta function in the immersed boundary method or is chosen to achieve the second order
accuracy in IIM. A matrix-vector form can be conveniently written for the scheme:

Au = f + Bw +Cv,

where w and v are the discrete forms of w and v, respectively. The matrices B and C are sparse
matrices that are related to the coordinates of grid points in the finite difference stencil and the
boundary information including the first and the second order partial derivatives of ∂Ω. Usually,
each row of B or C has 3 ∼ 9 nonzero entries, depending on the applications.

Here, we assume that we know w and v on a rectangular domain. For AIIM, one of them
is unknown and should be chosen to satisfy a certain kind of interface/boundary conditions for
different applications.

2.2. AIIM for Helmoltz/Poisson equations on irregular domains
Now we explain AIIM for the solution of Helmholtz/Poisson equations on an irregular interior

or exterior domain Ω. See [16, 17, 26] for more details. Consider an Helmholtz/Poisson equation
with a linear boundary condition q(u, un) along the boundary ∂Ω:

∆u − ωu = f (x), x ∈ Ω,
q(u, un) = 0, x ∈ ∂Ω.
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In AIIM, Ω is embedded into a rectangle or cube domain R, and ∂Ω becomes an interface. The
PDE and the source term are then extended to the entire domain R as follows:

∆u − λu =

{
f , x ∈ Ω,
0, x ∈ R −Ω,

q(u, un) = 0, x ∈ ∂Ω.{
[u] = g,

[un] = 0,
or

{
[u] = 0,

[un] = g,
x ∈ ∂Ω.

If g is known, then we can find the solution u with a fast Poisson solver. In the discrete sense, this
can be represented by a matrix-vector equation

Au = f − Bg. (2)

To solve the original problem, the augmented variable g is determined so that q(u(g), un(g)) = 0
for u(g) along the boundary/interface ∂Ω. This is the second discretization in AIIM. One strategy
of the discretization is to apply least squares interpolations [19, 21] in terms of u and g at a set of
discrete points along ∂Ω, which leads to a matrix-vector equation

Cu + Dg − q = 0. (3)

The residue vector is
R(g) = Cu(g) + Dg − q.

R(g) here has dual meanings. It is not only the regular residual of the linear system (6) below, but is
also the measurement of how the boundary condition is satisfied. u is the solution when R(g) = 0.

Combine (2) and (3) to get (
A B
C D

)(
u
g

)
=

(
f
q

)
.

Compute a block LU factorization(
A B
C D

)
=

(
A
C I

)(
I A−1B

A

)
, (4)

where A is the Schur complement
A = D −CA−1B. (5)

We can then solve a much smaller system for g:

Ag = b, with b = q −CA−1f. (6)

Once we find g, then we solve (2) for the solution u. The right-hand side vector b in (6) can be
found with the evaluation of −R(g) at g = 0, since

−R(0) = −(Cu(0) + D0 − q) = −(CA−1f − q) = b.
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In iterative solutions of (6), we need to evaluate the products of A with vectors g̃. For this
purpose, we first solve (2) with g replaced by g̃:

Aũ(g̃) = f − Bg̃.

Then

Ag̃ = Dg̃ −CA−1Bg̃ = Dg̃ −CA−1(f − Aũ(g̃)) (7)
= Dg̃ −Cu(0) +Cũ(g̃) = (Cũ(g̃) + Dg̃) −Cu(0)
= (Cũ(g̃) + Dg̃ − q) − (D0 +Cu(0) − q)
= R(g̃) − R(0).

That is, to compute Ag̃, we can use an interpolation to get the residual for the boundary condition.
In general, the Schur complement matrix A is nonsymmetric. Even A may be nonsymmetric,

such as in the other applications in this paper. A is generally a dense matrix since A−1 is. In the
boundary integral method, A is close to the discretization of the second kind integral equation.
In the examples presented in this paper, the matrices A, B, C, and D are not explicitly formed.
The matrices C and D are sparse and rely on the interpolation scheme used to approximate the
boundary condition. There are about 3 ∼ 16 entries each row, depending on the geometry of the
boundary and its neighboring grid points for different applications. C and D are determined from
the interpolation scheme to approximate the boundary condition. Hence, we generally do not have
CT and DT available if the matrices are not formed. Thus in practice, A is not explicitly available,
and the multiplication of AT by vectors is not convenient.

2.3. Features of the Schur complement systems and challenges in GMRES solutions
As mentioned above, the Schur complement matrices A in AIIM such as (5) are usually dense

and not explicitly formed. On the other hand, A can be multiplied by vectors quickly with the aid
of fast solvers (e.g., Poisson solvers). Thus, iterative methods such as GMRES are usually used to
solve the Schur complement system

Ag = b. (8)

For the problems we consider, the following features or challenges are often observed.

• For many Schur complement systems resulting from AIIM, GMRES without precondition-
ing has difficulty in converging. By saying this, we mean that the restarted GMRES method
stalls or the non-restarted GMRES method converges only when the number of iterations
reaches nearly the size N of A. Sometimes, this is due to the ill conditioning of A. However,
for various cases here, this happens even if A is well conditioned. Often, the eigenvalues of
A are scattered around the origin, which is empirically observed to affect the convergence
of GMRES. The physical background for the slow convergence is as follows. AIIM can be
considered as a generalized boundary integral method without explicitly using Green func-
tions. The augmented variable can be considered as a source term. Thus, if the discrete
system corresponds to an integral equation of the second kind, then GMRES can converge
quickly. (We refer the readers to [49] for the relation between an augmented approach and
the boundary integral method.) One such an example is to solve a Poisson equation on an
irregular domain with different boundary conditions. If the system behaves like an integral
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equation of the first kind, then GMRES converges slowly in general. One such example is to
solve a Poisson equation on an irregular domain with both Dirichlet and Neumann boundary
conditions defined along part of the boundary. Thus, an effective preconditioner is crucial
for the convergence of GMRES.

• A is usually dense and it is costly to form it. (For example, A−1 is involved in (5) for a large
sparse matrix A.) In fact, it is not convenient to even extract its diagonal. Even if we find the
diagonal, it may have zero entries and cannot be used as a preconditioner in a straightforward
way.

• Ag̃ can be conveniently computed for a vector g̃. Thus, we may extract few columns of A
or multiply A by certain special vectors (e.g., vector of ones), so as to construct diagonal or
block diagonal preconditioners. However, the preconditioners may be close to singular or
may perform poorly.

• AT g̃ cannot be conveniently computed for a vector g̃. (See the end of the previous subsec-
tion.) Thus, even the recent matrix-free direct solution techniques in [28, 42] cannot be used
to get a preconditioner, since they require the multiplication of both A and AT by vectors to
get an approximation to A.

• In some cases, A is close to be normal or even symmetric.

• The singular values of the off-diagonal blocks of A have reasonable decay. In some cases,
the decay is very fast so that such blocks have small numerical ranks.

As an example, we consider a 680 × 680 Schur complement A arising from AIIM for solving
the Navier-Stokes equation with a traction boundary condition in Section 4.1.1. The mesh size is
240×240. Note that the 2-norm condition number of the matrix is κ2(A) = 10.09, and ∥A−AT ∥2 =
0.02, ∥AT A − AAT ∥2 = 1.98 × 10−5. However, due to the traction boundary condition, restarted
GMRES (with 50 inner iterations) applied to (8) fails to converge, as shown in Figure 1.

0 2 4 6 8 10

x 10
4

0.85

0.9

0.95

1

Number of iterations

γ 2

Figure 1: Convergence of restarted GMRES without preconditioning for (8) from AIIM for solving the Navier-Stokes
equations with a traction boundary condition in Section 4.1.1, where N = 680, the mesh size is 240 × 240, and
γ2 =

||Ag−b||2
||b||2 is the relative residual.

Thus, an effective preconditioner is needed. The diagonal of A contains zero entries and cannot
be conveniently used as a preconditioner, even if we could extract it. We will seek to find a
structured preconditioner. In fact, the off-diagonal blocks of A have relatively small numerical
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ranks. In Figure 2, we show the singular values of an N
2 ×

N
2 off-diagonal block of A. Clearly, the

block only has few large singular values. Thus, we can use a low-rank form to approximate this
block to a reasonable accuracy. Overall, we can approximate A by a rank structured (e.g., HSS)
matrix that can serve as an effective preconditioner. However, this would require either A explicitly
or the multiplication of both A and AT by vectors. In the next section, we address these issues.
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Figure 2: The first 30 singular values of A(1 : N
2 ,

N
2 + 1 : N) for the Schur complement A from AIIM for solving

the Navier-Stokes equations with a traction boundary condition in Section 4.1.1, where N = 680 and the mesh size is
240 × 240.

3. Matrix-free preconditioning techniques for AIIM

The challenges and the tests in the previous section provide a motivation for this work. We
show a matrix-free scheme that improves those in [28, 48] and produces a nearly symmetric ap-
proximation H to A in a structured form. H will be quickly factorized and used as a structured
preconditioner.

3.1. Rank structures
Our preconditioning techniques employ rank structures, or more specifically, HSS represen-

tations [6, 46]. An HSS representation provides a convenient format to organize the off-diagonal
blocks of a matrix H by low-rank forms. H is partitioned hierarchically, so that the off-diagonal
blocks at all the hierarchical levels have low-rank forms and also share certain common bases. A
comprehensive summary of HSS structures and algorithms can be found in [43]. Here, we briefly
review its definition, with the aid of the following notation:

• H|s×t is a submatrix of H formed by its entries corresponding to the row index set s and
column index set t;

• H|s is a submatrix of H formed by its rows corresponding to the index set s;

• H|:×t is a submatrix of H formed by its columns corresponding to the index set t.

A general HSS form looks like Dk ≡ H|I×I, where I is the index set {1, 2, . . . ,N}, and Dk

is defined recursively following a full binary tree T with k nodes labeled as i = 1, 2, . . . , k in a
postorder. Each node i of T is associated with an index set ti such that

tk = I, ti = tc1 ∪ tc2 , tc1 ∩ tc2 = ∅,
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where c1 and c2 are the children of a non-leaf node i and c1 < c2 (c1 ordered before c2). Then for
each such i, recursively define

Di =

(
Dc1 Uc1 Bc1V

T
c2

Uc2 Bc2V
T
c1

Dc2

)
, Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,

where the matrices Di,Ui, etc. are called the generators that define the HSS form of H. Also, if we
associate each node i of T with the corresponding generators, T is called an HSS tree. T can be used
to conveniently organize the storage of H and perform HSS operations. The off-diagonal blocks
we are interested in are H|ti×(I\ti) and H|(I\ti)×ti , called HSS block rows and columns, respectively.
Ui gives a column basis for H|ti×(I\ti), and Vi gives a column basis for (H|(I\ti)×ti)

T . For convenience,
assume Ui and Vi have orthonormal columns. In standard HSS computations, the generators are
usually dense. However, particular HSS construction algorithms may yield generators that have
additional internal structures (see, e.g., [44, 48]).

Later, we use par(i) and sib(i) to denote the parent and the sibling of i, respectively. Also we
say c1 is a left node and c2 is a right one.

3.2. Matrix-free structured preconditioning via randomized sampling
HSS preconditioning for symmetric positive definite problems have been discussed in [47].

Here, our matrices are generally nonsymmetric and indefinite. The primary idea of our precondi-
tioning techniques is to construct a nearly-symmetric HSS approximation H to A with an improved
matrix-free HSS construction scheme via only the products of A and vectors. The major compo-
nents are as follows.

1. For an off-diagonal block of A, use an adaptive randomized sampling method [15, 42] to find
an approximate column basis, and a deterministic method to find an approximate row basis.

2. In a top-down traversal of the HSS tree, use the products of A and vectors to obtain hier-
archically low-rank approximations to certain off-diagonal blocks. Treat A as a symmetric
matrix to approximate the other off-diagonal blocks. We avoid using pseudoinverses and
some matrix multiplications in [28, 42].

3. This further enables us to approximate the diagonal blocks, and we then obtain a nearly
symmetric HSS approximation H to A.

4. Compute a structured ULV-type factorization [6, 46] of H. Use the factors as a precondi-
tioner in a ULV solution scheme.

The detailed improvements over existing similar schemes are elaborated in the following sub-
sections.

3.2.1. Improved randomized compression
Firstly, we explain briefly the adaptive randomized sampling ideas, and show our improvement

to the randomized compression. For an M × N matrix Φ of rank or numerical rank r, we seek to
find a low-rank approximation of the form

Φ ≈ UBVT .
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We multiply Φ and random vectors and use adaptive randomized sampling to find U as in [15, 40].
Then unlike the methods in [15, 28, 40, 42], we do not multiply ΦT with random vectors when
finding V . Furthermore, we do not use pseudoinverses to find B. These are detailed as follows.

Initially, let X be an M × r̃ Gaussian random matrix, where r̃ is a conservative estimate of r.
Compute the product

Y = ΦX,

and a QR factorization
Y = UỸ . (9)

U is expected to provide a column basis matrix for Φ when r̃ is close to r. To quickly estimate how
well U(UTΦ) approximates Φ, the following bound can be used with high probability [15, 40]:

||Φ − U(UTΦ)||2 ≤ η
√

2
π

max
j=r̃−d+1,...,r̃

∥∥(I − UUT )Y |:× j

∥∥
2 , (10)

where d is a small integer and η is a real number, and d and η determine the probability. If the
desired accuracy is not reached, more random vectors are used. When this stops, we obtain the
approximate basis matrix U and the rank estimate.

In existing randomized sampling methods, it then usually multiplies ΦT with random vectors
to find V in a similar way. That is, randomized sampling are used twice to extract both the row and
the column basis. Here, instead, we compute

Φ̃ = UTΦ, (11)

and then compute an RQ factorization
Φ̃ = BVT . (12)

That is, we use randomized sampling only once, but use the deterministic orthogonal way (11)–
(12) to find V . This is potentially beneficial for the approximation. Furthermore, (12) provides
both B and V without the need of pseudoinverses in [28, 42]. The RQ factorization is generally
much faster and much more stable. This idea is similar to a deterministic compression strategy for
HSS construction in [46], and a parallel implementation is later discussed in [30].

3.2.2. Nearly-symmetric matrix-free HSS construction with improvements
We then apply the improved randomized compression to the HSS blocks of A:

Φ = A|ti×(I\ti) or A|(I\ti)×ti , (13)

The compression is done hierarchically for all the HSS blocks. Previous attempts to find accurate
HSS approximations to problems with low-rank off-diagonal blocks are made in [28, 32, 42, 48],
where the products of both A and AT with random vectors are needed. As compared with the
original matrix-free HSS constructions in [28, 42], the following improvements and modifications
are made:

• A nearly-symmetric HSS approximation is constructed. That is, for a node i of the HSS tree
and j = sib(i), Vi ≡ Ui, Wi ≡ Ri, B j = BT

i , but the D generators are nonsymmetric.



J. Xia, Z. Li, and X. Ye 12

• Randomized sampling is only used to find Ui for the left nodes i. To find Ui for the right
nodes i, the deterministic way (11)–(12) is used instead. This reduces the number of matrix
multiplications, and avoids expensive and potentially unstable pseudoinverses.

• Specifically for the purpose of preconditioning, a low approximation accuracy and small r̃
and d are used in (10).

The details are as follows. Assume that T is the desired HSS tree. As in [28, 42], the nodes i
of T are visited in a top-down way, so as to construct the column bases hierarchically for the HSS
blocks A|ti×(I\ti). For convenience, we use T̃l and T̂l to denote the sets of left and right nodes at a
level l of T , respectively. Also, let the root of T be at level 0 and the leaves be at the largest level
lmax. For 1 ≤ l ≤ lmax, define

t̃l =
∪
i∈T̃l

ti, t̂l =
∪
j∈T̂l

t j.

Let X be a Gaussian random matrix whose column size is decided via adaptive randomized
sampling applied to A|ti×t j for each i ∈ T̃l. Define X̃ so that

X̃|t̃l
= X|t̃l

, X̃|t̂l
= 0. (14)

Compute
Ỹ = AX̃ − Z̃,

where Z̃ is the product of the partially computed HSS form (due to recursion at upper levels) and
X̃, denoted

Z̃ = hssmv(A, X̃, l − 1).

(Z̃ is 0 if l = 1.) Then compute a QR factorization

Ỹ |ti = ŪiS̄ i,

where Ūi is a column basis matrix for A|ti×t j with j = sib(i).
To find a row basis matrix for A|ti×t j , unlike the methods in [28, 42] that still uses randomized

sampling, we use a deterministic way. Define a matrix X̂, which is a zero matrix except for each
i ∈ T̃l,

X̂|ti = Ūi.

Compute
Ŷ = AX̂ − hssmv(A, X̂, l − 1).

Then for each right node j at level l, compute a QR factorization

Ŷ |t j = Ū jB̄ j,

where Ū j is a column basis matrix for (A|ti×t j)
T .

We are then ready to find the generators. If l = 1, simply set Ui = Ūi, Bi = B̄T
j . Otherwise,

after j = sib(i) is also visited, let p = par(i) and partition Up as
(

Up;1

Up;2

)
so that Up;1 has the same

row size as Ūi (assuming i is a left node). Then compute QR factorizations

( Ūi Up;1 ) = Ui
(

S i Ri
)
, ( Ūi Up;2 ) = U j

(
S j R j

)
.
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Also, set
Bi = S jB̄ jS T

i .

In comparison, multiple pseudoinverses and a lot more matrix multiplications are needed in
[28]. An improved version is given in [42], but still needs two more matrix multiplications and a
pseudoinverse on top of two randomized sampling stages. Another strategy to avoid the pseudoin-
verse is later given in [30], and can potentially better reveal the hierarchical structures. However, it
needs additional randomized sampling and matrix-vector multiplications. Here, since our purpose
is preconditioning, the strategy above is sufficient and preferable.

This process is repeated for the nodes of T in a top-down traversal. After the leaf level is
traversed, approximations to all the HSS blocks are obtained. We can then approximate all the
diagonal blocks A|ti×ti for the leaves i by subtracting the products of appropriate off-diagonal blocks
of A and I = (I, I, . . . , I)T from AI [28]. (Some additional zero columns may be needed for certain
block rows of I.) More specifically,

A|ti×ti ≈ H|ti×ti ≡ AI − hssmv(A, I, lmax).

By now, we have obtained an HSS approximation H to A, where the off-diagonal blocks have
a symmetric pattern, or

H|ti×t j = (H|t j×ti)
T .

The diagonal blocks Di ≡ H|ti×ti are nonsymmetric. The accuracy of this HSS approximation may
be low, but it suffices for our preconditioning purpose.

3.2.3. Nearly-symmetric HSS factorization
At this point, we can quickly factorize the HSS matrix H, and the factors are used for pre-

conditioning. Since H is nearly symmetric, we use the fast ULV factorization in [46], with some
simplifications to take full advantage of the off-diagonal symmetric pattern and with some modifi-
cations to accommodate the nonsymmetric diagonal blocks. The basic idea includes the following
steps.

• Introduce zeros into H|ti×(I\ti) by expanding Ui into an orthogonal matrix Ũi and multiplying
Ũi to H|ti . This just needs to modify Di as

Di ← ŨiDiŨT
i .

• Partition Di into a block 2×2 form
(

Di;1,1 Di;1,2

Di;2,1 Di;2,2

)
, so that Di;1,1 a square matrix with size

equal to the column size of Ui. Partially LU factorize Di:

Di ≡
(

Di;1,1 Di;1,2

Di;2,1 Di;2,2

)
=

(
Li;1,1

Li.2,1 I

)(
Gi;1,1 Gi;1,2

Gi;2,2

)
,

where Di;1,1 = Li;1,1Gi;1,1 is the LU factorization of Di;1,1, and Gi;2,2 = Di;2,2 − Li.2,1Gi;1,2.

• After these steps for two sibling nodes i and j of T are finished, merge the remaining blocks.
Here, this is to simply set

Dp ←
(

Gi;2,2 Bi

BT
i G j;2,2

)
.
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Note that no actual operations are performed. Then we remove i and j from T to obtain a
smaller HSS form, called a reduced HSS matrix [45].

• Repeat the above steps on the reduced HSS matrix.

After the factorization, the ULV factors are a sequence of orthogonal and lower and upper
triangular matrices and are used as a structured preconditioner. The ULV solution procedure for
the preconditioning is similar to that in [46] and is skipped.

3.2.4. Algorithm and variation
The details are shown in Algorithm 1, which includes the HSS approximation and the factor-

ization for constructing the preconditioner.
To make the preconditioner easier to use, we may also use a simplified variation by forming a

block diagonal matrix D from the Di generators:

D = diag(Di|i: leaves of T ).

Then factorize D and use the triangular factors as the preconditioner.
To summarize, we have two types of preconditioners:

• Preconditioner I: Structured preconditioner given by the ULV factors of the HSS approxi-
mation H to A;

• Preconditioner II: Block-diagonal preconditioner given by the LU factors of the block di-
agonal matrix D formed by the Di generators of H. This preconditioner is easier to apply,
although it may lead to slightly slower convergence.

For convenience, we may simply say that H or D is the preconditioner.

3.3. Efficiency and effectiveness
The HSS construction costs O(r2N) flops plus the cost to multiply A with O(r log N) vectors,

where r is the maximum numerical rank of the HSS blocks. The factorization and the precondi-
tioning costs are O(r2N) and O(rN) flops, respectively. We may also treat the diagonal blocks as
symmetric ones so as to further save the costs. The storage for the preconditioner is O(rN).

In the preconditioning, we use a low accuracy so that r is a very small integer. The precondi-
tioning cost at each GMRES iteration is then O(N). This cost is negligible as compared with the
cost of multiplying A and a vector. The reason is that A corresponds to the interface and has a
much smaller size than the entire problem. See, e.g., (4)–(5), where the multiplication of A and a
vector needs to solve a Poisson problem represented by A. The matrix A has a size much larger
than N.

Just like many other preconditioning techniques, a full analytical justification of the effective-
ness of the preconditioner is not yet available. Especially, the complex nature of the rank structures
makes the analysis a nontrivial issue. However, several aspects of rank structured approximation
and randomized preconditioning are closely related and give useful heuristical explanations.

1. HSS representations recursively capture the algebraic structure of the discretization with
the off-diagonal blocks corresponding to the interactions of subdomains. A low-accuracy
off-diagonal approximation represents essential basic information within the subdomain in-
teraction.
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Algorithm 1 Constructing the matrix-free preconditioner
1: procedure mfprec

Input: HSS partition, HSS tree T , compression tolerance (and/or rank bound r), and
mat-vec (Schur complement matrix-vector multiplication routine as in (7))

Output: HSS factors as a preconditioner
2: X̃ ← 0, X̂ ← 0
3: for level l = 1, 2, . . . , lmax do ◃ Improved nearly-symmetric matrix-free HSS construction
4: Construct X̃ as in (14) via adaptive randomized sampling
5: Ỹ ← mat-vec(A, X̃) − hssmv(A, X̃, l − 1) ◃ hssmv returns 0 if l = 1
6: for each left node i at level l do
7: Ỹ |ti = ŪiS i ◃ QR factorization
8: X̂|ti ← Ūi

9: end for
10: Ŷ ← mat-vec(A, X̂) − hssmv(A, X̂, l − 1)
11: for each right node j at level l do
12: Ŷ |t j = Ū jB̄ j ◃ QR factorization
13: i← sib( j)
14: if l = 1 then ◃ i is a child of the root
15: Ui ← Ūi, U j ← Ū j, Bi ← B̄T

j ◃ U, B generators
16: else
17: Upar(i) =

(
Upar(i);1

Upar(i);2

)
◃ Partition so that Upar(i);1 and Ūi have the same row size

18: ( Ūi Upar(i);1 ) = Ui( S i Ri ), ( Ū j Upar(i);2 ) = U j( S j R j )
◃ QR factorizations for U,R generators

19: Bi ← S jB̄ jS T
i ◃ B generator

20: end if
21: end for
22: end for
23: Ỹ ← AI − hssmv(A, I, lmax)
24: for each leaf i do
25: Di ← Ỹ |ti ◃ D generator
26: end for
27: for node i = 1, 2, . . . , k do ◃ ULV factorization to generate the preconditioner
28: Ũi ← Ui ◃ Extension of Ui to orthogonal Ũi; implicit zero introduction into A|ti×(I\ti)
29: Di ← ŨiDiŨT

i ◃ Diagonal block update

30: Di =

(
Li;1,1

Li.2,1 I

)(
Gi;1,1 Gi;1,2

Gi;2,2

)
◃ Partial LU factorization

31: if i is a nonleaf node then
32: Di ←

(
Gc1;2,2 Bc1

BT
c1

Gc2;2,2

)
◃ c1, c2: children of i

33: end if
34: end for
35: end procedure
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2. Keeping few largest off-diagonal singular values in rank structured approximation tends to
have an effect of roughly preserving certain eigenvalues of the original matrix [39, 42]. In
particular, if some eigenvalues are well separated from the others, then a low-accuracy HSS
approximation can give a much more accurate approximation of these eigenvalues. This
structured perturbation analysis is shown in [39]. Therefore, when the HSS approximation
is used as a preconditioner, it can potentially help to bring the eigenvalues closer. Although
this does not necessarily guarantee the fast convergence of GMRES [12, 38], it gives an
empirical way to look into the behavior of the preconditioner.

3. Even if the problem may not have the low-rank property or the off-diagonal singular values
only slowly decay, a structured approximation as a preconditioner can significantly accel-
erate the decay of the condition number κ [47], where the preconditioner is obtained with
different numbers of off-diagonal singular values kept in the approximation.

4. In our preconditioner, multiplications of A by random matrices are used to approximate the
off-diagonal blocks by low-rank forms, which are further used to approximate the diagonal
blocks via matrix addition/subtraction. This is then similar to the idea of additive precondi-
tioning [33, 34], where random low-rank matrices are added to the original matrix, which is
shown to yield a well-conditioned preconditioner, and also improves the condition number
of the original matrix.

4. Preconditioning AIIM for different applications and generalizations

In this section, we show several important applications where our preconditioning techniques
for AIIM can be applied, particularly for flow problems. Numerical results are given to demonstrate
the effectiveness and efficiency. We focus on the structured Preconditioner I given at the end of
Section 3.2, and also briefly show the performance of Preconditioner II.

4.1. Preconditioning individual Schur complements in various applications
In this subsection, we show the preconditioning of some individual Schur complements in

several applications. In our tests, different types of right-hand sides b are tried, such as random
vectors, products of A and given vectors, and those actually arising in the applications. Similar
performance is observed. Thus for convenience in comparing different methods, we report the
results with b to be the products of A and vectors of all ones. We point out that our preconditioners
are not limited to any specific type of right-hand sides. For convenience, the following notation is
used:

• κ2(A): 2-norm condition number of A;

• npre
mv: number of matrix-vector multiplications for computing the preconditioner;

• nit: number of GMRES iterations;

• γ2 =
||Ag−b||2
||b||2 : relative residual.

Before presenting the details of the individual problems, we give the basic properties of the
matrices in Table 1, and summarize the convergence results in Table 2. The matrices include both
well-conditioned and ill-conditioned ones. We can observe that, GMRES has difficulty to converge
for all the cases. In fact, restarted GMRES fails to converge for all the cases except one (where
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it takes 8794 steps to converge for N = 194). Even non-restarted GMRES needs large numbers
of iterations to converge, which are often close to N. On the other hand, preconditioned GMRES
with our structured preconditioner gives quick convergence for all the cases. Both npre

mv and nit are
relatively insensitive to the increase of N.

Table 1: Properties of A, including the corresponding mesh size for the entire domain.

Problem Mesh N κ2(A) ||A − AT ||2 ||A−AT ||2
||A||2 ||AT A − AAT ||2 ||A

T A−AAT ||2
||AT A||2

Traction

60 × 60 176 9.62 0.02 1.43 2.36 × 10−5 0.10
120 × 120 344 9.48 0.02 1.40 2.23 × 10−5 0.09
240 × 240 680 10.09 0.02 1.41 1.98 × 10−5 0.09
480 × 480 1360 13.71 0.02 1.42 1.66 × 10−5 0.08
128 × 128 128 1.55e5 4.08 0.69 9.33 0.27

Inextensible 256 × 256 256 1.34e7 8.05 0.70 39.05 0.29
512 × 512 512 2.31e6 18.65 0.51 176.85 0.13
128 × 128 182 6.79e2 1.01 1.02 0.86 0.88

Contact 256 × 256 362 9.56e2 1.02 1.03 0.86 0.87
512 × 512 726 4.76e3 1.06 0.99 0.89 0.78
64 × 64 194 3.16e3 1.03 0.98 0.91 0.82

128 × 128 274 3.46e3 1.26 0.97 1.52 0.89
Mix Irregular 256 × 256 514 1.71e4 2.21 0.99 4.83 0.97

512 × 512 834 2.54e5 3.74 1.00 13.91 0.99
1024 × 1024 1314 8.59e6 6.91 1.00 47.58 1.00

Remark 1. Since A corresponds to the interface for the augmented variable, the size N of A is
usually not very large. However, the number of variables in the original problem is much larger.
See the mesh size in Table 1. Even if A may have a small size, the multiplication of A by a vector
needs the solution of a much larger equation for A, e.g., with a Poisson solver.

Remark 2. For time dependent problems and multiple right-hand sides, we may use npre
mv matrix-

vector multiplications in a precomputation to find a preconditioner, and then apply the precondi-
tioner to multiple time steps and right-hand sides. Thus, it sometimes makes sense to allow npre

mv
to be slightly larger so as to reduce nit. This would be beneficial in reducing the total number of
matrix-vector products.

Remark 3. The measurements in Table 1 only give a partial way to look into the symme-
try/normality of A, and do not necessarily tell the actual symmetry/normality. In practice, we may
not know if A is actually close to symmetric or not. For some of the examples, the eigenvalues of
A are scattered around (say, in a disk) and are not close to the real axis. In general, the structure of
the Schur complement matrix depends on the application and the representation of the interface.
For our test examples, it is hard to tell whether the matrix is eventually close to symmetric or not,
but the preconditioner works well.

Remark 4. The reasons why we are not reporting results for restarted GMRES are as follows.
First, the numbers of iterations in our tests are usually small. Next, if restart is used, the conver-
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Table 2: Summary of the convergence of GMRES without preconditioning and with our structured Preconditioner I,
where τ is around 0.1 ∼ 0.8 in constructing the preconditioner.

Problem
GMRES Preconditioned GMRES

Restarted Non-restarted (Non-restarted)
nit (outer; inner) γ2 nit γ2 npre

mv nit γ2

Traction

91750 (1835; 50) Fail 175 1.43e − 4 63 12 3.73e − 7
93650 (1873; 50) Fail 343 1.34e − 5 88 11 5.83e − 7

9500 (190; 50) Fail 672 3.11e − 6 85 12 5.14e − 7
3300 (66; 50) Fail 1331 1.71e − 6 106 13 9.01e − 7

55750 (1115; 50) Fail 127 1.63e − 4 73 26 7.90e − 7
Inextensible 30200 (604; 50) Fail 250 8.91e − 7 92 42 7.96e − 8

100000 (2000; 50) Fail 492 4.63e − 7 110 68 2.94e − 7
49250 (985; 50) Fail 181 6.98e−6 71 21 3.47e − 7

Contact 81500 (1630; 50) Fail 361 5.20e−7 83 30 5.47e − 7
3150 (63; 50) Fail 725 1.71e−6 99 48 8.01e − 7

8794 (176; 50) 1.00e−6 118 7.03e−7 68 22 7.82e − 7
14150 (283; 50) Fail 156 8.14e−7 79 39 2.47e − 7

Mix Irregular 95200 (1904; 50) Fail 328 9.48e−7 81 64 7.61e − 7
7300 (146; 50) Fail 633 9.18e−7 102 84 9.60e − 7

33950 (679; 50) Fail 1045 9.36e−7 105 98 9.09e − 7

gence is slower than without, depending on the number of inner iterations. However, in AIIM with
preconditioning, it seems preferable to store a little more intermediate iterates (as in non-restarted
GMRES) so as to accelerate the convergence. This is because the sizes of the original discretized
PDEs are much larger than the sizes of the Schur complement matrices A. It is usually cheap to
store some small intermediate iterates in GMRES, but is costly to compute matrix-vector products.
Therefore, reducing the total number of matrix-vector products is more crucial (than saving a small
amount of storage for the GMRES iterates). Of course, for large-scale practical computations, we
may choose to balance the convergence and the storage via restart with appropriate numbers of
inner iterations.

We then explain the individual applications in Tables 1–2 and show additional specific tests in
the following subsections.

4.1.1. Navier-Stokes equations on irregular domains with open and traction boundary conditions
This application is one of our motivations to develop the preconditioner. A detailed description

of the problem and its solution with AIIM can be found in [20].
Let R be a rectangular domain with an inclusion Ω. Consider the Navier-Stokes equation

ρ

(
∂u
∂t
+ (u · ∇)u

)
+ ∇p = µ∆u + g, ∇ · u = 0, (15)

x ∈ R \Ω,

where ρ, µ, u, p, and g(x, y, t) are the fluid density, the viscosity, the fluid velocity, the pressure,
and an external forcing term, respectively. There is a traction boundary condition [29] along the
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interior boundary ∂Ω:

nT · µ(∇u + ∇uT ) · n = p − p̂ − γξ, ηT · µ(∇u + ∇uT ) · n = 0, (16)
x ∈ ∂Ω,

where ξ is the curvature, γ is the coefficient of the surface tension, η is the unit tangential direction
of the interface, and p̂ is the pressure of the air.

During the numerical solution, the procedure to advance from a time step tk to the next one
tk+1 includes two steps [20]. The first is to solve (15) with (16) for the velocity using AIIM.
The second is to solve the momentum equation for the pressure p. The augmented variable is
qk+1 ≡ ∂uk+1

∂n , which is determined so that uk+1 satisfies (16) with an approximation to pk+1.
In a specific example, set the boundary ∂Ω to be a particular curve such as a circle defined by

a function φ(x, y). Let φi, j be the discrete case of φ(x, y). A grid point xi j is irregular if

max
{
φi−1, j, φi+1, j, φi j, φi, j−1, φi, j+1

}
·min

{
φi−1, j, φi+1, j, φi j, φi, j−1, φi, j+1

}
≤ 0.

The Schur complement system (8) for the augmented variable is defined at the orthogonal projec-
tions of such irregular xi j on ∂Ω from the outside. If the time step size ∆t = tk+1 − tk is fixed, then
so is A.

(8) is solved by GMRES with our preconditioning techniques. Preconditioned GMRES quickly
converges. See the results in the row of ‘Traction’ in Table 2, where we use time t = 0 and
µ = 0.02. Note that the number of matrix-vector products for constructing the preconditioner
and the number of iterations increase very slowly with N. More specifically, Figure 3 shows the
costs (excluding the matrix-vector multiplication which is problem dependent) and the storage. For
varying N, we use a low accuracy τ = 0.4 and a small off-diagonal rank. Then the construction of
the preconditioner (including the HSS construction and the ULV factorization) and the application
of the preconditioner (the ULV solution) both cost about O(N) flops and need about O(N) storage.
Such costs are negligible as compared with even one matrix-vector product with A, which costs
about O(N2 log N).
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Figure 3: Costs for precomputing or constructing the preconditioner (including HSS construction and ULV factoriza-
tion) and applying the preconditioner (HSS solution), and the storage for the preconditioner.

In particular, for the example with N = 680 in Figure 1 in Section 2.3, the convergence of
preconditioned GMRES is significantly faster than the standard non-restarted GMRES method.
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(Note that restarted GMRES simply stalls.) See Figure 4. It is also observed that most of the
eigenvalues of the preconditioned matrix cluster around 1.
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Figure 4: Convergence of non-restarted GMRES without preconditioning and with our structured preconditioning for
the 680 × 680 Schur complement A (corresponding to Figure 1) from a 240 × 240 mesh.

We also test the problem at time t = 0.5, and the results are given in Table 3. The convergence
is very close to that for t = 0 in Table 2.

Table 3: Convergence of preconditioned GMRES for the problem ‘Traction’ at time t = 0.5.

Mesh npre
mv nit γ2

60 × 60 63 13 4.29e − 7
120 × 120 88 12 6.81e − 7
240 × 240 85 11 6.37e − 7
480 × 480 106 13 6.53e − 7

Furthermore, for the example with N = 680, we also test a wide range of µ values. See Table 4.
Clearly, at both t = 0 and 0.5, the convergence preconditioned GMRES is similar for different µ.
This illustrates the insensitivity of the convergence to different time steps and physical parameters.

Table 4: Convergence of preconditioned GMRES for the problem ‘Traction’ at times t = 0 and 0.5 with different µ
values.

µ
t = 0 t = 0.5

npre
mv nit γ2 npre

mv nit γ2

2 90 14 5.87e − 7 90 14 5.26e − 7
0.2 88 13 4.04e − 7 88 14 6.13e − 7
0.02 85 12 5.14e − 7 85 11 6.37e − 7

0.002 85 13 3.63e − 7 85 12 6.58e − 7

4.1.2. An extensible interface in an incompressible flow
Then we consider an inverse interface problem, which has a moving interface ∂Ω(t) in a shear

flow within a rectangular domain R [24]. The problem is still modeled by the Navier-Stokes



J. Xia, Z. Li, and X. Ye 21

equation:

∂u
∂t
+ u · ∇u + ∇p = µ∆u + f (x, t), ∇ · u = 0,

x ∈ R,

where f (x, t) is the force term. Let η be the tangential direction of ∂Ω(t). The force term is

f (x, t) =
∫
∂Ω(t)

∂

∂s
(σ(s, t) η(s, t)) δ(x − ω(s, t)) ds,

where ω(s, t) is a parametric representation of ∂Ω(t), and σ(s, t) is the surface tension. The force
term f (x, t) is also part of the unknown. We need to find f (x, t) such that the incompressible
condition along the tangential direction is also satisfied. σ(s, t) is chosen as the augmented variable
so that

(∇s · u)∂Ω =
∂u
∂η
· η
∣∣∣∣
∂Ω

= 0.

That is, both the length of ∂Ω(t) and the enclosed area remain constant.
For this problem, the number of GMRES iterations is dramatically reduced with our precondi-

tioner. See the results in the ‘Inextensible’ row in Table 2, where the tests are done at time t = 0
with µ = 20.

4.1.3. A contact problem of drop spreading
AIIM for modeling a moving contact line problem where a liquid drop spreads can be found in

[23]. Just like in the previous problems, the fluid domain Ω with the free boundary ∂Ω is extended
into a rectangular domain R. The augmented variable is also the jump of the normal derivative
of the velocity along ∂Ω. The performance of GMRES with our preconditioner is given in the
‘Contact’ row in Table 2, where the time is t = 0.

4.1.4. A boundary value problem with mixed boundary conditions on different parts of the bound-
ary

Another important problem where an effective preconditioner is needed in AIIM is the Poisson
equation with different types of boundary conditions on different parts of the boundary. As an
example, consider the domain Ω enclosed by a half circle x2 + y2 ≤ 1, x ≥ 0 and the line segment
x = 0, −1 ≤ y ≤ 1. Assume we have the following mixed boundary conditions:

u(x, y) = g1, x2 + y2 = 1, x ≥ 0 (Dirichlet),
∂u
∂n
= g2, x = 0, −1 ≤ y ≤ 1 (Neumann).

Ω is extended to the rectangular domain R = [−2, 2]2, and AIIM is applied to the problem as
explained in Section 2. The augmented variable is set to be [∂u

∂n ] along the half circle and [u]
along the line segment x = 0, −1 ≤ y ≤ 1. See the line of ‘Mix Irregular’ in Table 2 for the
performance of our preconditioner.

In particular, we also try Preconditioner II given at the end of Section 3.2. See Table 5. We
observe satisfactory convergence results too, though slightly slower than those in Table 2.
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Table 5: Convergence of GMRES with our Preconditioner II for the problem ‘Mix Irregular’ in Table 1.

Mesh nit γ2

64 × 64 24 6.59e − 7
128 × 128 38 9.12e − 7
256 × 256 66 4.44e − 7
512 × 512 97 8.34e − 7

1024 × 1024 111 7.88e − 7

4.2. Comprehensive simulation in terms of a free boundary problem
We then show a comprehensive test in terms of a free boundary problem [25], including all the

stages of an entire simulation.
This problem is to determine the position of the crack of certain minimizers. It is a mixed

boundary value problem where we need to find a potential function u(x, y) and a free boundary
Γ1(x, y) such that

∆u = 0 in Ω, (17)
u|Γ2 = w, (18)
∂u
∂ν

∣∣∣
Γ1

= 0,
π

2
c =

[∣∣∇u+
∣∣2 − ∣∣∇u−

∣∣2]
Γ1

, (19)

where ν is the unit normal of Γ1 and c is the curvature of Γ1. The other boundary Γ2 is fixed, and the
Dirichlet boundary condition is defined on Γ2. Note that the parts of free boundary Γ1 below and
above the x-axis are antisymmetric, and the free boundary has three fixed points: the top (y > 0)
corner, the bottom (y > 0) corner, and the origin ((0, 0)). Figure 5 gives an illustration. Additional
plots of the final shape of the boundary can be found in [25].

Figure 5: An illustration of the free boundary problem (17)–(19) in [25], where Γ1 is a free boundary and Γ2 is fixed.

As usual, we use an iterative scheme to solve this free boundary problem. The free boundary
Γ1 can be written as a perturbation to the line (x̂0(t), ŷ0(t)) = (a1t, a2t) connecting the origin and the
top corner, where (a1, a2) is the direction of the line. Denote the free boundary above the x-axis as
(x̂(t), ŷ(t)) = (t, g(t)) with g(0) = 0, g(d) = 0, where d is the number such that (x̂0(d), ŷ0(d)) is the
fixed top corner.

From the analysis in [25], g(t) is the solution to the following non-linear equation which de-
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pends on u(x, y):
(t2 + g2(t))g′′(t)

(1 + g′2(t)) 3
2
+

tg′(t) − g(t)(
(t2 + g2)(1 + g′2(t))

) 1
2
= G(t), (20)

where t ∈ (0, d), and

G(t) =
1
π

(
|∂τu|2(t, g(t)) − |∂τu|2(−t,−g(t))

)
.

Here, ∂τu is the tangential derivative of u(x, y) along the free boundary Γ1. A much simplified
iterative method is proposed in [25] to solve the non-linear equation (20):

(t2 + g2
k(t))

(1 + g′2k (t))
3
2
g′′k+1(t) +

tg′k(t) − gk(t)(
(t2 + g2

k)(1 + g′2k (t))
) 1

2
= Gk(t), (21)

where
gk+1(0) = gk+1(d) = 0,

Gk(t) =
1
π

(
|∂τuk|2 (t, gk(t)) − |∂τuk|2 (−t,−gk(t))

)
,

and (t, gk(t)) defines the boundary of the domain for (17)–(19) whose solution is uk. This is much
simpler than the Newton iterative method and has fast convergence.

At each stage k of the iteration (21), we use the augmented method described in Section 2
to solve the Poisson equation on Ω with Dirichlet and Neumann boundary conditions on differ-
ent parts of the boundary. The augmented variable is the jump in the normal derivative. It is
well known that the GMRES converges very slowly since the system is similar to one using the
boundary integral method with integral equations of both first and second kinds.

In the simulation, we show the performance of GMRES as well as the preconditioned one. The
initial guess of the free boundary is the line connecting the top-left corner and the origin. The
Dirichlet boundary condition is

w(x, y) =
sgn(y)

2

(
(x2 + y2)

1
2 − x

) 1
2 − 0.01. (22)

Since multiple stages/iterations (21) are involved, the outcome of the previous stage GMRES it-
eration is used as the initial estimate of the next stage GMRES iteration. Thus, unlike the failure
in the tests in the previous subsection, here, GMRES converges to modest accuracy after a certain
number of steps.

Nevertheless, the preconditioned GMRES method with our preconditioner converges much
faster. In Table 6, we show the total number of iterations nit for GMRES at all stages, as well as the
total number of matrix-vector multiplications npre

mv+nit for the preconditioned GMRES method. We
construct the preconditioner once and use it for all the iterations. The stopping criterion is when
the difference in a certain measurement between two consecutive stages k and k+ 1 is smaller than
10−6. The tolerance for the inner GMRES iterations is also 10−6. We run the tests in Fortran on
a 2.5 GHz Intel Core i7 Macbook Pro with 16 GB of memory. Both the total number of GMRES
iterations and the total CPU time have been greatly reduced.

The numbers of GMRES and preconditioned GMRES iterations at each stage k for the iteration
(21) is also given in Table 7. With preconditioned GMRES, the solution is not only faster, but also
more reliable. In fact, with just GMRES, even for the small 40×40 mesh it takes an unusually large
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Table 6: Comparison of the entire simulation for the free boundary problem (17)–(19) with GMRES and precondi-
tioned GMRES for different mesh sizes.

Mesh size N
With GMRES With preconditioned GMRES

Total nit Total CPU time (sec) Total npre
mv + nit Total CPU time (sec)

40 × 40 96 1241 3.74e0 150 5.06e−1
80 × 80 114 700 2.90e0 164 7.75e−1

160 × 160 150 8801 7.40e1 180 1.57e0
320 × 320 222 821 2.08e1 183 4.77e0
640 × 640 366 979 9.25e1 211 2.10e1

1280 × 1280 652 951 4.07e2 227 9.20e1
2560 × 2560 1224 937 1.69e3 257 4.75e2

number of iterations. For the 160 × 160 mesh, it even fails to converge to the desired accuracy.
However, with preconditioned GMRES, both the number of iterations (21) and the numbers of
interior GMRES iterations are significantly reduced.

Table 7: Comparison of the numbers of iterations at all the stages k for the iteration (21).
Mesh With GMRES With preconditioned GMRES

40 × 40 77, 79, 83, 73, 77, 81, 78, 77, . . . , 77 (9 times) 24, 24, 24, 24, 24
80 × 80 70, 70, 70, 70, 70, 70, 70, 70, 70, 70 13, 13, 13, 13, 13, 13, 13, 13

160 × 160 89, 88, . . . , 88 (99 times) — divergence 13, 17, 17, 17, 17, 17
320 × 320 83, 82, 82, 82, 82, 82, 82, 82, 82, 82 19, 20, 20, 20, 20, 20
640 × 640 97, 98, 98, 98, 98, 98, 98, 98, 98, 98 17, 23, 23, 23, 23

1280 × 1280 96, 95, 95, 95, 95, 95, 95, 95, 95, 95 24, 34, 34, 34
2560 × 2560 97, 94, 94, 94, 93, 93, 93, 93, 93, 93 25, 33, 33

4.3. Generalizations
Other than AIIM, the preconditioning techniques can also be useful in other applications and

methods such as saddle point problems, domain decomposition, hybrid solutions. See, e.g., [3, 9,
36]. In these cases, often a large problem is first solved by direct methods, and a much smaller
Schur complement system corresponding to a small subdomain or interface is solved with iterative
ones.

The matrix-free preconditioning techniques here are also useful for more general problems
where it is difficult to form the matrix A explicitly or to evaluate the product of AT with vectors.
This also includes sparse problems such as the GeneRank problems in [41] which are nonsymmet-
ric but have symmetric nonzero patterns or involve other types of symmetry.

5. Conclusions

AIIM has significant benefits for the fast and accurate solutions of some interface problems and
problems defined on irregular domains. The efficient application of AIIM relies on the fast solu-
tion of the Schur complement system Ag = b. Since the products of A with vectors can be quickly
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evaluated, but not the entries of A or the products of AT with vectors, we propose matrix-free
preconditioning techniques to accelerate the convergence of GMRES. Rank structured techniques
are combined with adaptive randomized sampling. Several improvements to existing randomized
and structured algorithms are made. Various advantages of the preconditioner are demonstrated,
including the flexibility, efficiency, and effectiveness, which are supported by comprehensive tests
on many difficult situations. In our future work, we would like to analytically study the effective-
ness of the preconditioner, at least for certain simple cases (e.g., with few blocks). We also plan to
develop a parallel implementation for large-scale tests.
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