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Abstract. Given a symmetric positive definite matrix A, we compute a structured approxi-
mate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular
hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The
method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the mean-
time, positive semidefinite terms are automatically and implicitly added to Schur complements in
the factorization so that the approximation RTR is guaranteed to exist and be positive definite.
The approximate factorization can be used as a structured preconditioner which does not break
down. No extra stabilization step is needed. When A has an off-diagonal low-rank property, or
when the off-diagonal blocks of A have small numerical ranks, the preconditioner is data sparse and
is especially efficient. Furthermore, the method has a good potential to give satisfactory precondi-
tioning bounds even if this low-rank property is not obvious. Numerical experiments are used to
demonstrate the performance of the method. The method can be used to provide effective struc-
tured preconditioners for large sparse problems when combined with some sparse matrix techniques.
The hierarchical compression scheme in this work is also useful in the development of more HSS
algorithms.
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1. Introduction. This paper is concerned with robust and efficient structured
factorization and preconditioning for symmetric positive definite (SPD) matrices. In
iterative solutions of linear systems, it is often critical to find effective preconditioners.
Approximate factorizations such as incomplete LU and incomplete orthogonalization
are often used to provide preconditioners. For SPD matrices, incomplete Cholesky
factorizations have been shown to exist for some particular matrices such as M -
matrices and H-matrices [41, 42]. Some robust or stabilized methods have been
proposed for general SPD matrices (see, e.g., [1, 7, 8, 37]).

Given a dense SPD matrix A, we propose a method to compute a structured
approximate Cholesky factorization up to a user-specified accuracy. The factoriza-
tion can be used as an efficient approximate direct solver with reasonable accuracy
or as a robust and effective preconditioner. The factorization uses off-diagonal block
compression or rank-revealing orthogonal decompositions. In the meantime, the off-
diagonal compression causes certain positive semidefinite matrices to be automatically
and implicitly added to Schur complements. That is, the approximate Schur comple-
ments differ from the exact ones by positive semidefinite terms which are related to
the information dropped in the compression (see, e.g., (2.7)). We call such a robust-
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ness technique Schur compensation, and the factorization method Schur-compensated
factorization, named in a similar way to the techniques of diagonal compensation and
diagonally compensated factorization [2, 8], where some positive off-diagonal entries
are replaced by zeros and their original values are added to the diagonal.

Our preconditioner uses semiseparable structured matrices. Semiseparable matri-
ces have attracted a lot of interests in the recent years, and are very useful in solving
some linear systems, eigenvalue problems, PDEs, integral equations, and many more
[4, 9, 14, 21, 25, 26, 30, 34, 40, 45]. See [46] for a bibliography. Methods based on
semiseparable matrices exploit a low-rank property; that is, appropriate off-diagonal
blocks have small (numerical) ranks (based on a reasonable tolerance) and can be
compressed. Here, we introduce robustness techniques into semiseparable matrix fac-
torization or preconditioning. That is, we compute a structured approximate factor-
ization A ≈ RTR with Schur compensation, where R is an upper triangular matrix in
hierarchically semiseparable (HSS) form [20, 48]. The HSS representation has a nice
hierarchical tree structure called an HSS tree. Our factorization is conducted along
the traversal of a given HSS tree. The Schur compensation guarantees that RTR is
positive definite independent of the compression tolerance. No extra stabilization step
is needed to avoid breakdown. The structured approximate factorization can then be
used as a robust preconditioner. Similar robustness techniques have been proposed in
[6] in terms of hierarchical matrices. An algorithm using sequentially semiseparable
(SSS) matrices [21] is also developed in [32] without related analysis.

Our HSS preconditioner is very efficient and effective for rank-structured prob-
lems where dense off-diagonal blocks have relatively small numerical ranks or have
decaying singular values. It only costs O(n2) flops to compute the approximate HSS
factorization and O(n) to apply the preconditioner to a vector, where n is the order of
the matrix. The HSS preconditioner needs only O(n) storage or is data sparse even if
A is dense. By dropping information in the off-diagonal compression, the method both
improves the reliability and reduces the cost of the factorization. The factorization
can also be used as an approximate direct solver with a reasonable accuracy.

Furthermore, the preconditioning technique has a good potential to still perform
well even if the low-rank property is not obvious. The preconditioned matrix has
significantly better condition than the original one, in general, even if we use a rela-
tively large tolerance or manually specify a small numerical rank when building the
preconditioner. See, e.g., Figure 2.1.

In addition, with this HSS algorithm, it is possible to develop structured sparse
factorization methods which fully take advantage of sparse matrix techniques. For
example, we can use the HSS factorization as a kernel routine for the dense fill-
in in the multifrontal method [24] together with nested dissection [27]. Structured
sparse solvers based on this idea are useful for solving some discretized PDEs [4, 5,
16, 30, 39, 47], where the fill-in in the factorization of the discretized matrix has
the low-rank property. (Such HSS-based sparse solvers are generally restricted to
some two-dimensional (2D) problems, since the special low-rank block structure in
HSS representations limits the effective application of HSS matrices to only one-
dimensional (1D) problems in general.)

The remaining sections are organized as follows. In section 2, the ideas of Schur-
compensated factorization and preconditioning based on off-diagonal compression are
discussed and analyzed. In section 3, we briefly review HSS structures. Section 4
presents the algorithm for general multiple block HSS factorization with Schur com-
pensation. Numerical experiments are provided in section 5. We test dense interme-
diate matrices in the factorizations of some ill-conditioned discretized PDEs. Section
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6 gives some concluding remarks.

2. Schur-compensated factorization and preconditioning based on off-
diagonal compression. Compression of off-diagonal blocks is essential for the effec-
tiveness of semiseparable structures and their operations. In this section, we provide
the fundamental ideas of our preconditioning which uses structured approximate fac-
torization with Schur compensation. For convenience, our discussions concentrate on
real matrices, but they can be easily extended to complex ones.

2.1. Block compression. Here, by the compression of an n1 × n2 block Ω, we
mean an approximate factorization of Ω which reveals its numerical rank r. Such an
approximate factorization can be a skeleton approximation [29, 44], a τ -accurate SVD
(SVD with an absolute or relative tolerance τ for the singular values), a rank-revealing
QR (RRQR) factorization, etc. In this paper, we mainly employ RRQR, although we
use τ -accurate SVD in presenting the basic idea. Many RRQR algorithms have been
developed [17, 18, 19, 31, 38]. As an example, the QR with column pivoting method
[17, 28] computes the following factorization after k steps:

Q(k)ΩΠ(k) =

(
R

(k)
11 R

(k)
12

0 R
(k)
22

)
,

where Q(k) is a product of k Householder transformations, Π(k) consists of k permu-

tations, and R
(k)
11 is nonsingular and upper triangular. In the next step, the column

of R
(k)
22 with the largest norm and the smallest index is the pivot column. The fac-

torization stops when the norm of R
(k)
22 or the norm of the pivot column drops below

a given tolerance. Then k is the numerical rank r. (Sometimes, we may also set a
bound for k instead of using a tolerance.) Ω is now approximated by a compressed
form

Ω ≈ (Q(r)(1 : r, :))T︸ ︷︷ ︸
n1×r

( R
(r)
11 R

(r)
12

)(Π(r))T︸ ︷︷ ︸
r×n2

,

where Q(r)(1 : r, :) denotes the first r rows of Q(r). This procedure costs O(rn1n2)
flops. Similarly, a modified Gram–Schmidt process with column pivoting or other
more complicated procedures can also be used.

2.2. Schur-compensated factorization and preconditioning. We introduce
the preconditioner using block 2× 2 cases. Generalizations to more blocks are shown
in the remaining sections. Assume an n×n SPD matrix A has the following partition:

(2.1) A =

(
A11 A12

AT
12 A22

)
m

n−m
.

Without loss of generality, we assume m ≤ n/2. First, compute a Cholesky factoriza-
tion A11 = RT

11R11, where R11 is the (upper triangular) Cholesky factor of A11. The
traditional block Cholesky factorization of A proceeds as

(2.2) A =

(
RT

11 0
ΩT RT

22

)(
R11 Ω
0 R22

)
≡ RTR,

where Ω = R−T
11 A12, and R22 is the Cholesky factor of the Schur complement

S = A22 − ΩTΩ. In our approximate factorization, before R22 is computed, we
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first compute an SVD of the off-diagonal block Ω:

(2.3) Ω =
(
U Û

)( Σ

Σ̂

)(
V T

V̂ T

)
= UΣV T + Û Σ̂V̂ T = UΣV T +O(τ),

where Σ = diag(σ1, . . . , σr), Σ̂ = diag(σr+1, . . . , σm), and τ is a tolerance so that

(2.4) σ1 ≥ · · · ≥ σr ≥ τ ≥ σr+1 ≥ · · · ≥ σm.

(We can also use a relative tolerance τ , or can manually specify the numerical rank
r instead of τ .) The decomposition Ω̃ = UΣV T is the τ -accurate SVD of Ω, or the
compressed form of Ω. The Schur complement is now

(2.5) S = A22 − V Σ2V T − V̂ Σ̂2V̂ T .

To obtain a preconditioner, we approximate Ω by Ω̃ and then the Schur complement
is approximated by

(2.6) S̃ = A22 − VΣ2V T .

Clearly,

(2.7) S̃ = S + V̂ Σ̂2V̂ T = S +O(τ2) (Schur compensation).

That is, the Schur complement is automatically compensated with a positive semidef-
inite term V̂ Σ̂2V̂ T . The matrix U has orthonormal columns and does not par-
ticipate in the computation of S̃. That is, S̃ is computed by a low-rank update
A22 − (ΣV T )T (ΣV T ) when r is small.

We then compute the Cholesky factorization S̃ = R̃T
22R̃22 and obtain an approx-

imate factorization of A,

(2.8) A ≈ R̃T R̃, R̃ =

(
R11 UΣV T

0 R̃22

)
.

R̃ is thus guaranteed to exist so that R̃T R̃ is positive definite. The matrix R̃ can be
used as a preconditioner. The following proposition provides some results related to
the preconditioned matrix Ã = R̃−TAR̃−1.

Proposition 2.1. If R̃ in (2.8) is used as a preconditioner, then the precondi-
tioned matrix is given by

(2.9) R̃−TAR̃−1 =

(
I C
CT I

)
,

where C = (Û Σ̂V̂ T )R̃−1
22 satisfies ||C||2 < 1. This yields

||R̃−TAR̃−1 − I||2 = ||C||2,(2.10)

κ(R̃−TAR̃−1) =
1 + ||C||2
1− ||C||2

,(2.11)

where κ(R̃−TAR̃−1) is the 2-norm condition number of R̃−TAR̃−1.
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Proof. Let R be the exact Cholesky factor of A. The preconditioned matrix is

R̃−TAR̃−1 = (RR̃
−1

)T (RR̃
−1

) and

RR̃
−1

=

(
R11 R−T

11 A12

0 R22

)(
R−1

11 −R−1
11 (UΣV T )R̃−1

22

0 R̃−1
22

)

=

(
I [−(UΣV T ) +R−T

11 A12]R̃
−1
22

0 R22R̃
−1
22

)
=

(
I (Û Σ̂V̂ T )R̃−1

22

0 R22R̃
−1
22

)
.

Thus,

R̃−TAR̃−1 =

(
I C

CT R̃−T
22 [(Û Σ̂V̂ T )T (Û Σ̂V̂ T ) +RT

22R22]R̃
−1
22

)
,

where C = (Û Σ̂V̂ T )R̃−1
22 . According to (2.5) and (2.6)

(Û Σ̂V̂ T )T (Û Σ̂V̂ T ) +RT
22R22 = V̂ Σ̂2V̂ T + S = S̃.

Equation (2.9) then follows since S̃ = R̃T
22R̃22.

According to (2.9),
( I C

CT I

)
is equal to R̃−TAR̃−1, which is SPD. Thus,

I −CTC is SPD, since it is the Schur complement of the (1, 1) block in the Cholesky

factorization of the SPD matrix
( I C

CT I

)
. Therefore, ||C||2 < 1. Next, from (2.9),

(2.10) is obvious. Equation (2.11) follows from a simple result that the 2-norm con-

dition number of any matrix
( I C

CT I

)
, with ||C||2 < 1, is 1+||C||2

1−||C||2 . This result can

be found in, say, [23].
This proposition relates the error and the condition number in the preconditioning

to the off-diagonal singular values. In particular, this is clear in a special case where
A22 ≡ I in the original matrix A. In such a situation, we can actually show that
||C||2 = σr+1 using standard algebra (the details are omitted since this is only a
special example). This means that the error ||R̃−TAR̃−1 − I||2 is controlled by the
largest dropped singular value σr+1 in the off-diagonal compression, according to
(2.10). Furthermore, we then also have κ(R̃−TAR̃−1) = 1+σr+1

1−σr+1
. To illustrate the

effectiveness of this preconditioning technique in such a situation, we use an example
where the singular values σi decay linearly in (0, 1). See Figure 2.1. The decay
of κi = 1+σi

1−σi
is also shown. We see that the values of κi decay much faster than

those of σi. For a σi value which is not so small, κi is already reasonably close to
1. This means, by keeping only a small amount of the largest singular values in the
off-diagonal compression, we can still get satisfactory preconditioning results. Thus,
this preconditioning technique does not need the off-diagonal blocks to have strong
low-rank structure, and we can still manually set a small r. In the meantime, dropping
more singular values leads to better efficiency and storage.

In order for the results in this special case to apply to a general SPD matrix A
with A22 �= I, we can first block precondition A as(

I
R̄−1

22

)T

A

(
I

R̄−1
22

)
=

(
A11 A12R̄

−1
22

R̄−T
22 AT

12 I

)
,

where R̄22 is the Cholesky factor of A22. The previous compression process then
applies to this matrix.
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Fig. 2.1. Example: The preconditoned condition numbers κi =
1+σi
1−σi

decay faster than the off-

diagonal singular values σi, where in the left graph the condition numbers κi are scaled to be within
(0, 1] with κi/maxi(κi), and the right graph shows the actual κi.

Remark 2.2. The discussion here in terms of the block 2 × 2 situation does not
give a final analysis of the error and the condition number in the preconditioning.
However, Proposition 2.1 (especially in the special case where A22 ≡ I) serves as a
motivational example showing the potential of structured preconditioning. This block
2× 2 procedure uses factorizations of the diagonal blocks. It is possible to recursively
apply the procedure to the diagonal blocks so as to reduce the cost. In practice, the
procedure without the initial block diagonal preconditioning works very well, and the
initial preconditioning may be skipped. This significantly simplifies the generalization
of the block 2 × 2 procedure to multiple blocks. Although a similar analysis of the
condition number for the multiblock procedure (section 4) is not yet available, we can
demonstrate the effectiveness of preconditioning with numerical examples (section 5).

Remark 2.3. If RRQR (as in section 2.1), say, Ω = ( U Û )
( R

R̂

)
≈ UR instead

of τ -accurate SVD is used, then the Schur compensation step (2.7) becomes S̃ =
S + R̂T R̂. Or we can replace ΣV T and Σ̂V̂ T above by R and R̂, respectively. The
analysis above can be conducted similarly, with σr+1 being the largest singular value
of R̂. However, the numerical rank r may be different. This depends on the difference
between RRQR and τ -accurate SVD in how they decide the numerical rank. Since
generally RRQR is cheaper (in our actual algorithm in section 4), we use RRQR.

To generalize the block 2× 2 procedure to multiple blocks, we use HSS matrices
whose hierarchical structure is suitable for multilevel compression. First we briefly
review HSS structures.

3. Review of HSS structures. HSS representations [20, 48] are closely related
to SSS matrices and H-matrices [13, 33, 34, 35], and can be viewed as special cases
of H2-matrices [14, 36]. Existing HSS algorithms usually satisfy certain properties to
enable stability. For example, in the representation, the basis matrices of off-diagonal
blocks are generally made to have orthonormal columns.

A formal definition of HSS structures can be found in [48]. Here, we introduce
HSS matrices in terms of a special case of cluster trees [12, 14]. Let I be the index set
{1, 2, . . . , n}, and let T be a binary tree. The nodes of T are denoted by integers. Each
node i of T is associated with a subset of indices ti ⊂ I. We say T is a postordered
(binary) cluster tree if it satisfies the following:

1. T is a full binary tree. That is, each node i either has no child (called a leaf)
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or has two children (called a nonleaf node, and its children are denoted ci;1
and ci;2 (or sometimes c1 and c2) when no confusion is caused).

2. T is in its postordering. That is, the nodes are ordered in the way that a
nonleaf node i is ordered after its children, and ci;2 is ordered after ci;1.

3. ti �= ∅ for each node i. The leaves satisfy ∪all leaves i ti = I, and each nonleaf
node i satisfies tci;1 ∪tci;2 = ti and tci;1 ∩tci;2 = ∅. If i is the root node, ti = I.

Then an order n matrix H is said to be in an HSS form if there exist matrices
Di, Ui, Vi, Ri, Wi, and Bi (called HSS generators) associated with each node i of a
postordered cluster tree T satisfying

Di =

(
Dci;1 Uci;1Bci;1V

T
ci;2

Uci;2Bci;2V
T
ci;1 Dci;2

)
, Ui =

(
Uci;1Rci;1

Uci;2Rci;2

)
, Vi =

(
Vci;1Wci;1

Vci;2Wci;2

)
,

so that Di ≡ A|ti×ti (the submatrix of A corresponding to row index set ti and column
index set ti). Note that if i is the root, then Ri,Wi, and Bi are empty matrices and
Di ≡ A. The matrices Ui and Vi are defined recursively similarly to the nested cluster
basis in [12, 14]. The Ri,Wi, Bi generators for all nodes i and the Di, Ui, Vi generators
for all leaves are explicitly stored. T is then also called an HSS tree.

The following is a block 4× 4 HSS matrix example:

(3.1)

⎛
⎜⎜⎜⎝

(
D1 U1B1V

T
2

U2B2V
T
1 D2

) (
U1R1

U2R2

)
B3

(
WT

4 V T
4 WT

5 V T
5

)
(

U4R4

U5R5

)
B6

(
WT

1 V T
1 WT

2 V T
2

) (
D4 U4B4V

T
5

U5B5V
T
4 D5

)
⎞
⎟⎟⎟⎠ .

Figure 3.1(i) shows the corresponding HSS tree.

7

B3

B6 6
W2

R2R1

W1

B1

B2

3

42 51
U2, V2U1, V1

W5

R5R4

W4

B4

B5
U5, V5U4, V4

D1 D2 D4 D5

7

B3
6

R2R1 B1

3

42 51
U2, D2U1, D1

R5R4 B4

U5, D5U4, D4

(i) HSS tree for (3.1) (ii) Symmetric case satisfying (3.2)

Fig. 3.1. HSS tree for (3.1) with postordering of the nodes.

Remark 3.1. It is straightforward to verify that if an HSS matrix satisfies the
following conditions, then it is symmetric:

(3.2) Di = DT
i , Ui = Vi; Ri = Wj , Bi = BT

j (for sibling nodes i and j).

On the other hand, for a symmetric matrix A, an HSS form satisfying (3.2) can be
constructed [48]. Figure 3.1(ii) shows an HSS tree for a symmetric matrix example.

HSS representations are very useful in reflecting the rank structure of certain off-
diagonal blocks of a matrix. These off-diagonal blocks are A|ti×(I\ti) (and A|(I\ti)×ti),
called HSS blocks. They are block rows or columns without diagonal blocks and are
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defined hierarchically at different levels of splitting of the matrix following T . Figure
3.2 shows two levels of HSS blocks corresponding to the two levels of partitions in
(3.1). If all of these HSS blocks have small ranks (or numerical ranks), the matrix is
said to have a low-rank property. The maximum (numerical) rank of all the HSS blocks
is called the HSS rank of the matrix. Clearly, Ui and V T

i matrices are column and
row bases, respectively, of appropriate HSS blocks. This can be clarified as follows.
Without loss of generality, consider node i = 2 whose corresponding HSS block row
and column in (3.1) and Figure 3.2 are(
U2B2V

T
1 U2R2B3

(
WT

4 V T
4 WT

5 V T
5

) )
= U2

(
B2V

T
1 R2B3

(
WT

4 V T
4 WT

5 V T
5

) )
,⎛

⎝ U1B1V
T
2(

U4R4

U5R5

)
B6W

T
2 V T

2

⎞
⎠ =

⎛
⎝ U1B1(

U4R4

U5R5

)
B6W

T
2

⎞
⎠V T

2 .

We can see that U2 and V T
2 are the column and row bases of these two blocks,

respectively. More general and detailed discussions of similar block structures can
be found in [11] in terms of total cluster basis, together with detailed approximation
error analysis.

1

2

4

5

t1

t2

t4

t5

3

6

t3

t6

Fig. 3.2. Two levels of HSS block rows of a matrix, where the blocks are numbered following the
postordering of the nodes in Figure 3.1, and the row index sets t1, . . . , t6 satisfy t1∪t2 = t3, t4∪t5 =
t6, and t3 ∪ 66 = I ≡ {1, . . . , n}.

A compact HSS form has Ri,Wi, Bi generators with small sizes which are close to
the HSS rank. Generally, only linear storage is needed for a compact HSS form. Thus,
even if the original matrix is dense, the compact HSS form is data sparse. Matrix
operations with compact HSS forms are generally very efficient. For example, it only
needs linear complexity to multiply two compact HSS matrices and to solve compact
HSS systems. For a dense matrix with the low-rank property, fast algorithms exist to
convert the matrix into an HSS form [20, 48], or more generally, an H2 form [14].

4. Multiblock HSS factorization with Schur compensation. In this sec-
tion, we use the idea of Schur compensation in section 2 and extend the procedure to
an approximate Cholesky factorization of a general dense SPD matrix A, where the
Cholesky factor is in HSS form and can be used as a structured preconditioner.

In addition to all the previous HSS notation, the following is also used:
• First, for simplicity, we use RRQR in the compression. We also simply use
R instead of R̃ to denote the approximate Cholesky factor of A so that
A ≈ RTR.

• For an index set ti ⊂ I, let tci ∪ ti ∪ tri = I, where all indices in tci are smaller
than those in ti, and all indices in tri are larger than those in ti.

• A|ti×tj is the submatrix of A with row index set ti and column index set tj .
Thus in R, blocks R|tci×ti

and R|ti×tri
are the (upper) HSS off-diagonal block

column and row, respectively, associated with node i (see Figure 4.2).
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• The place of A|ti×tri
is used to store R|ti×tri

. After the RRQR factorization

of R|ti×tri
, the R-factor is still stored in A|ti×tri

with row index set t̂i. Also,

A|tri×tri
is used to store the (approximate) Schur complement. With these

storage arrangements, after each factorization step i (traversal of node i), the
matrix A is updated to A(i) from A(i−1) , where A(0) ≡ A. For example, with
R|ti×tri

stored in A(i−1)|ti×tri
, its RRQR looks like R|ti×tri

≈ UiA
(i)|t̂i×tri

.

• diag(. . . ) represents a block diagonal matrix formed by the blocks in (. . . ).

4.1. Algorithm overview. For a given HSS tree T , the factorization of A is
done along the postordering traversal of T . The block rows of R are computed and
the off-diagonal blocks are compressed. The major steps are outlined in Table 4.1,
and are briefly explained as follows.

Table 4.1

Outline of the factorization, where c1 and c2 denote the children of a nonleaf node i. (Rcj
denotes an HSS generator associated with cj and is not directly related to the notation R for the
approximate Cholesky factor of A.)

Stage Leaf node i Nonleaf node i

Elimination compute a block row: Di,R|ti×tr
i

R|tc1×trc1 ,R|tc2×trc2 =⇒ R|ti×tri

Compression

�

�

�

�

from previous nodes from elimination stage

Θi ≡ ( (R|tc
i
×ti)

T R|ti×tr
i

)

⇓ ignore orthonormal bases
�
�

�
	Ωi

⇓ QR
�

�

�

�
Ωi ≈ UiĀi

�

�

�

�
Ωi ≈

(
Rc1

Rc2

)
Āi

Schur complement if i is a left node, then form A(i)|ti+1×tr
i
for the next leaf i+1

There is an elimination step associated with each leaf i to compute a block row
of R. The block row of R corresponding to a nonleaf node i is available from the
child blocks. In the compression stage, the HSS block column R|tci×ti and HSS block
row R|ti×tri

are put together and compressed. Since the off-diagonal blocks involve
existing compressed blocks, any previously computed orthonormal bases are ignored
in further compression. We also maintain a compressed form of the contribution of
existing off-diagonal blocks of R to Schur complements. A Schur complement is only
partially formed with the portion corresponding to the next leaf explicitly computed.

4.2. A block 4 × 4 example. Before presenting the general algorithm, we
first show an example. We demonstrate the procedure of factorizing A so that the
(approximate) Cholesky factor R is a block 4× 4 HSS matrix. According to Remark
3.1, we can assume the HSS form of R to be

(4.1) R =

⎛
⎜⎜⎜⎝

D1 U1B1U
T
2 U1R1B3R

T
4 U

T
4 U1R1B3R

T
5 U

T
5

D2 U2R2B3R
T
4 U

T
4 U2R2B3R

T
5 U

T
5

D4 U4B4U
T
5

0 D5

⎞
⎟⎟⎟⎠ ,
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whose HSS tree is in Figure 3.1(ii), except that the tree is only used for the block
upper triangular part of R. Based on the tree traversal we have the following steps.

(a) Node 1. First, we compute a Cholesky factorization A|t1×t1 = DT
1 D1, and

let Ω1 ≡ R|t1×tr1
= D−T

1 A|t1×tr1
. Compress it by a RRQR factorization Ω1 ≈

U1A
(1)|t̂1×tr1

, where U1 has orthonormal columns. Then A is approximated by

A ≈
(

DT
1

(A(1)|t̂1×tr1
)TUT

1 I

)(
D1 U1A

(1)|t̂1×tr1

A(1)|tr1×tr1

)
,

where A(1)|tr1×tr1
= A|tr1×tr1

− (A(1)|t̂1×tr1
)TA(1)|t̂1×tr1

is the (approximate) Schur com-

plement. A(1)|tr1×tr1
is not fully formed. Instead, since node 1 is immediately followed

by a leaf (node 2), only A(1)|t2×tr1
, the block corresponding to node 2, is explicitly

formed with a low-rank update. That is, let Y1 = A(1)|t̂1×tr1
, and partition it as

( Y1,1 Y1,2 ) ≡ ( A(1)|t̂1×t2
A(1)|t̂1×tr2

), so that

(4.2) A(1)|t2×tr1
= A|t2×tr1

− Y T
1,1Y1.

(b) Node 2. Note A(1)|t2×tr1
= ( A(1)|t2×t2 A(1)|t2×tr2

). Compute a Cholesky

factorization A(1)|t2×t2 = DT
2 D2, and let R|t2×trr = D−T

2 A(1)|t2×tr2
. Then

A ≈

⎛
⎝ DT

1

(A(1)|t̂1×t2
)TUT

1 DT
2

(A(1)|t̂1×tr2
)TUT

1 (R|t2×trr
)T I

⎞
⎠
⎛
⎝ D1 U1A

(1)|t̂1×t2
U1A

(1)|t̂1×tr2
D2 R|t2×trr

A(1)|tr2×tr2

⎞
⎠ ,

where A(1)|tr2×tr2
= A|tr2×tr2

− (A(1)|t̂1×tr2
)TA(1)|t̂1×tr2

− (R|t2×trr
)TR|t2×trr

is not explic-
itly formed. At this point, the block to be compressed is

Θ2 ≡
(
(R|t1×t2)

T R|t2×trr

)
=
(
(A(1)|t̂1×t2

)TUT
1 R|t2×trr

)
(4.3)

=
(
(A(1)|t̂1×t2

)T R|t2×trr

)
diag(U1, I).

Since diag(U1, I) has orthonormal columns, it can be ignored in the compression of
Θ2. That is, we need only compute the following compression:

(4.4) Ω2 ≡
(
(A(1)|t̂1×t2

)T R|t2×trr

)
≈ U2

(
(A(2)|t̂1×t̂2

)T A(2)|t̂2×tr2

)
.

Set B1 ≡ A(2)|t̂1×t̂2
. Now, A becomes

A ≈

⎛
⎝ DT

1

U2B
T
1 U

T
1 DT

2

(A(2)|t̂1×tr2
)TUT

1 (A(2)|t̂2×tr2
)TUT

2 I

⎞
⎠
⎛
⎜⎝ D1 U1B1U

T
2 U1A

(2)|t̂1×tr2

D2 U2A
(2)|t̂2×tr2

A(2)|tr2×tr2

⎞
⎟⎠ ,

where A(2)|t̂1×tr2
≡ A(1)|t̂1×tr2

, and A(2)|tr2×tr2
is a compact approximation to A(1)|tr2×tr2

:

A(2)|tr2×tr2
= A|tr2×tr2

−
(

(A(2)|t̂1×tr2
)T (A(2)|t̂2×tr2

)T
)( A(1)|t̂1×tr2

A(2)|t̂2×tr2

)
.

Since the next node (node 3) is not a leaf, A(2)|tr2×tr2
is not explicitly formed.
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(c) Node 3. Node 3 has child nodes 1 and 2. We need to compress R|t3×tr3
, which

is available from appropriate subblocks of R|t1×tr1
and R|t2×tr2

(Figure 3.2) as

Θ3 ≡ R|t3×tr3
=

(
U1A

(2)|t̂1×tr2

U2A
(2)|t̂2×tr2

)
= diag(U1, U2)

(
A(2)|t̂1×tr2

A(2)|t̂2×tr2

)
.

Further compression is then done with previous U bases ignored by a QR factorization

Ω3 ≡
(

A(2)|t̂1×tr2

A(2)|t̂2×tr2

)
≈
(

R1

R2

)
A(3)|t̂3×tr3

.

Let Y3 = A(3)|t̂3×tr3
. Then A(2)|tr2×tr2

is approximated by a more compact A(3)|tr3×tr3
=

A|tr2×tr2
− Y T

3 Y3. (Note that tr2 = tr3, since they are both equal to t6 ≡ t4 ∪ t5. More

generally, trc2 = tri for the right child c2 of i.) Clearly, Y T
3 Y3 represents the accumulated

contribution from previous eliminations to the Schur complementA(3)|tr3×tr3
. Partition

Y3 as ( Y3,1 Y3,2 ) ≡ ( A(3)|t̂3×t4
A(3)|t̂3×t5

). Since the next node (node 4) is a
leaf and t3 = t4 ∪ tr4, we explicitly form

(4.5) A(3)|t4×tr3
= A|t4×tr3

− Y T
3,1Y3.

Note that after this step,

U3 =
( U1R1

U2R2

)
=
( U1

U2

)( R1

R2

)
is implicitly available and has orthonormal columns, since both factors have orthonor-
mal columns.

(d) Node 4. We proceed similarly. One thing we point out is the Schur comple-
ment computation. After the elimination of node 4, the approximate Schur comple-
ment is A|t5×t5 − Y T

3,2Y3,2 − (A(4)|t̂4×t5
)TA(4)|t̂4×t5

. We compute a QR factorization( Y3,2

A(4)|t̂4×t5

)
≈ Q̃4Y4, so that this Schur complement is approximated by

(4.6) A(4)|t5×tr4
≡ A(4)|t5×t5 = A|t5×t5 − Y T

4 Y4.

Again, Y T
4 Y4 represents the accumulated update from previous elimination steps.

(e) Other nodes. The factorization and compression proceed along the HSS tree.
After the compression associated with node 6 is done, we have a factorization A ≈
RTR, where R has the form (4.1). The approximation to each Schur complement
differs from the exact one by a positive semidefinite term so that R is guaranteed to
exist and RTR is always positive definite.

4.3. General factorization algorithm. An important idea of the algorithm is
that the compressed forms of previously computed off-diagonal blocks of R also par-
ticipate in later compression steps. For example, in (4.3), R|t1×t2 is previously com-
pressed as U1A

(1)|t̂1×t2
so that the current compression step (4.4) uses (A(1)|t̂1×t2

)T

instead of (R|t1×t2)
T . To clearly keep track of previously compressed blocks and to

help later steps use earlier compression information as much as possible, we introduce
a definition, in a way similar to the consideration of the total cluster basis in [11].

Definition 4.1. For a node i of a postordered binary tree T , let par(i) be its
parent and sib(i) be its sibling. The set of predecessors of i is defined to be

pred(i) =

{
{i} if i is the root of T ,
{i} ∪ pred(par(i)) otherwise.
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A visited set Vi (of visited nodes whose siblings have not been visited) is defined to be

Vi = {j : j is a left node and sib(j) ∈ pred(i)}.

i

j1

j2

1 2

3

Fig. 4.1. Visited set Vi (formed by the solid nodes).

See Figure 4.1. For a node i of the HSS tree T , the visited set Vi is used to
form tci and then the compressed form of (R|tci×ti)

T
in Θi in Table 4.1. That is, the

compressed form of R|tj×ti for each j ∈ Vi contributes to R|tci×ti . See, e.g., Figure
4.2.

Remark 4.2. We can conveniently obtain the elements of Vi with the aid of a stack.
For step j = 1, 2, . . . along the factorization/tree traversal, if j is a left node, push
j onto the stack. Otherwise, pop an element from the stack. Then right after step
j = i − 1, the elements of the stack form Vi. Thus, the actual implementation (see
the link in section 5) of Algorithm 1 stores Ωi (with orthonormal basis ignored in Θi)
with a stack. However, for the convenience of presenting the algorithm, we assume
the actual elements of Vi to be

(4.7) Vi = {j1, j2, . . . , js : j1 < · · · < js},

where s is the cardinality of Vi and depends on i.

4.3.1. Elimination—computation of a block row of R. First, for a leaf
node i, the Schur complement A(i−1)|tri−1×tri−1

is partially available after the previous

i− 1 elimination steps. That is, A(i−1)|ti×tri−1
, the first block row of A(i−1)|tri−1×tri−1

,

is explicitly formed. (This is an induction process. See (4.22).) Notice tri−1 = ti ∪ tri .
Compute a Cholesky factorization, and get an HSS off-diagonal block row as

(4.8) A(i−1)|ti×ti = DT
i Di, R|ti×tri

= D−T
i A(i−1)|ti×tri

.

If i is a nonleaf node, R|ti×tri
is available from the children of i.

4.3.2. Compression. Next, we need to form Θi ≡ ( (R|tci×ti)
T R|ti×tri

) and
to compress it. For node i, the HSS block column R|tci×ti can be (implicitly) formed
by stacking all the blocks R|tj×ti for j ∈ Vi. See Figure 4.2. Since all j ∈ Vi have

been visited in previous compression steps, R|tj×trj
≈ UjA

(j)|t̂j×trj
due to induction

(see (4.14) and (4.18)). Thus, each R|tj×ti is in a compressed form

(4.9) R|tj×ti ≈ UjA
(j)|t̂j×ti

,
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A(i)

i

c

T i

Vij1

Vij2

(R|ti  x ti)c R|ti  x tir

R|ti  x ti

i

Uj
T

Uj

i

Fig. 4.2. Forming Θi and Ωi for a leaf i.

where Uj has orthonormal columns. Thus, after step i− 1,

(R|tci×ti)
T =

(
(R|tj1×ti)

T · · · (R|tjs×ti)
T
)

(4.10)

≈
(
(Uj1A

(i−1)|t̂j1×ti
)T · · · (UjsA

(i−1)|t̂js×ti
)T
)

=
(
(A(i−1)|t̂j1×ti

)T · · · (A(i−1)|t̂js×ti
)T
)
ŨT
i ,

where Ũi = diag(Uj1 , . . . , Ujs) has orthonormal columns. We can then write a repre-
sentation for Θi, depending on whether or not i is a leaf.

(a) U generators. If i is a leaf, (4.10) yields

Θi ≡
(
(R|tci×ti)

T R|ti×tri

)
(4.11)

≈
((

(A(i−1)|t̂j1×ti)
T · · · (A(i−1)|t̂js×ti)

T
)

D−T
i A(i−1)|ti×tri

)
diag(ŨT

i , I).

Since Ũi has orthonormal columns, the compression can be effectively done on

(4.12) Ωi ≡
((

(A(i−1)|t̂j1×ti
)T · · · (A(i−1)|t̂js×ti

)T
)

D−T
i A(i−1)|ti×tri

)
.

See Figure 4.2. Compute an RRQR factorization

Ωi ≈ UiĀi ≡ Ui

( (
(A(i)|t̂j1×t̂i

)T · · · (A(i)|t̂js×t̂i
)T
)

A(i)|t̂i×tri

)
,

where Āi is partitioned following the column partition in (4.12).
Notice that, at this point,

(R|tci×ti)
T ≈ Ui

(
(A(i)|t̂j1×t̂i

)T · · · (A(i)|t̂js×t̂i
)T
)
ŨT
i ,(4.13)

R|ti×tri
≈ UiA

(i)|t̂i×tri
.(4.14)

Equation (4.14) confirms the induction as in (4.9). Equations (4.13)–(4.14) will par-
ticipate in later compression. (Equations (4.13)–(4.14) also hold for a nonleaf node i,
as verified below.)

(b) R generators. If i is a nonleaf node, let c1 and c2 be the two children of
i with c1 < c2. Clearly, c2 = i − 1. To form Θi, we merge appropriate subblocks
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i
rR|tc1 x tic1

c2 rR|tc2 x ti

c(R|ti  x tc1)
T

(R|ti  x tc2)
Tc

R|tc1 x tc2

c1
c2

Bc1

i

Fig. 4.3. Forming Θi and Ωi for a nonleaf node i, where c1 and c2 are the children of i.

of Θc1 = ( (R|tcc1×tc1
)T R|tc1×trc1

) and Θc2 = ( (R|tcc2×tc2
)T R|tc2×trc2

), which,
again by induction, are in compressed forms. For example, afterstep c2 = i− 1,

(4.15) R|tc1×trc1
≈ Uc1A

(i−1)|t̂c1×trc1
, R|tc2×trc2

≈ Uc2A
(i−1)|t̂c2×trc2

.

Including previous compression results (4.13)–(4.14) from induction (with appro-
priate indices such as in (4.15), and with existing U and Ũ bases ignored), we have

(4.16) Ωi =

( (
(A(i−1)|t̂j1×t̂c1

)T · · · (A(i−1)|t̂js×t̂c1
)T
)

A(i−1)|t̂c1×tri(
(A(i−1)|t̂j1×t̂c2

)T · · · (A(i−1)|t̂js×t̂c2
)T
)

A(i−1)|t̂c2×tri

)
,

where Vc1 = Vi, Vc2 = Vi ∪ {c1} are used. See Figure 4.3. The compression is done
with an RRQR factorization

(4.17) Ωi ≈
(
Rc1

Rc2

)
Āi ≡

(
Rc1

Rc2

)((
(A(i)|t̂j1×̂ti)

T · · · (A(i)|t̂js×̂ti)
T
)

A(i)|t̂i×tri
)
,

where the row and column partitions of the factors follow those in (4.16). We point
out that (4.15)–(4.17) indicate

(4.18) R|ti×tri
≈ diag(Uc1 , Uc2)

(
Rc1

Rc2

)
A(i)|t̂i×tri

= UiA
(i)|t̂i×tri

,

where A(i)|t̂i×tri
will appear in later compression (see (4.9) for the induction). Simi-

larly, we can verify that (R|tci×ti)
T also has a form as in (4.13).

(c) B generators. In addition, notice that in the compression step for node c1, the
block R|tc1×tc2

≈ Uc1A
(c1)|t̂c1×tc2

. In the compression step for node c2, this block is

further compressed (with Uc1 basis ignored) as (A(c1)|t̂c1×tc2
)T ≈ Uc2(A

(c2)|t̂c1×t̂c2
)T .

(This is part of the compression of Ωc2 .) Thus,

(4.19) R|tc1×tc2
≈ Uc1Bc1U

T
c2 with Bc1 = A(c2)|t̂c1×t̂c2

,

where Bc1 is the B generator associated with node c1 in the HSS form (Figure 4.3).
See (4.4) for an example.
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4.3.3. Schur complement computation. According to the postordering of
the HSS tree, if i is a left node, i+1 must be a leaf. Then an elimination step (4.8) is
needed for i+1. Thus, we partially form the new Schur complement A(i)|tri×tri

. That

is, we compute A(i)|ti+1×tri
, the block row of the Schur complement corresponding to

node i+ 1. Clearly,

(4.20) A(i)|ti+1×tri
= A|ti+1×tri

− (R|tci+1×ti+1)
TR|tci+1×tri

.

Such a direct computation is generally costly. Thus, we maintain a compressed form

(4.21) R|tci+1×tri
≈ QiYi

for each left node i, where Qi has orthonormal columns and is not stored, and Yi is
either set to be Yi = A(i)|t̂i×tri

when i ∈ pred(1) or is obtained approximately with

the compression (4.23) below. In this way, (4.20) is replaced by a low-rank update

(4.22) A(i)|ti+1×tri
≈ A|ti+1×tri

− Y T
i,1Yi,

where Yi = (Yi,1 Yi,2 ) so that QiYi,1 ≈ R|tci+1×ti+1 . See (4.2), (4.5), and (4.6) for
examples.

Here, Yi is quickly computed along the traversal of the tree. This is an induction
process. When i = 1, let Qi ≡ U1, Y1 ≡ A(1)|t̂1×tr1

(see the first step in section 4.2).

For a general left node i, assume j + 1 is the largest leaf before i + 1 (thus, j is the
left node right before j + 1), and R|tcj+1×trj

= QjYj . Then tri = trj+1 and

R|tci+1×tri
=

(
R|tcj+1×trj+1

R|tj+1×trj+1

)
=

(
QjYj,2

Uj+1A
(j+1)|t̂j+1×trj+1

)
=

(
Qj

Uj+1

)(
Yj,2

A(j+1)|t̂j+1×trj+1

)
.

Since Qj and Uj+1 have orthonormal columns, we need only compress the following
matrix with a QR factorization:

(4.23)

(
Yj,2

A(j+1)|t̂j+1×trj+1

)
≈ Q̃iYi,

so that (4.21) holds with Qi = diag(Qj , Uj+1)Q̃i. The induction then continues. Then
the Schur complement is partially formed with the low-rank update (4.22). Y T

i,1Yi

represents the accumulated update from the previous elimination steps to the portion
A(i)|ti+1×tri

of the current Schur complement. Yj is not needed after Yi is computed.

In addition, it is easy to verify that if i ∈ pred(1), we can simply set Yi = A(i)|t̂i×tri
without using (4.23).

Also, with the compression (4.21), the entire Schur complement A(i)|tri×tri
=

A|tri×tri
− (R|tci+1×tri

)TR|tci+1×tri
is approximated by A|tri×tri

− Y T
i Yi. This means a

positive semidefinite term is implicitly added to the Schur complement, just like the
Schur compensation in section 2. The submatrix A|tri×tri

is never touched before step
i+ 1. Thus, this factorization can be viewed as a structured left-looking method [3].

4.4. Algorithm and complexity.

4.4.1. Algorithm. We summarize the procedure in Algorithm 1. Two points
are essential for the efficiency of the algorithm. First, in both the off-diagonal com-
pression and the Schur complement computations, compressed forms are used as much
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as possible, with appropriate orthonormal basis matrices ignored. Next, A is accessed
locally or block rowwise, and Schur complements are formed partially with the accu-
mulated update from previous elimination steps in a compressed form.

The algorithm returns an approximate Cholesky factor R in HSS form. When R
is used as a preconditioner, upper and lower triangular HSS systems are solved. The
forward (backward) substitution can be done by the forward (backward) traversal of
the HSS tree. These solutions cost O(rn) flops when A has HSS rank r. The details
are similar to the solvers in [43].

Algorithm 1. (HSS Cholesky factorization)
procedure hss chol
for i = 1, 2, . . . do
1. if i is a leaf then

(a) Compute the Cholesky factorization A(i−1)|ti×ti = DT
i Di

(b) Use Vi in Remark 4.2 and form

Ωi =
((

(A(i−1)|t̂j1×ti
)T · · · (A(i−1)|t̂js×ti

)T
)

D−T
i A(i−1)|ti×tr

i

)
(c) QR factorize Ωi ≈ Ui

((
(A(i)|t̂j1×t̂i

)T · · · (A(i)|t̂js×t̂i
)T
)

A(i)|t̂i×tr
i

)
2. else

if i �= root node then

(a) Let c1 and c2 be the children of i. Use Vi in Remark 4.2 and form

Ωi =

((
(A(i−1)|t̂j1×t̂c1

)T · · · (A(i−1)|t̂js×t̂c1
)T
)

A(i−1)|t̂c1×tr
i(

(A(i−1)|t̂j1×t̂c2
)T · · · (A(i−1)|t̂js×t̂c2

)T
)

A(i−1)|t̂c2×tr
i

)

(b) QR factorize Ωi ≈
(Rc1

Rc2

)((
(A(i)|t̂j1×t̂i

)T · · · (A(i)|t̂js×t̂i
)T
)

A(i)|t̂i×tr
i

)
end if

Bc1 = A(c2)|t̂c1×t̂c2
end if

3. if i+ 1 is a leaf then
(a) if i is in the path from node 1 to the root then

Set Yi = A(i)|t̂i×tri
else

Compute Yi as in (4.23)
end if

(b) Form a part the Schur complement A(i)|ti+1×tri
as in (4.22)

end if

end for

end procedure

4.4.2. Complexity. The complexity of the HSS factorization is O(rn2) flops if
the HSS rank of A is r. For simplicity, we assume the HSS tree T is a perfect binary
tree with 2k − 1 nodes, and any bottom level HSS block row dimension is a constant
m = O(r). Since there are k leaves, km = n.

Clearly, the operations (compression, possible diagonal factorization, and pos-
sible Schur complement calculation) associated with each node cost O(r2n) flops.
Thus, similarly to [11], the O(rn2) complexity can be basically understood follow-
ing the idea that the HSS tree has O(k) = O(nr ) nodes, each corresponding to
O(r2n) flops. This holds even if, for each leaf i, we directly compress the dense block
Θi ≡

(
(R|tci×ti)

T R|ti×tri

)
so as to make the procedure simpler. (We can similarly

simplify the compression for nonleaf nodes.) However, in our algorithm, (R|tci×ti)
T
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appears as a compressed form due to early compression steps. With orthonormal
bases ignored, only Ωi needs to be compressed. This enables further savings. See the
beginning of section 4.3 and Figures 4.2–4.3. To illustrate the savings, we look at a
block 4×4 example as in section 4.2. Assume all HSS blocks have ranks r = m

4 . Then
the compression costs about 43m3 flops in total if dense Θi is used for all leaves i,
while about 27m3 if Ωi is used as in our algorithm. Interested readers can derive how
much is saved by using Ωi instead of dense Θi.

Similarly, the storage for the U,R, and B generators associated with each node
is O(r2), so that the total storage for all O(k) = O(nr ) nodes is O(rn). The original
matrix A is used to store the intermediate matrices.

4.5. Connection to some existing methods and application to sparse
problems. The HSS factorization algorithm has some attractive features similar to
the hierarchical compression algorithm with H2-matrices in [12]. For example, the U
bases are in nested forms with orthonormal columns, and the matrix A does not have
to be kept in storage entirely since it is only accessed block rowwise. The compression
here also has a hierarchical nature (bottom-up traversal of the HSS tree), but is
designed in a way so that A is only locally accessed. The hierarchical compression
scheme in this work is also useful in developing more HSS algorithms.

The algorithm focuses on dense SPD matrices instead of sparse ones, and costs
O(n2) for matrices with the low-rank property. This can also be understood by
noticing that O(n2) entries have to be accessed. However, it is possible to reduce the
complexity if additional information about A is known, say, when A is from integral
equations or Toeplitz problems so that we do not need to access the matrix entries in
the fashion of a standard factorization.

In addition, it is possible to improve the constant of the flop count by using the
recursive techniques in [10, 12]. We may also design a factorization algorithm with
top-down traversal of the HSS tree. For example, for A in (2.1), the top level off-
diagonal block A12 is compressed, and then A11 and A22 are recursively processed.
The total factorization cost can be reduced fromO(n2) to O(n logn) if the compression
of any order-m off-diagonal block only costs O(m). This is possible when additional
information on the matrix is available. However, it is not clear if these recursive
procedures can guarantee the existence of the positive definite approximation RTR.

In terms of large sparse problems, an important application of our HSS factor-
ization algorithm is to factorize dense intermediate matrices in a sparse factorization
framework. During the direct factorization of some sparse discretized PDEs, the dense
Schur complements or fill-in have the low-rank property [4, 5, 16, 30, 39, 47, etc.]. By
taking advantage of this, some H-LU factorization algorithms have been developed,
with complexity O(N logN) [16] or O(N log2 N) [15, 30], where N is the order of the
sparse matrix. The factors given by these algorithms are H-matrices with zero blocks
and Rk-blocks [33]. We can use the HSS algorithm in this paper to handle 2D sparse
discretized matrices from a different point of view and with robustness enhancement.
That is, the dense HSS factorization is used as an internal kernel routine in some
sparse matrix factorizations. In this way, we can fully take advantage of sparse ma-
trix techniques such as the multifrontal method [24] and nested dissection [27]. The
resulting robust structured sparse factorization method has complexity O(N logN).
(Such structured sparse factorization is generally restricted to 2D problems, since HSS
representations are generally only useful for 1D problems due to the special HSS block
structure.) The details are expected to appear in future work. Since the focus of this
paper is dense matrices, the reader is referred to [47] for an example of using dense
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HSS algorithms in a multifrontal framework.

5. Numerical experiments. We use numerical examples to demonstrate the
effectiveness of preconditioning with our method. Algorithm 1 is implemented in both
MATLAB and FORTRAN 90, and the codes are available from

http://www.math.purdue.edu/∼xiaj/work/hsschol.

We test the HSS preconditioner on dense fill-in arising from the factorizations of
some sparse discretized PDE problems. Note that each matrix A we test is a dense
intermediate matrix instead of the entire sparse discretized matrix A.

Example 1. Consider the following problem defined on the unit square:

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
= f(x, y)

with
( a(x, y) b(x, y)

b(x, y) c(x, y)

)
= αI + ddT , where α > 0 and d is a unit vector. We assume a

mixture of Dirichlet and Neumann boundary conditions.
The problem is discretized on an n×n regular mesh with nested dissection ordering

of the mesh points. We look at a matrix A which is the last Schur complement
corresponding to the top level separator of nested dissection during the factorization
of the stiffness matrix A. The matrix A is dense and SPD and has small off-diagonal
numerical ranks. It is preconditioned with our HSS algorithm. In all the compression
we specify the maximum numerical rank r (see (2.4)) and denote the preconditioned
matrix by Ãr. If r = 0, then we have the regular block diagonal preconditioning. Table
5.1 shows that, for r as small as 3, the matrices Ãr after the HSS preconditioning are
very well conditioned. The cost of applying the HSS preconditioner to a vector is a
small multiple of n, and so is the storage of the preconditioner.

Table 5.1

Condition numbers before and after preconditioning dense Schur complements in Example 1

with d = (
√

2
2
,−

√
2

2
)T , where n = 200 and the bottom level block row dimensions m ≈ 5.

α 1 10−2 10−4 10−6 10−8

κ(A) 4.3× 102 5.7× 103 1.9× 105 4.6× 105 4.7× 105

κ(Ã0) 1.2× 102 1.1× 103 3.4× 103 8.3× 104 8.5× 104

κ(Ã2) 12.0 6.9 6.1× 102 1.9× 102 2.0× 102

κ(Ã3) 2.7 2.0 6.7 19.7 20.2

κ(Ã4) 1.6 1.0 2.0 3.4 3.4

κ(Ã5) 1.1 1.0 1.1 1.2 1.2

Example 2. Next, consider a linear elasticity equation

−(μΔu+ (λ+ μ)∇∇ · u) = f in Ω = (0, 1)× (0, 1),

u = 0 on ∂Ω,

where u is the displacement vector field, and λ and μ are the Lamé constants.
This PDE is very ill conditioned when λ/μ is large. The limit is known as the

incompressible limit, which is a very important situation in practical problems, and
for example, is associated with the mechanical behavior of elastomeric materials and
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plastic flow in metals. Without an effective preconditioner, iterative methods includ-
ing multigrid diverge or converge very slowly. Again, we use nested dissection on
a regular mesh and consider the last Schur complement A corresponding to the top
level separator in nested dissection. The preconditioning results are shown in Table
5.2. With a small r = 8, we get favorable conditioning which is much more satisfac-
tory than block diagonal preconditioning. Furthermore, the preconditioning results
are relatively insensitive to λ/μ. Or the preconditioner is very suitable for problems
where λ/μ is near the incompressible limit.

Table 5.2

Preconditioning dense Schur complements in Example 2, where n = 802 and the bottom level
block row dimensions m ≈ 8.

λ/μ 1 103 106 109 1012

κ(A) 6.9× 102 8.2× 104 8.1× 107 8.1× 1010 7.3× 1013

κ(Ã0) 1.9× 102 4.4× 102 1.1× 105 1.1× 108 9.0× 1010

κ(Ã8) 2.4 15.7 16.2 16.2 14.2

Example 3. We also test the preconditioner on the following time harmonic Maxwell
equation similar to a problem in [22]:

∇×∇×E− k2E = J in Ω,

E× n = 0 on ∂Ω,

where k ∈ R (k �= 0), J = (1, 1, 1), Ω = Ω0 \ Σ, Ω0 = (−1, 1)3, Σ = {y = 0, (x, z) ∈
(− 1

2 ,
1
2 )

2}, and n is the unit outer normal of ∂Ω.
The problem is discretized on a tetrahedral mesh. The discretized finite element

matrix A is not SPD, so we use AHA. Again, we consider a Schur complement A
corresponding to the top level separator in nested dissection. Here, k is related to
the wave number and is set to be 16. The dense matrix A has order n = 3947 and
condition number 4.8 × 109. In our HSS preconditioner, we use bottom level HSS
block row sizes m ≈ 123. Numerical results indicate that the maximum off-diagonal
numerical rank r is not very small when a small tolerance is used. Thus, instead, we
manually specify small r. Figure 5.1 shows the convergence of the conjugate gradient
method (CG) and preconditioned CG (PCG) with different r in building the HSS
preconditioners. The preconditioners still significantly improve the convergence. The
storage of each structured preconditioner is only a small portion of the storage of A.
For example, the preconditioners need only 6.9% and 12.3% of the storage of A for
r = 1

2m and 3
4m, respectively, for this particular matrix. The cost of generating the

preconditioner is insignificant as compared with the solution cost, and so is the cost
of preconditioning as compared with other costs in each PCG step.

Similar convergence behaviors are observed for different k, although a theoretical
justification is not yet available. This indicates, based on our new preconditioner,
that there is a good potential to develop an efficient and robust preconditioner for
PDEs with large wave numbers.

Remark 5.1. These examples are used to illustrate the potential of the HSS al-
gorithm in effectively preconditioning dense intermediate matrices during the direct
factorization of discretized PDEs. When the multifrontal method [24] is used together
with nested dissection, these dense matrices are frontal matrices associated with the
separators or interfaces. (Each Schur complement A chosen above is also the top level
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Fig. 5.1. Convergence of PCG for dense Schur complements arising in the factorization of
AHA in Example 3, where different numerical ranks r are used to build the HSS preconditioners.
Total solution costs are shown. Part of the left graph is zoomed in and shown in the right graph.

frontal matrix in the multifrontal factorization.) Thus, for sparse 2D discretized prob-
lems, HSS matrices are used to precondition dense matrices roughly corresponding to
1D separators. See also section 4.5. The off-diagonal numerical ranks of these dense
matrices may not be small enough, but we may still employ large compression rates
by manually setting r to be small. A comprehensive analysis is expected to be done
in future work.

Remark 5.2. In the examples, we have not considered issues such as advanced
discretization or smoothing techniques. These are expected to be included in our
future work when we apply the HSS algorithm to sparse problems as described in
section 4.5. In such a situation, we will be able to conduct an effective comparison of
the structured sparse factorization and other sparse methods such as multigrid.

6. Conclusions. This paper presents a structured approximate factorization
method with up to a user-specified accuracy for dense SPD matrices. After the fac-
torization, an approximate factor in compact HSS form is obtained. Positive semidef-
inite terms are automatically added to Schur complements in the factorization so that
the matrix is approximated by a factorized form which is guaranteed to be positive
definite. This leads to enhanced robustness. The factorization can be used as a robust
and effective preconditioner. Satisfactory preconditioning results can be achieved even
if the low-rank structure is not highly significant.
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