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Abstract. We study the rank structures of the matrices in Fourier- and Chebyshev-spectral
methods for differential equations with variable coefficients in one dimension. We show analytically
that these matrices have a so-called low-rank property, not only for constant or smooth variable
coefficients, but also for coefficients with steep gradients and/or high variations (large ratios in
their maximum-minimum function values). We develop a matrix-free direct spectral solver, which
uses only a small number of matrix-vector products to construct a structured approximation to
the original discretized matrix A, without the need to explicitly form A. This is followed by fast
structured matrix factorizations and solutions. The overall direct spectral solver has O(N log2 N)
complexity and O(N) memory requirement. Numerical tests for several important but notoriously
difficult problems show the superior efficiency and accuracy of our direct spectral solver, especially
when iterative methods have severe difficulties in the convergence.
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1. Introduction. Spectral methods have been extensively used for solving dif-
ferential equations due to their high order of accuracy, see [13, 3, 25, 26] and the
references therein. However, for problems with general variable coefficients, spectral
methods lead to full matrices. An effective approach is to use a low-order method
(finite differences or finite elements [22, 4, 11, 16]), or integration operator [9, 34], as a
preconditioner and to take advantage of the fact that the matrix-vector product from
a Fourier- or Chebyshev-spectral discretization can be performed in quasi-optimal
complexity. While this approach yields quasi-optimal complexity since lower-order
methods on the same grid usually provide optimal preconditioners, it can still be ex-
pensive (say, for multiple right-hand sides) and is generally not so robust as compared
with direct solvers using finite difference or finite element methods.

The aim of this paper is to develop fast direct spectral Galerkin methods for
solving differential equations with variable coefficients in one dimension. For the sake
of simplicity, we restrict our attention to the following equation:

(1.1) α(x)u− (β(x)ux)x = f(x), x ∈ (a, b),

where α(x), β(x), f(x) are given functions and α(x) ≥ 0, β(x) > 0. It will be clear
from the proofs that the results presented in this paper do not depend on the ellipticity,
and are actually applicable to a wide class of differential equations with variable
coefficients.

It is well known that when α(x), β(x) are constants or polynomials, spectral-
Galerkin methods with proper basis functions may lead to well-conditioned sparse
linear systems. However, when α(x), β(x) are general variable coefficients, a spectral
method for (1.1) leads a linear system Au = f with A dense and often ill conditioned.
When the order of the matrix N is large, the O(N3) operations and O(N2) storage
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required by common dense numerical linear algebra become overwhelmingly expen-
sive. Moreover, the dense matrix A is usually not explicitly available and it is costly
to form it. Thus, in traditional spectral methods, iterative methods are often used to
solve the resulting linear system, due to the fact that A can be quickly multiplied with
vectors. However, when the coefficients have steep gradients and/or large variations
or are degenerate, iterative methods often converge very slowly or do not converge at
all.

On the other hand, many scientific and engineering problems often lead to differ-
ential equations with variable coefficients with steep gradients and/or large variations,
or even degenerate coefficients (i.e., β(x) = 0 at some points). Examples include inter-
face problems such as Cahn-Hilliard equations or phase-field systems with a concen-
tration dependent mobility, highly anisotropic problems in fluid dynamics and wave
scatterings, problems with singular perturbations, problems with interior layers, etc.
Hence, it is important to develop robust and accurate solution methods for these
situations.

In this work, we seek to quickly solve the linear system Au = f resulting from
a spectral discretization by a type of so-called structured direct methods based on
matrix-vector products. The basic ideas are initially mentioned in [38]. We first
study the detailed forms of the intermediate matrices used to build A via a step-by-
step decomposition of the spectral methods. Our analysis shows that, in many cases,
the dense matrix A enjoys a low-rank property, i.e., their off-diagonal blocks have
small and nearly bounded (numerical) ranks. For the constant coefficient case, the
low-rank property is essentially connected to the properties of the Green functions.
We justify such a property for problems with not only constant coefficients, but also
variable smooth coefficients and variable coefficients having steep gradients and/or
large variations and even degenerate coefficients. This is done for both Fourier- and
Chebyshev-Galerkin methods. Algebraic derivations are accompanied by illustrations
in terms of some functions which are notoriously difficult to handle with iterative
methods.

For certain cases (e.g., constant or smooth coefficients), such a low-rank property
can be understood based on the fast decay of the matrix entries away from the diago-
nal. However, even if the entries decay very slowly or do not decay, such as with steep
gradients in the coefficients, we show that the low-rank property still holds. For these
cases, a large number of modes are needed to accurately represent the coefficient. A
straightforward truncation of the small matrix entries results in an approximate ma-
trix with a large bandwidth and is not very effective. Similarly, the low-rank property
is also insensitive to the large ratios in the function values.

Here, A can then be approximated by rank structured matrices, which have al-
ready been shown to be very effective in the direct solutions of large linear systems
arising from finite difference, finite element, or boundary element discretizations of
differential equations [1, 2, 6, 19, 40, 23] and integral equations [20, 17]. One fre-
quently used rank structure is the hierarchically semiseparable (HSS) representation
[40, 41, 42, 37]. HSS structures provide an effective and reliable way to quickly handle
dense matrices with the low-rank property. The factorization and solution with an
HSS matrix usually cost only about O(N) flops.

To avoid forming A explicitly, we use an adaptive matrix-free scheme [36] to
construct an HSS approximation to A, which is built upon randomized techniques
[15, 18, 42]. For a pre-specified accuracy, such a construction takes about O(r logN)
matrix-vector products, where r is the maximum off-diagonal (numerical) rank of A
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and is small. Since the product of matrix A and a vector in both the Fourier- and
the Chebyshev-Galerkin methods can be computed in O(N logN) flops via FFTs, our
total HSS construction cost is only O(rN log2N). (Later, we may use nearly O(N)
complexity to mean O(N logkN) complexity for a small integer k). The HSS form
can be factorized in about O(r2N) flops, and then the linear system solution cost is
only O(rN) for each right-hand side. The memory requirement is also O(rN). All
these counts are roughly linear in N .

Our methods are thus very attractive for spectral approximations of problems
with variable coefficients, especially when the coefficients have steep gradients and/or
large variations or are degenerate, and when only matrix-vector products are available.

The remainder of this paper is organized as follows. In Section 2, we construct
the detailed matrix forms in Fourier- and Chebyshev-Galerkin methods for elliptic
equations with periodic and non-periodic boundary conditions, respectively. We study
in Section 3 the low-rank property of the dense matrices obtained in the previous
section. In Section 4, we present a fast and stable matrix-free direct solver based
on HSS construction, factorization, and solution schemes. We illustrate in Section
5 the performance of the proposed direct spectral solutions via several examples,
which demonstrates high accuracy and efficiency. Section 6 contains the conclusions,
generalizations and possible directions for future research.

2. Matrix forms for Fourier- and Chebyshev-Galerkin methods. In or-
der to study the hidden low-rank property of the discretized matrices in the Fourier-
and Chebyshev-Galerkin methods, we first illustrate the explicit matrix forms in all
the intermediate steps, supplementing those given in [25, 26]. This differs from clas-
sical spectral methods which primarily evaluate matrix-vector products and ignore
the actual matrix structures. Note that the study of the explicit matrices are only
to facilitate our analysis in the next section, and they are not actually formed in the
implementation due to the matrix-free direct solver in Section 4.

Throughout the paper, we employ the following notation:
• {xj} denotes some collocation points in an interval in one dimension;
• α denotes a vector formed by {α(xj)} for a function α(x) evaluated at the
points xj ;

• Dα or diag(α) denotes a diagonal matrix with the entries of the vector α as
the diagonal entries;

• A|j (or A|j,:) and A|:,j denote the jth row and column of A, respectively, and
can be similarly understood when j is replaced by an index set;

• A|j,k denotes the (j, k) entry of A, and can be similarly understood when j
and k are replaced by index sets;

• rank(T ) denotes the rank of a matrix T .
Justifications of the methods in the reviews of this section can be found in [25, 26].

2.1. Fourier-Galerkin method. We consider the problem (1.1) with periodic
boundary conditions:

α(x)u− (β(x)ux)x = f(x), x ∈ (0, 2π),(2.1)

u(0) = u(2π), u′(0) = u′(2π).(2.2)

Let

(2.3) XN =

v(x) =
N/2∑

k=−N/2

ṽke
ikx : ṽ−N/2 = ṽN/2

 ,
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where, for convenience, N is assumed to be an even number, and odd N can be
handled similarly. Let the Fourier collocation points {xj}N−1

j=0 be

(2.4) xj = j
2π

N
, j = 0, 1, . . . , N − 1.

We define the interpolation operator IN : C[0, 2π) −→ XN such that

INu ∈ XN : (INu)(xj) = u(xj), j = 0, 1, . . . , N − 1.

It is easy to verify that

(2.5) (INu)(x) =

N/2∑
k=−N/2

ũke
ikx,

where ũk, k = −N
2 , . . . ,

N
2 are Fourier expansion coefficients that can be obtained from

the forward Discrete Fourier Transform (FDFT). Similarly, the backward Discrete
Fourier Transform (BDFT) can be used to obtain u(xj), j = 0, 1, . . . , N − 1 from ũk
[26]. We recall that these transforms can be carried out in O(N logN) operations [8],
in general.

The Fourier-Galerkin method (with numerical integration) for (1.1) is to find
uN ∈ XN such that

(2.6) ⟨α(x)uN , e−ikx⟩N − ⟨[β(x)u′N ]′, e−ikx⟩N = ⟨f, e−ikx⟩N , k = −N
2
, . . . ,

N

2
,

where the discrete inner product is defined by

(2.7) ⟨u, v⟩N =
1

N

N−1∑
j=0

u(xj)v̄(xj).

It is easy to show that {e−ikx}N/2
k=−N/2 is a set of orthonormal basis in the space XN

with respect to the inner product (2.7).

Suppose u = (u(xj))
N−1
j=0 is the vector of function values and ũ = (ũk)

N/2
k=−N/2

is the vector of the Fourier expansion coefficients. Then the transformations can be
done via

ũ = Fu, u = F ∗ũ.

where the matrices F and F ∗ represent FDFT and BDFT respectively. Besides, the
coefficients of the expansion of the first derivative u′(x) are given by

ũ(1) = ik. ∗ ũ,

where the right-hand side involves a componentwise multiplication, and the vector k
is given by

k = (0, 1, . . . ,
N

2
,−N

2
,−N

2
+ 1, . . . ,−1).

Hence, the general procedure for solving the problem (2.6) in the matrix forms is
as follows.
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1. Computing the right-hand side.
Evaluate f(x) at the points {xj}N−1

j=0 in (2.4) to get the vector f = (f(xj))
N−1
j=0 .

Use FFT to obtain the Fourier expansion coefficient vector f̃ = (f̃k)
N/2
k=−N/2.

2. Solving in frequency space.
Let α = (α(xj))

N−1
j=0 , β = (β(xj))

N−1
j=0 . The variational form (2.6) leads to

the linear system

(2.8) Aũ = f̃ , A = FDαF
∗ +DkFDβF

∗Dk.

The matrix A is positive definite since α(x), β(x) > 0. Solve this for the

vector of unknowns ũ = (ũk)
N/2
k=−N/2 in (2.5).

3. Transforming back to physical space.
Obtain the vector of function values u = (u(xj))

N−1
j=0 = F ∗ũ.

The main expense of this procedure is to solve the linear system (2.8) to get ũ.

Remark 1. We can also derive A by representing the multiplication of the Fourier
series for the coefficients and u(x) as an operator on the coefficients. The two matrices
in the sum in (2.8) are then approximations of the Fourier multiplication operators.

2.2. Chebyshev-Galerkin method. Next, consider the problem (1.1) with
Dirichlet boundary conditions:

α(x)u− (β(x)ux)x = f(x), x ∈ (−1, 1),(2.9)

u(−1) = u(1) = 0.(2.10)

Denote ω(x) = (1− x2)−1/2 and X̃N = {v ∈ PN : v(−1) = v(1) = 0}, where PN

is the set of all polynomials of degrees less than or equal to N . Then, the Chebyshev-
Galerkin method (with numerical integration) is to find uN ∈ XN such that

(2.11) ⟨αuN , vN ⟩N,ω − ⟨(βu′N )′, vN ⟩N,ω = ⟨f, vN ⟩N,ω, ∀vN ∈ X̃N ,

where ⟨·⟩N,ω is the discrete inner product relative to the Chebyshev-Gauss-Lobatto
quadrature.

Denote

ϕk(x) := Tk(x)− Tk+2(x),

where Tk is the Chebyshev polynomial of degree k. It is easy to know that the function
ϕk(x) defined here satisfies the boundary condition (2.10). Hence, the space of the
basis functions can be chosen as

(2.12) XN = span{ϕk(x)}N−2
k=0 .

Suppose the Chebyshev expansion of u(x) with finitely many terms is

u(x) =
N∑

n=0

ũnTn(x) =
N−2∑
k=0

ūkϕk(x).

Let ũ = (ũn)
N
n=0 and ū = (ūk)

N−2
k=0 be the column vectors of expansion coefficients.

In order to implement (2.11), we need to perform the following tasks.
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1. Transforming between the basis functions {ϕk}N−2
k=0 and the Chebyshev poly-

nomials {Tn}Nn=0. The transforms between ũ and ū can be performed by

ũ = A1ū with

A1 =



1

0
. . .

−1
. . . 1
. . . 0

−1


(N+1)×(N−1)

.

2. Differentiation in spectral space.
Recall the differentiation relation of the Chebyshev polynomials

(2.13) T ′
n(x) = 2n

n−1∑
k=0

k+n: odd

1

ck
Tk(x),

where c0 = 2 and ck = 1 for k ≥ 1. Suppose u′(x) =
∑N

n=0 ũ
′
nTn(x), and let

ũ′ = (ũ′n)
N
n=0 be the vector of the expansion coefficients of the first derivative.

Following (2.13), we have

ũ′ = A2ũ, with

A2 =



0 1 0 3 0 5 · · · 0

0 4 0 8 0 · · · 2(N + 1)

0 6 0 10 · · · 0

0 8 0 · · · 2(N + 1)

0 10
. . . 0

. . .
. . .

...
. . . 2(N + 1)

0


(N+1)×(N+1)

.(2.14)

More specifically, A2 has the following form:

(2.15) A2|j,j+1:N =


(1, 0, 3, 0, 5, . . . , 0), j = 1,

2(j, 0, j + 2, 0, j + 4, . . . , 0), j > 1, j: odd,

2(j, 0, j + 2, 0, . . . , N + 1), j > 1, j: even.

3. Inner product with the basis functions.
For the inner product vector of the solution û = {ûk}N−2

k=0 , where ûk =
⟨u(x), ϕk(x)⟩N,ω, we have

û = A3ũ, with

A3 =


π 0 −π/2

π/2 0 −π/2
. . .

. . .
. . .

π/2 0 −π/2


(N−1)×(N+1)

.
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4. Forward discrete Chebyshev transform (FDCT) and backward discrete Cheby-
shev transform (BDCT).
It is well known that the Chebyshev collocation points {xj}Nj=0 are

(2.16) xj = cos(
πj

N
), j = 0, 1, . . . , N.

The transforms between the spectral space ũ and the physical space u =
(u(xj))

N
j=0 can be performed by

(2.17) u = F̃ ũ, ũ = F̃ ∗u,

where F̃ and F̃ ∗ are the FDCT and BDCT matrices, respectively. FDCT and
BDCT can be performed with O(N logN) operations via FFTs, in general.

Hence, a detailed procedure for solving the problem (2.11) in the matrix forms is:
1. Computing the right-hand side.

Compute the Fourier collocation points {xj}Nj=0 defined in (2.16), and eval-
uate the right-hand function f(x) at these points to get the vector f =
(f(xj))

N
j=0. Then use FDCT to obtain the Chebyshev expansion coefficients

vector f̃ = (f̃n)
N
n=0. Finally, take the inner product with the basis functions

{ϕk}N−2
k=0 to get f̂ = {f̂k}N−2

k=0 :

f̂ = A3F̃
∗f .

2. Solving in frequency space.
Let (INu)(x) =

∑N−2
k=0 ūkϕk(x), where ū = (ū)N−2

k=0 are the unknowns. Let
α = (α(xj))

N
j=0 and β = (β(xj))

N
j=0 be the vectors of function values. Then

the variational form (2.11) leads to the following linear system:

(2.18) Aū = f̂ , A = A3(F̃
−1DαF̃ −A2F̃

−1DβF̃A2)A1,

where A is (N−1)×(N−1). Solve this equation for the expansion coefficients
ū.

3. Transforming back to physical space.
The function value vector u = (u(xj))

N
j=0 can be obtained by

u = F̃A1ū.

In Section 4, we will show how to solve (2.18) efficiently to get ū.

3. Low-rank property for problems with variable coefficients. We seek
to quickly solve the systems (2.8) and (2.18) by taking advantage of a hidden low-rank
property. That is, we show the off-diagonal blocks of A have small numerical ranks
for these cases:

1. constant coefficients (included for completeness);
2. smooth variable coefficients;
3. variable coefficients with steep gradients and/or large variations.

3.1. Preliminaries. For notational convenience, we let N be the size of A (in-
stead of N − 1 as in the previous section). For simplicity, we focus on the following
type of off-diagonal blocks, as often used in the studies of rank structures [6, 32].
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Definition 3.1 (Off-diagonal blocks). Let A be an N ×N matrix. Partition A
into the following block 2× 2 form such that the diagonal blocks are square matrices:

A =
i

N − i

(
A11 A12

A21 A22

)
.

A12 ≡ A|1:i,i+1:N and A21 ≡ A|i+1:N,1:i are called the off-diagonal blocks of A.
That is, an off-diagonal block touches but does not include the main diagonal,

and consists of either the top-right or bottom-left part of A. We are interested in
the numerical ranks of these blocks. The following definition is frequently used by
researchers (see, e.g., [41]).

Definition 3.2 (Numerical ranks and low-rank property). The numerical rank
of a matrix is the number of its singular values larger than a given tolerance τ . This
can be similarly defined for a relative tolerance τ (relative to the largest singular
value). A matrix has the low-rank property if all its off-diagonal blocks have ranks
or numerical ranks that are much smaller than N . (Typically, the ranks are bounded
independent of N , or only increase very slowly, such as O(logN).)

It is straightforward to show that, if two matrices A and B of the same size have
the low-rank property with the maximum rank of all the off-diagonal ranks bounded
by r, then A+ B and AB also have the low-rank property, with the maximum rank
of all their off-diagonal ranks bounded by 2r. This will be used often later. In the
following subsections, we study the low-rank property of the matrices A in (2.8) and
(2.18).

3.2. Low-rank property for constant coefficients. We briefly consider the
low-rank property of A when α(x) ≡ α, β(x) ≡ β are constants.

For the case of the Fourier-Galerkin method, the linear system (2.8) is simply a
diagonal system of the equations

(3.1) (α+ k2β)ũk = f̃k, k = −N
2
, . . . ,

N

2
.

That is, A is a diagonal matrix, and the solution to (2.8) is trivially

ũk =
f̃k

α+ k2β
, k = −N

2
, . . . ,

N

2
.

Next, consider the Chebyshev-Galerkin method. Let α and β be two non-negative
constants in (2.9). Then the matrix A in (2.18) has the form

(3.2) A = A3

(
αI − βA2

2

)
A1 = αA3A1 − βA3A

2
2A1,

which is dense. Since A1 and A3 are tridiagonal matrices, their off-diagonal ranks
are bounded by 1. The matrix A2 is upper triangular, and can be shown to have the
low-rank property as follows, even though its nonzero entries away from the diagonal
do not decay. In fact, according to (2.15), rank(A2|1:j,j+1:N ) = 2 for any integer j
satisfying 1 6 j 6 N . Thus, we can show that A3A1 and A3A

2
2A1 have off-diagonal

rank bounds 2 and 6, respectively. The matrix A in (3.2) thus has an off-diagonal rank
bound 8. However, we can further improve such a bound by inspecting the actual
forms of A3A1 and A3A

2
2A1.

Theorem 3.3. For any integer n satisfying 1 6 n 6 N ,

rank(A|1:n,n+1:N ) ≤ 4, rank(A|n+1:N,1:n) ≤ 4.
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Proof. The actual forms of A3A1 and A3A
2
2A1 can be found in [24]. A3A1 is a

banded matrix with its half bandwidth 2, so it has off-diagonal ranks bounded by 2.
Any off-diagonal block of A3A

2
2A1 is either a zero block or has the form

(A3A
2
2A1)|1:j,k =

{
4π(0, 2, 0, 4, . . . , 0, j − 1, 0)T , k = j + 1, j + 3, . . . ,
4π(1, 0, 3, 0, . . . , j − 2, 0, j)T , k = j + 2, j + 4, . . . ,

if n is odd, or

(A3A
2
2A1)|1:j,k =

{
4π(1, 0, 3, 0, . . . , j − 1, 0)T , k = j + 1, j + 3, . . . ,
4π(0, 2, 0, 4, . . . , 0, j)T , k = j + 2, j + 4, . . . ,

if n is even. Thus, we have

rank((A3A
2
2A1)|1:j,j+1:N ) ≤ 2.

The desired result then follows from the addition and multiplication of matrices
with the low-rank property.

3.3. Low-rank property for “smooth” variable coefficients: Fourier case.
For variable coefficients α(x) and β(x), the matrix A in (2.8) for the Fourier case is
usually dense. However, we show below that if α(x) and β(x) are sufficiently “smooth”
in the sense that they can be approximated by Fourier series with small finite numbers
of terms, then A has the low-rank property.

Theorem 3.4. If α(x) can be approximated by an r-term Fourier series within
a tolerance τ , then the numerical rank (with respect to the tolerance O(Nτ)) of any
off-diagonal block of the following matrix is bounded by r:

C ≡ FDαF
∗ (or F ∗DαF ),

where α = (α(xj))
N−1
j=0 , Dα = diag(α), and F represents FDFT.

Proof. C is a circulant matrix with the first column

(3.3) c = Fα.

Assume c = (c1, . . . , cN )T . Let Ĉ be a Hermitian circulant matrix with the first
column ĉ = (c1, . . . , cr, 0, . . . 0, cN−r+1, . . . , cN )T . Clearly, Ĉij can be obtained from

C by setting Ĉij = 0 for r < |i− j| < N − r. See Figure 3.1 for an illustration of the

nonzero pattern of Ĉ. Clearly, any off-diagonal block of Ĉ is zero except the lower
left and the upper right corners, which are two r × r triangular matrices. Thus,

(3.4) rank(Ĉ|1:n,n+1:N ) ≤ 2r, rank(Ĉ|n+1:N,1:n) ≤ 2r (1 6 n 6 N).

Since α(x) can be approximated by an r-term Fourier series within the tolerance
τ , we have |cj | = O(τ) for any j > r. That is,

|Cij | = O(τ) for r < |i− j| < N − r.

(This can be understood with the aid of Figure 3.1, where the entries of C corre-
sponding to the blank spaces are of magnitudes O(τ).) Thus, the off-diagonal block
C|1:n,n+1:N satisfies

||C|1:n,n+1:N − Ĉ|1:n,n+1:N ||2 ≤
√
n(N − n) max

0<j−i<N−r
|Cij |(3.5)

≤ N

2
max

0<j−i<N−r
|Cij | = O(Nτ).
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j+1 : N1 : j
1 : r 1 : r

Fig. 3.1. Nonzero pattern of Ĉ.

Let σr+1 be the (r + 1)-st singular value of C|1:n,n+1:N (when all its singular values
are ordered from the largest to the smallest). It is known that (see, e.g., [10, Section
3.2.3], with a trivial extension)

σr+1 = min
rank(C̃)≤r

||C|1:n,n+1:N − C̃||2.

(3.4) and (3.5) then mean

σr+1 ≤ ||C|1:n,n+1:N − Ĉ|1:n,n+1:N ||2 = O(Nτ).

Therefore, the numerical rank of C|1:n,n+1:N is at most r with respect to the tolerance
O(Nτ). Similarly, the result holds for C|n+1:N,1:n.

Note that C is also the kernel of a discrete integral transform. Thus, the low-rank
property is closely related to the idea of the fast multipole method (FMM) [12, 14].

Remark 2. σr+1 is usually much smaller than O(Nτ) since the bound in (3.5)
often overestimates ||C|1:n,n+1:N − Ĉ|1:n,n+1:N ||2.

Remark 3. Clearly, the 2-norm condition number of FDαF
∗ is

(3.6) κ(F̃DαF̃
∗) = κ(Dα) =

maxi |α(xi)|
mini |α(xi)|

,

where we assume mini |α(xi)| ≠ 0. Thus, the ratio of the largest and the smallest
values in (3.6) measures how much α(x) varies, and also the conditioning of the matrix.
If certain α(xi) is extremely large or small, or if α(x) varies dramatically, then the
condition number in (3.6) is large. This may cause difficulties for iterative methods
to converge. On the other hand, Theorem 3.4 indicates that the rank structure is
actually a much more robust way of studying the numerical solution.

Lemma 3.5. If C has the low-rank property, then so do Λ1C, CΛ2, Λ1CΛ2,
and Λ̂1CΛ̂2, where Λ1 and Λ2 are diagonal matrices, Λ̂1 and Λ̂2 are anti-diagonal
matrices, and all the matrices are N ×N .

Proof. It is straightforward to verify the result for Λ1C, CΛ2, and Λ1CΛ2 based
on diagonal scaling. Λ̂1CΛ̂2 can be rewritten as (Λ̂1Π)(ΠCΠ)(ΠΛ̂2), where Π is the
anti-identity matrix, Λ̂1Π and ΠΛ̂2 are diagonal matrices, and ΠCΠ has the low-rank
property since its off-diagonal blocks are the same as those of C with appropriate
permutations.

We are now ready to present the following result.
Theorem 3.6. If α(x) and β(x) can be approximated by r-term Fourier series

within a tolerance τ , then the numerical rank of the matrix A (with respect to the
tolerance O(Nτ)) in (2.8) is of order O(r).
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Proof. Theorem 3.4 means that FDαF
∗ and FDβF

∗ have the low-rank property.
The conclusion then follows from Lemma 3.5.

To illustrate the result of the fundamental Theorem 3.4, let us consider the fol-
lowing function:

(3.7) α1(x) = cos(sinx),

which is plotted in Figure 3.2(i). The function α1(x) is smooth, and is evaluated at
the Fourier collocation points {xj}N−1

j=0 defined in (2.4). The decay of the Fourier ex-
pansion coefficients can be observed in Figure 3.2(ii). To check the low-rank property,
we plot the singular values for an off-diagonal block (FDα1F

∗)|1:N2 ,N2 +1:N in Figure

3.2(iii). These singular values also decay quickly.
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(i) Plot of α1(x) (ii) Entries of |Fα1| (iii) Off-diagonal singular values

Fig. 3.2. Plots of α1(x) = cos(sinx) in (3.7), absolute values of the Fourier coefficients Fα1,
and singular values of the off-diagonal block (FDα1F

∗)|
1:N

2
,N
2
+1:N

, where N = 320.

Moreover, when N doubles, the numerical rank of (FDα1F
∗)|1:N2 ,N2 +1:N remains

small and bounded. Even if we use increase the accuracy τ from 10−6 to 10−12, the
numerical ranks only increase slightly. See Table 3.1. This indicates the feasibility of
using a rank structured approximation to solve large problems with high accuracies.

Table 3.1
Numerical ranks of the off-diagonal block (FDα1F

∗)|
1:N

2
,N
2
+1:N

for α1(x) in (3.7) with dif-

ferent sizes N and tolerances τ .

N 20 40 80 160 320 640 1280

Numerical rank
τ = 10−6 8 8 8 8 8 8 8
τ = 10−12 10 12 12 12 12 12 12

3.4. Low-rank property for “smooth” variable coefficients: Chebyshev
case. Next, we consider A in (2.18) for the Chebyshev case with variable coefficients
α(x) and β(x). The matrix A has a form more complicated than in the Fourier case.
However, we can still show that A has the low-rank property. This is mainly based
on the following result. Here, a function is “smooth” if it can be approximated by a
Chebyshev series with a small finite number of terms.

Theorem 3.7. If α(x) can be approximated by an r-term Chebyshev series within
a tolerance τ , then the numerical rank (with respect to the tolerance O(Nτ)) of any
off-diagonal block of the following matrix is bounded by O(r):

C̃ ≡ F̃DαF̃
∗ (or F̃ ∗DαF̃ ),
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where α = (α(xj))
N
j=0, Dα = diag(α), and F̃ represents FDCT.

Proof. One way is to use the relationship between FDCT and FDFT. In fact, F̃
is real and symmetric. For simplicity, assume F and F̃ have sizes 2N and N + 1,
respectively. Clearly,

F̃ = A6FA5,

where

A5 =



diag(1, 12 , . . . ,
1
2 , 1)

0 1
... 1

2
... . .

.

0 1
2




2N×(N+1)

, A6 =
(
I 0

)
(N+1)×2N

.

Also let

D̂ ≡ A5DαA
T
5 , Ĉ ≡ FD̂F ∗.

Then

(3.8) C̃ = A6ĈA
T
6 = Ĉ|1:N+1,1:N+1.

Since diag( 12 , . . . ,
1
2 , 1) =

1
2 (I + diag(0, . . . , 0, 1)), we have

D̂ =
1

4

 4α0

Dα|1:N Dα|1:NJN
Dα|N:−1:1

JN Dα|N:−1:1

+ E2,

where α|N :−1:1 represents α|1:N in its reverse ordering, JN is the N ×N anti-identity
matrix, and E2 is an appropriate matrix of rank no more than 2. Let

(3.9) H =

(
1

J2N

)
, G = F diag(Dα|0:N,N:−1:1

)F ∗.

Then we can rewrite D̂ and Ĉ as

D̂ =
1

4
(diag(Dα|0:N,N:−1:1

) + diag(Dα|0:N,N:−1:1
)H) +

1

2
diag(α0, 0, . . . , 0) + E2

=
1

4
(diag(Dα|0:N,N:−1:1

) + diag(Dα|0:N,N:−1:1
)H) + E3,

Ĉ =
1

4
(G+ F diag(Dα|0:N,N:−1:1

)HF ∗) + FE3F
∗,

respectively, where E3 is an appropriate matrix of rank no more than 3. According
to the property of the FDFT matrix,

HF ∗ = F ∗H.

Thus,

Ĉ =
1

4
(G+ F diag(Dα|0:N,N:−1:1

)F ∗H) + FE3F
∗(3.10)

=
1

4
(G+GH) + FE3F

∗.
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Since α(x) can be approximated by an r-term Chebyshev series in x within a
tolerance τ , it can also be approximated by an O(r)-term Fourier series in θ (with the
change of variable x = cos θ)) within a tolerance O(τ). Thus, Theorem 3.4 applied to
G in (3.9) yields the off-diagonal low-rank property of G. The leading (N+1)×(N+1)
diagonal block of GH looks like

(GH)|1:N+1,1:N+1 = G|1:N+1,1:N+1H|1:N+1,1:N+1(3.11)

+G|1:N+1,N+2:2NH|N+2:2N,1:N+1.

Since H|1:N+1,1:N+1 has only one nonzero entry as in (3.9), the first term on the right-
hand side of (3.11) has rank 1. Since G|1:N+1,N+2:2N has numerical rank (with respect
to the tolerance O(Nτ)) bounded by O(r), so does the second term on the right-hand
side of (3.11). Therefore, the numerical rank of (GH)|1:N+1,1:N+1 is bounded by O(r).

According to (3.8) and (3.10), the numerical rank of C̃ is bounded by O(r).
Therefore, the following result on the low-rank property of A can be naturally

obtained based on Theorem 3.7.
Theorem 3.8. If α(x) and β(x) can be approximated by an r-term Chebyshev

series within a tolerance τ , then the numerical rank (with respect to the tolerance
O(Nτ)) of any off-diagonal block of the matrix A in (2.18) is bounded by O(r).

Remark 4. Although the results in Theorems 3.4 and 3.7 can be understood
based on the fast decay in the entries of C and C̃ away from the diagonal, respectively,
this may not be the case for the entries of A in the above theorem. In fact, for A in
the Chebyshev case (2.18), the entries away from the diagonal barely decay.

We can similarly illustrate the low-rank property of F̃DαF̃
∗. For example, for

α2(x) = ex,

the off-diagonal numerical ranks with τ = 10−6 and 10−12 are bounded by 3 and 5,
respectively for N up to 1280, and they stay almost the same when N increases. This
indicates the robustness of the rank structure with respect to both τ and N .

3.5. Low-rank property for variable coefficients with steep gradients.
The studies in the previous subsections indicate the existence of the low-rank property
in problems with constant or smooth coefficients. In particular, as pointed out in
Remark 4, the smoothness of α(x) leads to the fast decay of the entries of C in
Theorem 3.4 and C̃ in Theorem 3.7 away from the diagonal. However, we emphasize
that the decay in the entries is only sufficient but not necessary for our structured
solver to work, which just requires the low-rank property. (A2 in (2.14) is such an
example with no decay away from the diagonal.)

In fact, if the variable coefficient α(x) has steep gradients and the assumptions in
Theorems 3.4 and 3.7 are not satisfied, such a decay is usually very slow. However,
the low-rank property still holds if α(x) can be split into the sum of a smooth piece
αs(x) and a residual piece αr(x):

(3.12) α(x) = αs(x) + αr(x),

with αr(x) being essentially zero except in a finite number of small intervals where
the function exhibits steep gradients (see, e.g., Figure 3.3(i)).

To fix the idea, we consider below the Fourier case, although the argument also ap-
plies to the Chebyshev case. Since the off-diagonal numerical rank bound of FDαsF

∗

is small, we only have to show that the off-diagonal numerical rank bound of FDαrF
∗
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is also small. Intuitively, the low-rank property of FDαrF
∗ can be understood as

follows. Suppose αr(x) has localized steep gradients in small subintervals (aj , bj) of
width O(ϵ), j = 1, . . . , r1. Let N be the number of Fourier-collocation points, hence
the size of the matrix FDαrF

∗, such that

(3.13) ∥αr − INαr∥L∞ ≤ τ,

where INαr is the Fourier interpolation of αr, and τ is a given accuracy. It is clear
that this N is also the approximate number of Fourier coefficients needed for the N -
term truncated Fourier-series to have error bounded by τ (see, e.g. Figure 3.3(ii)). It
is well-known that one only needs to have a fixed number (r2) of Fourier-collocation
points within each (ai, bi) to fully resolve the steep gradient. Hence, the total number
of non-zero values of INαr at these N collocation points is bounded by r1r2, and the
total number of collocation points needed for (3.13) in the whole interval [0, 2π) is
N = O( 2πϵ ) which is very big for small ϵ. Thus, the off-diagonal numerical rank of
FDαrF

∗ is bounded by r1r2 (see, e.g., Figure 3.3(iii)), which is much smaller than N
and is independent of τ . In fact, we observe from Table 3.2 that, for the functions
αi(x) (i = 3, 4, 5) plotted in Figs. 3.3-3.5, the off-diagonal numerical ranks of these
matrices do not increase with N .

To illustrate the low-rank property with steep gradients, we look at the following
examples:

α3(x) =
1

1000x2 + 1
, x ∈ (−1, 1),

α4(x) =
1

1000(x− 0.5)2 + 1
+

1

1000x2 + 1
+

1

1000(x+ 0.5)2 + 1
, x ∈ (−1, 1),

α5(x) = −1

2
(tanh(100 · (2x− 3π)) + tanh(−100 · (2x− π))) , x ∈ (0, 2π).

Note that α3 and α4 are not periodic but α5 can essentially be considered as peri-
odic. Hence, we consider the Chebyshev approximations to the functions α3(x) and
α4(x), and the Fourier approximation to the function α5(x). We demonstrate the
rank structure of the matrices F̃Dα3

F̃ ∗, F̃Dα4
F̃ ∗ and FDα5

F ∗. We observe from
Figures 3.3–3.5 and Table 3.2 that the Chebyshev/Fourier expansion coefficients of
these functions decay very slowly, but the off-diagonal singular values of these matrices
decay quickly, indicating the low-rank property for all the cases.
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Fig. 3.3. Plots of α3(x) = 1
1000x2+1

, absolute values of the Chebyshev coefficients F̃α3, and

the first 200 singular values of the off-diagonal block (F̃Dα3 F̃
∗)|

1:N
2
,N
2
+1:N

, where N = 1280.
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Fig. 3.4. Plots of α̃4(x) = 1
1000(x−0.5)2+1

+ 1
1000x2+1

+ 1
1000(x+0.5)2+1

, absolute values

of the Chebyshev coefficients F̃α4, and the first 200 singular values of the off-diagonal block
(F̃Dα4 F̃

∗)|
1:N

2
,N
2
+1:N

, where N = 1280.
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Fig. 3.5. Plots of α5(x) = − 1
2
(tanh(100 · (2x− 3π)) + tanh(−100 · (2x− π))), absolute val-

ues of the Fourier coefficients Fα5, and the first 300 singular values of the off-diagonal block
(FDα5F

∗)|
1:N

2
,N
2
+1:N

, where N = 10240.

Table 3.2
Numerical ranks of the off-diagonal block (F̃Dαi F̃

∗)|
1:N

2
,N
2
+1:N

for αi(x), i = 3, 4 and

(FDα5F
∗)|

1:N
2
,N
2
+1:N

with different sizes N and tolerances τ .

N 80 160 320 640 1280 2560 5120 10240

Numerical rank (with α3(x))
τ = 10−6 2 2 2 2 2 2 2 2
τ = 10−12 2 2 2 2 2 2 2 3

Numerical rank (with α4(x))
τ = 10−6 6 6 6 6 6 6 6 6
τ = 10−12 6 6 6 6 6 6 6 6

Numerical rank (with α5(x))
τ = 10−6 20 24 28 30 32 32 32 32
τ = 10−12 30 38 46 54 56 56 56 56

4. HSS structure and matrix-free direct HSS solver. To take advantage
of the low-rank property of the coefficient matrices A in the linear systems (2.8) and
(2.18), we employ the HSS structure [5, 41] and a matrix-free direct HSS solver [36].
The solver uses some adaptive randomized sampling techniques [15, 35, 42], so that
only matrix-vector products are needed to construct an HSS approximation to A,
which is then used for the fast solution. These are briefly reviewed in this section.

4.1. HSS representation. In the HSS representation for anN×N dense matrix
A, its off-diagonal blocks are hierarchically represented or approximated by low-rank
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forms. For example, a two-level HSS form looks like

A =

(
D3 U3B3V

T
6

U6B6V
T
3 D6

)
,

where

D3 =

(
D1 U1B1V

T
2

U2B2V
T
1 D2

)
, D6 =

(
D4 U4B4V

T
5

U5B5V
T
4 D5

)
,

U3 =

(
U1R1

U2R2

)
, V3 =

(
V1W1

V2W2

)
, U6 =

(
U4R4

U5R5

)
, V6 =

(
V4W4

V5W5

)
.

This can be conveniently understood with the aid of a postordered full binary tree
T called HSS tree. That is, a two-level tree T defined, with its bottom or first level
nodes being labeled 1, 2, 4, 5, and second level nodes 3, 6 (see Figure 4.1). Then each
node j is associated with the matrices Dj , Uj , Rj , etc. (called HSS generators). Thus,
the generators define a data-sparse representation of A.

B3

B6
3 6

7

B1

B2
1

U2, V2U1, V1

B4

B5

U5, V5U4, V4

D1 D2 D4 D5

2 4 5

level 0

level 1

level 2

R1, W1 R2, W2 R4, W4 R5, W5

Fig. 4.1. An HSS tree example.

Later, for the coefficient matrices A we consider, we do not distinguish between
the original matrix and its HSS approximation.

Remark 5. In Section 3, the off-diagonal blocks A|1:i,i+1:N are inspected (see
Definition 3.1). Notice that this is done for all i = 1, 2, . . . , N . These off-diagonal
blocks have overlaps and their rank structures have internal correlations or dependen-
cies. The HSS representation provides a natural way to describe such dependencies.
It has been well studied that if A|1:i,i+1:N , i = 1, 2, . . . , N are (numerically) low-rank,
then A can be represented (or approximated) by an HSS form [5, 37, 41]. In fact, the
size of the Bj generators reflects the rank of a certain off-diagonal block A|1:i,i+1:N

corresponding to node j and its sibling. Thus, the low-rank property in Section 3 is
sufficient to justify the use of HSS approximations here.

4.2. Matrix-free HSS construction. To construct an HSS approximation to
a dense matrix A with the low-rank property, traditional methods use the explicit
compression of the HSS blocks [41]. Here, since we can quickly compute the product
of A and A∗ with vectors, we employ a matrix-free HSS construction method proposed
in [36].

First, we recall that matrix-vector products for the Fourier case (2.8) and the
Chebyshev case (2.18) can generally be computed in O(N logN) flops using DFT and
DCT.
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Second, for a low-rank block Φ, if we can quickly compute its product with vectors,
then randomized sampling [15, 18, 42] can be used to compress Φ into a low-rank form.
In particular, an adaptive randomized strategy in [15, 36] is employed here. The basic
idea is to convert the compression of Φ into that of Y ≡ ΦX, where X is a skinny
random matrix. Then Y is used to extract a basis matrix for the column space of
Φ. The number of random vectors in X is adaptively decided according to a desired
accuracy τ .

Finally, the fast matrix-vector multiplication for A can be combined with adaptive
randomized sampling to quickly construct an HSS approximation. For the off-diagonal
blocks Φ at each level of the hierarchical partition of A, a small number of multipli-
cations of A and A∗ with random vectors are used to extract the column and row
bases of Φ, respectively. This provides the HSS generators after all the O(logN)
levels are done. When all the off-diagonal blocks are approximated, one more level of
matrix-vector products can be used to approximate the diagonal blocks of A.

Assume r is the largest (numerical) rank of all the off-diagonal blocks of A, then
the overall cost of this construction is O(rN log2N) and the storage required for the
HSS form is O(rN). In this paper, r is dynamically computed for a given relative
tolerance τ in the adaptive randomized sampling.

4.3. HSS factorization and solution. After the HSS form is obtained, a fast
ULV-type factorization method in [42] (a modified version of [5]) can be used to
quickly factorize the matrix. We briefly describe the primary steps of the factorization
as follows:

1. Introducing zeros into an off-diagonal block row by QR factorizing its column
basis.

2. Partially eliminating the diagonal block.
3. Merging the remaining blocks with those resulting from the step associated

with the sibling node of the HSS tree.
4. Forming a smaller HSS matrix with the remaining blocks and repeat.

The factorization costs O(r2N) flops. Then, the solution stage for (2.8) and (2.18)
costs O(rN) flops. As discussed in the previous section, r is nearly a constant for the
approximation tolerance O(Nτ). Therefore, the overall matrix-free HSS solver costs
roughly O(N) flops. Similarly, the total memory requirement is about O(N).

5. Numerical results. In this section, we present some numerical experiments
to illustrate the efficiency and the accuracy of our fast structured direct spectral
methods. We test some important classes of coefficient functions, especially problems
with steep gradients and/or high variations, and with even degenerate coefficients.
For each case, a large N is required to resolve the problem, due to the “singularities”
in the numerical solutions. The code is in Matlab, and is also compared with backslash
(the Matlab backslash function). All the tests are carried out on a Thinkpad T430s
laptop with 4GB RAM and an Intel i7 core at 2.9GHz. For convenience, we use the
following notation in the experiments:

• N means the size of the linear system;
• κ means the 2-norm condition number of the matrix;

• e = ∥ũ−u∥2

∥u∥2
is the relative error of the numerical solution ũ when the analyt-

ical solution is available;

• r = ∥Aũ−b∥2

∥b∥2
is the relative residual of the linear system, i.e. (2.8) or (2.18);

r (original) and r (nit) mean the residual before and after nit steps of iterative
refinement;
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• in our fast structured direct spectral methods, nmv is the number of matrix-
vector products used in the matrix-free HSS construction, and timef is the
time of the matrix factorization;

Example 1. We first solve a problem with square-wave coefficients and periodic
boundary conditions via the fast structured Fourier-Galerkin method. Consider the
problem (2.1)–(2.2) with

α(x) = cos(sin(x)), β(x) = −1

2
(tanh(γ(2x− 3π)) + tanh(−γ(2x− π))) , f(x) = K,

where γ and K are constants.

As shown in Figure 3.3, β(x) is a “square-wave”-like function, which leads to two
“cusp points” in the solution (see, e.g., Figures 5.1(i) and 5.2 below). The problem
is ill conditioned, so that iterative methods have difficulties converging even for small
N . Finding an effective preconditioner is not simple either, especially since A is not
explicitly formed.

To see the complexity of the fast structured method clearly, we show the factor-
ization and solution flops in Figure 5.1(i). τ = 10−7 is used here (and also in the later
examples). The results roughly follow the O(N) complexity line.
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(ii) Numerical solution (based on N = 5120) (i) Factorization and solution complexity

Fig. 5.1. Example 1: Performance of the fast structured solver for γ = 10.

Additional results are reported in Table 5.1, including the condition numbers of
the matrices, the number nmv of matrix-vector products needed by the fast solver
to construction the HSS approximations, and the accuracies. When N doubles, nmv

increases slowly, which is consistent with the discussions in Section 4.2. The fast solver
produces approximate solutions with reasonable accuracies, followed by few steps of
iterative refinement to reach high accuracies. Later, we only show the accuracies after
iterative refinement.

We would also like to mention that it is impractical to use regular dense direct
solvers, which cost O(N3) flops to factorize the matrix with O(N2) storage. We com-
pare the CPU time of our fast structured solver and the Matlab backslash in Table
5.2. For smaller problem sizes, we run the tests 10 times and report the average HSS
construction, factorization, and solution time. Similarly, for the Matlab backslash, we
measure the average time for forming the dense matrix, computing the LU factoriza-
tion, and performing the triangular solution. It can be observed that the time of the
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Table 5.1
Example 1: nmv and accuracies of the fast structured solver, where γ = 10.

N κ nmv r (original) r (nit)
320 4.28e4 308 3.51e− 9 1.07e− 14 (2)
640 1.73e5 544 1.35e− 8 2.48e− 14 (2)
1280 6.97e5 544 1.65e− 8 5.10e− 14 (2)
2560 2.79e6 416 3.38e− 7 9.76e− 14 (3)
5120 1.12e7 520 7.19e− 7 2.12e− 13 (3)
10240 660 6.95e− 6 3.47e− 13 (4)
20480 880 1.28e− 5 7.73e− 11 (5)

fast structured solver scales roughly linearly in N , while the Matlab backslash quickly
becomes much slower, although the latter is highly optimized. We note that form-
ing and storing the dense matrix in dense direct solvers has other serious drawbacks,
which are avoided in our structured direct solver.

Table 5.2
Example 1: Comparison of the time (in seconds) between our fast structured solver and Matlab

backslash, where γ = 10.

N
Fast structured Matlab backslash

HSS construction Factorization Solution Matrix formation Factorization Solution

320 0.230 0.027 0.006 0.047 0.009 0.001
640 0.527 0.089 0.014 0.359 0.045 0.004
1280 0.806 0.180 0.018 3.023 0.302 0.016
2560 2.156 0.472 0.039 22.488 2.183 0.063
5120 5.349 1.179 0.089 178.622 15.952 0.247
10240 8.918 2.666 0.154 4806.939 244.303 1.807

Furthermore, we consider the extreme case γ = 100 corresponding to Figure 3.3.
The efficiency and the accuracy of our method are shown in Table 5.3. The numerical
solution is illustrated in Figure 5.2, which has two steep thin interior layers near the
points x = π/2 and x = 3π/2.

Table 5.3
Example 1: Numerical results of the fast structured solver for the extreme case γ = 100.

N κ nmv Timef r (nit)
2560 3.02e6 700 0.69 3.23e− 13 (4)
5120 1.21e7 980 1.78 7.28e− 13 (5)
10240 1020 6.95 3.00e− 11 (5)
20480 1080 17.90 2.55e− 09 (6)

In addition, since our method is a direct solver, the HSS construction, factor-
ization, and solution costs are independent of the right-hand side. The iterative
refinement step may depend on the right-hand side. However, the total number of
refinement steps is very small for either a constant right-hand side or a random one,
and the difference is nearly negligible.

Example 2. Next, we apply the fast structured Chebyshev-Galerkin method to
the problem (2.9)–(2.10) with delta-like coefficients and Dirichlet boundary conditions,
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Fig. 5.2. Example 1: Numerical solution of the fast solver for the extreme case γ = 100, where
N = 10240.

where

α(x) = ex, β(x) =
1

ax2 + 1
,

f(x) = 1.

The shape of β(x) for large a is similar to the delta function. See Figure 5.3 for
various a. When a is large, iterative methods can barely converge. For example, for
a = 1000, CG fails to converge even for small problems. In fact, even if we somehow
manage to extract the Jacobi preconditioner (which may not be practical due to the
unavailability of A), the accuracy of CG is still very low.
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Fig. 5.3. Example 2: The coefficient function β(x) for various a.

On the other hand, our structured solver obtains an accurate solution (Figure
5.4(i)) with nearly linear complexity (Figure 5.4 (ii)). The results such as nmv and
the accuracies are shown in Table 5.4, which illustrates the significant advantages of
our solver.

Furthermore, we consider the extreme case a = 1010. For N = 5120, A has
condition number 9.3 × 1010 and is severely ill conditioned. However, it only takes
nmv = 308 steps to construct an HSS approximation with a small numerical rank.
The HSS form is used to solve the problem to reach an accuracy of r = 6.27× 10−12
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(i) Numerical solution (based on N = 2560) (ii) Factorization and solution complexity

Fig. 5.4. Example 2: Performance of the fast structured solver for a = 1000.

Table 5.4
Example 2: Numerical results of the fast structured solver for a = 1000.

N κ nmv Timef r (nit)
320 9.18e5 168 0.02 3.87e− 14 (4)
640 4.19e6 168 0.01 9.19e− 14 (3)
1280 1.82e7 187 0.03 1.71e− 13 (2)
2560 7.70e7 165 0.07 5.97e− 13 (4)
5120 3.19e8 200 0.18 1.21e− 12 (3)
10240 240 0.37 2.23e− 12 (4)

after few steps of iterative refinements. See Figure 5.5 for the numerical solution,
which has steep thin layers near the two endpoints x = ±1.
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Fig. 5.5. Example 2: Numerical solution of the fast solver for the extreme case a = 1010, where
N = 5120.
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Example 3. Next, we consider the following problem with degenerate coefficients
and Neumann boundary conditions:

exu− (sin2(2πx)ux)x = 1, x ∈ (−1, 1),

u′(−1) = u′(1) = 0.

The general procedure of our fast structured Chebyshev-Galerkin method for
solving the problem is the same as what has been shown in Section 2.2, except that the
basis functions should be chosen as follows due to the Neumann boundary conditions:

ψk(x) = Tk(x)−
(

k

k + 2

)2

Tk+2(x).

The coefficient β(x) = sin2(2πx) degenerates at multiple points. See Figure 5.6.
which leads to the “jumps” in the solution (see, e.g., Figure 5.7(i)). We observe that
the solution has many interior layers located at the zeroes of β(x). Such a scenario can
happen, for example, for problems with internal layers and for Cahn-Hilliard equations
with concentration dependent mobility. In this case, the ratio of the maximum value
to the minimum is infinity. Iterative methods such as CG (with possibly the Jacobi
preconditioner) fail to converge.
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Fig. 5.6. Example 3: The coefficient function β(x).

Fortunately, the corresponding system matrix still has the low-rank property and
can be solved efficiently by our fast structured method. We achieved both high ac-
curacies and nearly linear complexity just like in the previous examples for such a
difficult problem. See Figure 5.7 and Table 5.5 for the detailed reports.

Table 5.5
Example 3: Numerical results of the fast structured solver.

N κ nmv Timef r (nit)
320 1.46e07 264 0.01 4.28e− 13 (2)
640 2.40e08 352 0.03 1.94e− 12 (2)
1280 3.92e09 440 0.09 1.01e− 11 (2)
2560 6.38e10 440 0.18 5.19e− 11 (2)
5120 1.04e12 460 0.37 3.27e− 10 (3)
10240 460 0.75 6.45e− 10 (4)
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(i) Numerical solution (based on N = 2560) (ii) Factorization and solution complexity

Fig. 5.7. Example 3: Performance of CG and complexity of our fast structured solver.

Example 4. Finally, we consider a problem where the analytical solution is
known. We solve the problem (2.1)–(2.2) with

α(x) = β(x) = cos(sin(x)),

and f(x) is chosen such that the exact solution is

u(x) = e1+sin(kx),

where k is an integer.

For k = 10 and 100, the numerical results are shown in Table 5.6. When N
increases, the relative error and the residual approach the desired accuracy. The
performance of the solver in terms of the efficiency is similar to that in the previous
examples. Note that for k = 100, the solution is highly oscillatory. However, the
method can still achieve high accuracy for reasonably large N . As N increases, the
relative error e decays exponentially. The computation time is only slightly larger
than that for k = 10.

Remark 6. The amplification of the HSS approximation error by the condition
number may affect the accuracy. In fact, even standard direct solvers have similar
amplification (of the numerical errors) by the condition number. In the field of direct
solutions, such amplification is usually acceptable in practice.

6. Concluding remarks. We developed fast structured direct spectral Galerkin
methods for 1D differential equations with variable coefficients. First, we gave sys-
tematic analysis of a low-rank property in Fourier- and Chebyshev-spectral methods.
Then we presented a fast matrix-free algorithm based on HSS structures and random-
ized sampling for the solutions of the linear systems arising from spectral discretiza-
tions. The solver typically achieves an asymptotic computational complexity of about
O(N). The key to the success of the methods lies on two ingredients: (i) the low-rank
property of the underlying matrices; (ii) the fast matrix-free HSS construction based
on matrix-vector products. Both the theory and the numerical experiments support
our claims regarding the accuracy and the efficiency of our method.

We observe that the proofs are purely algebraic and do not depend on the el-
lipticity. Hence, the method is expected to be applicable to some other types of
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Table 5.6
Example 4: Performance of the structured solver.

N nmv
Original accuracy After iterative refinement

Time (s)
e r nit e r

80 68 5.80e+ 00 1.79e− 08 2 5.80e+ 00 2.11e− 17 2.09e− 02
160 92 8.44e− 04 3.07e− 10 2 8.44e− 04 2.10e− 17 3.84e− 02
320 100 1.39e− 07 6.92e− 09 2 7.42e− 14 1.35e− 16 1.08e− 01
640 120 4.90e− 08 6.52e− 09 2 9.00e− 15 1.84e− 17 1.86e− 01
1280 140 1.24e− 07 9.41e− 09 2 1.38e− 14 9.70e− 17 4.28e− 01

(i) k = 10

N nmv
Original accuracy After iterative refinement

Time (s)
e r nit e r

160 104 5.80e+ 02 1.37e− 09 1 5.80e+ 02 6.90e− 17 3.69e− 02
320 132 4.65e+ 00 6.23e− 11 2 4.65e+ 00 5.20e− 17 8.87e− 02
640 120 7.21e− 03 6.28e− 11 2 7.21e− 03 2.62e− 17 1.87e− 01
1280 140 7.13e− 07 1.02e− 10 2 7.04e− 07 5.99e− 17 4.32e− 01
2560 160 4.00e− 08 3.01e− 11 2 4.16e− 12 3.34e− 17 9.77e− 01

(ii) k = 100

differential equations with variable coefficients in one-dimension. Examples include
ut = −(a(x)ux)x+F (u) and −(a(x)ux)x+F (u) = 0, where F (u) is a certain function
that may be nonlinear in u. In such cases, the approximation of the resulting dis-
cretized matrix involves the sum of HSS matrices and narrow banded matrices (with
possible diagonal scaling). Moreover, the method is particularly effective for prob-
lems with steep gradients and/or large variations, and even problems with degenerate
coefficients.

This methodology can be potentially extended to the following cases:
• Initial-boundary-value problems. After implicit or semi-implicit methods for
temporal discretizations, the time-dependent evolution equations, such as
heat equation, Burgers equation, Navier-Stokes equations etc., would become
elliptic equations about spatial variables like (1.1) at each time step. Besides,
since the number of time steps is usually very large, a large number of solu-
tions to a linear system like (2.8) or (2.18) with the same coefficient matrix
but different right-hand sides are required. In such situations, the fast direct
solver shown in Section 4 is much more efficient than iterative solvers.

• High-order equations and coupled systems of second-order equations. Com-
bining the method shown in [7], one can likely construct fast direct spectral
Galerkin solvers for higher order problems, such as biharmonic equations,
Cahn-Hilliard systems, and plate blending problems of elasticity.

We restricted our attention to the spectral Galerkin method for one-dimensional
problems with rigorous analysis and ample numerical examples. Actually, the theo-
retical and numerical frameworks presented in this paper are essential for extension
to multi-dimensional problems and spectral collocation methods. We are currently
working on the following situations:

• Tensor-product based spectral methods. For separable equations in multi-
dimensions, the solution process can be reduced to solving a sequence of
one-dimensional problems [24, 26]. Here the bottleneck is the HSS eigenvalue
decomposition and eigenmatrix-vector multiplication along each direction.
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For certain cases, we can use a recent superfast HSS eigensolver in [33]. Based
on the tensor products and the HSS eigenvalue decomposition along each
direction, we can find a structured eigenvalue decomposition of the overall
discretized matrix. The eigenmatrix is in a structured form and can be applied
to a vector in nearly linear complexity. This leads to the solution of the overall
problem in nearly linear complexity. The details will appear in [27].

• Multi-layer structured solvers for multi-dimensional problems. For two and
three dimensional problems, a simple HSS structure is generally not practical.
Recently, a multi-layer structure is designed in [39]. That is, if the discretized
matrix is approximated by an outer (non-compact) HSS form, its generators
are further structured. This leads to a multi-layer structured form that can
be quickly factorized.

• Sparse spectral methods for higher dimensional problems. Shen, et al. pro-
posed sparse spectral methods for some higher dimensional problems, where
the appropriate intermediate dense submatrices also enjoy the low-rank prop-
erty [28, 30, 31]. It is hopeful that the fast direct solver based on rank-
structured matrices could be generalized to these higher-dimensional cases.

• Fast structured spectral collocation methods. Although the differential matri-
ces in spectral collocation methods are totally dense, they are numerically
observed to also enjoy the low-rank property, fortunately. It indicates that
we can first construct the HSS approximation to the differential matrices and
store them in advance, and then the linear systems resulting from collocation
discretization of differential equations could be solved quickly [29].

Our preliminary results indicate that it is, in principle, possible to extend our
structured solvers to these situations, although their efficient implementations are by
no means trivial.

Finally, we would like to mention an interesting solver proposed in [21] very re-
cently. Their strategy is based on a totally different approach — the tau-formulation,
and on an essential assumption that the variable coefficients can be accurately ap-
proximated by low-order polynomials. The decay of the entries would yield a solver
with O(m2N) complexity, where m is the number of Chebyshev coefficients needed
to resolve the variable coefficients. For smooth coefficients, m is very small and a
straightforward truncation to a banded approximation is much simpler than the con-
struction of structured approximations. However, for coefficients with steep gradients,
a large m is needed. Our direct solver yields nearly linear computational complexity
independent of such m, and does not assume or rely on any fast decay of the entries
of A in (2.8) or (2.18). More specifically, our complexity is O(rN log2N) + O(r2N),
where r is small even for coefficients with steep gradients or variations. Note that the
cost O(rN log2N) is for the matrix-free HSS construction. (In contrast, the solver in
[21] for smooth coefficients forms the entries of A explicitly and then truncate.) Our
matrix-free construction aims at more general cases (especially with steep gradients
or variations in the coefficients) so that we do not need to explicitly form the matrix
entries.
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