
SUPERDC: SUPERFAST DIVIDE-AND-CONQUER EIGENVALUE1

DECOMPOSITION WITH IMPROVED STABILITY FOR2

RANK-STRUCTURED MATRICES∗3

XIAOFENG OU† AND JIANLIN XIA†4

Abstract. For dense symmetric matrices with small off-diagonal (numerical) ranks and in a5
hierarchically semiseparable form, we give a divide-and-conquer eigendecomposition method with6
nearly linear complexity (called SuperDC) that significantly improves an earlier basic algorithm in7
[Vogel, Xia, et al., SIAM J. Sci. Comput., 38 (2016)]. Some stability risks in the original algorithm are8
analyzed, including potential exponential norm growth, cancellations, loss of accuracy with clustered9
eigenvalues or intermediate eigenvalues, etc. In the dividing stage, we give a new structured low-rank10
updating strategy with balancing that eliminates the exponential norm growth and also minimizes11
the ranks of low-rank updates. In the conquering stage with low-rank updated eigenvalue solution,12
the original algorithm directly uses the standard fast multipole method (FMM) to accelerate function13
evaluations, which has the risks of cancellation, division by zero, and slow convergence. Here, we14
design a triangular FMM to avoid cancellation. Furthermore, when there are clustered intermediate15
eigenvalues, we design a novel local shifting strategy to integrate FMM accelerations into the solution16
of shifted secular equations. This helps achieve both the efficiency and the reliability. We also provide17
a deflation strategy with a user-supplied tolerance and give a precise description of the structure of18
the resulting eigenvector matrix. The SuperDC eigensolver has significantly improved stability while19
keeping the nearly linear complexity for finding the entire eigenvalue decomposition. Extensive20
numerical tests are used to show the efficiency and accuracy of SuperDC.21

Key words. superfast eigenvalue decomposition, divide-and-conquer method, rank-structured22
matrix, triangular fast multipole method, shifted secular equation, local shifting23

AMS subject classifications. 65F15, 65F55, 15A18, 15A2324

1. Introduction. In this paper, we consider the full eigenvalue decomposition of25

n×n real symmetric matrices A with small off-diagonal ranks (and also A that can be26

approximated well by matrices with small off-diagonal ranks). Such matrices belong to27

the class of rank-structured matrices. Examples include banded matrices with finite28

bandwidth, Toeplitz matrices in Fourier space [33, 47, 55], some matrices arising29

from discretized PDEs and integral equations [32, 36, 51, 53], some kernel matrices30

[10, 56], etc. The eigenvalue decompositions of relevant matrices are very useful31

in computations such as matrix function evaluations [4], discretized linear system32

solutions [45], matrix equation solutions [35], and quadrature approximations [40].33

They are also very useful in fields such as optimization, imaging, Gaussian processes,34

and machine learning [35].35

There are several types of rank-structured forms, such as H/H2 matrices [26, 27],36

hierarchical semiseparable (HSS) matrices [12, 54], quasiseparable/semiseparable ma-37

trices [11, 21, 42], BLR matrices [2], and HODLR matrices [1]. Examples of eigen-38

solvers for these rank-structured matrices include divide-and-conquer methods [3, 13,39

20, 29, 38, 44], QR iterations [7, 15, 19, 21, 41], bisection, [6, 48], and methods using40

accelerated characteristic polynomial evaluations [8].41

Our work here focuses on the divide-and-conquer method for HSS matrices (that42

may be dense or sparse). The divide-and-conquer method has previously been well43

studied for tridiagonal matrices (which may be considered as special HSS forms). See,44

e.g., [5, 9, 16, 18, 24, 34]. In particular, a stable version is given in [24]. The algorithms45

∗The research of Jianlin Xia was supported in part by an NSF grant DMS-1819166.
†Department of Mathematics, Purdue University, West Lafayette, IN 47907 (ou17@purdue.edu,

xiaj@purdue.edu).

1

This manuscript is for review purposes only.



2 XIAOFENG OU AND JIANLIN XIA

can compute all the eigenvalues in O(n2) flops and can compute the eigenvectors in46

O(n3) flops. It is also mentioned in [24] that it is possible to accelerate the operations47

in the divide-and-conquer process via the fast multipole method (FMM) [23] to reach48

nearly linear complexity. However, this was not actually done in [24] or later relevant49

work [13, 29]. Only recently, the feasibility of the FMM acceleration of the divide-50

and-conquer process was verified in a structured eigensolver in [44], which works for51

HSS matrices without the need of tridiagonal reductions. For an HSS matrix with52

off-diagonal ranks bounded by r (which may be a constant or a power of log n), the53

method in [44] computes a structured eigendecomposition in O(r2n log2 n) flops with54

storage O(rn log n). The method is then said to be superfast.55

The work in [44] presents the basic framework of a rank-structured divide-and-56

conquer eigensolver. It gives a proof-of-concept algorithm and verifies the feasibility57

of such superfast eigenvalue solution for HSS matrices. Due to the complex nature of58

the entire framework with many components, that preliminary work has some limita-59

tions. It does not consider some crucial stability issues in the HSS divide-and-conquer60

process, such as the risks of exponential norm growth and potential cancellations in61

some function evaluations. Moreover, it does not incorporate several key stability62

strategies that are used in practical tridiagonal divide-and-conquer algorithms. These63

limitations are due to some major challenges in combining FMM accelerations with64

those stability strategies, especially for problems with clustered eigenvalues.65

Specifically, in the dividing stage, upper-level off-diagonal block information is66

used to update lower-level diagonal blocks (also as HSS forms) of A in a hierarchical67

process. The norms of the updated lower-level blocks may grow quickly during the68

process, which brings stability risks and may even cause overflow. In the conquering69

stage, multiple types of function evaluations are need in eigenvalue solutions (via a70

modified Newton’s method applied to some secular equations). The application of71

FMM accelerations needs to assemble these function evaluations into matrix-vector72

multiplications. However, classical stabilization techniques involve strategies such as73

splitting function evaluations to avoid cancellation (see, e.g., [5, 9, 18, 28, 24]) and74

solving certain shifted secular equations to guarantee accuracy for clustered eigen-75

values [5, 9, 18, 28, 24]. Such splitting and shifting strategies depend on the each76

individual eigenvalue to be sought so that it is difficult to find all the eigenvalues to-77

gether with the usual FMM acceleration. (Sections 4.2.1 and 4.3.1 show the details.)78

The algorithm in [44] directly applies usual FMM accelerations to standard secular79

equations. This may lose accuracy or even encounter cancellations.80

Thus, the main purpose of this paper is to overcome these limitations. We fol-81

low the basic framework in [44] but provide some important stability, accuracy, and82

efficiency improvements. We show how to integrate structured accelerations with sev-83

eral stabilization strategies. A more reliable superfast divide-and-conquer eigensolver84

(called SuperDC) is then designed to find an approximate eigenvalue decomposition85

of A:86

(1.1) A ≈ QΛQT ,87

where Λ is a diagonal matrix for the eigenvalues and Q is for the orthogonal eigen-88

vectors. For convenience, we call the matrix Q an eigenmatrix. (Our presentation89

focuses on real symmetric A, and the ideas can be immediately extended to complex90

Hermitian matrices). The main significance of the work includes the following.91

1. We analyze why the original hierarchical dividing strategy in [44] can lead to92

exponential norm growth. A more stable dividing strategy is designed, where93

a balancing technique guarantees the norm growth is well under control. We94

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 3

also give a strategy to choose appropriate low-rank updates in the dividing95

stage so as to reduce the rank of low-rank updates and save eigenvalue solution96

costs.97

2. In the solution of the secular equations for the eigenvalues, we design a tri-98

angular FMM to accommodate the eigenvalue-dependent splitting (for the99

stability purpose as mentioned above). This enables us to quickly and stably100

evaluate the functions (after splitting) through matrix-vector multiplications101

that are not suitable for the standard FMM.102

3. When shifted secular equations are used to handle clustered intermediate ei-103

genvalues, we design a local shifting strategy that integrates shifts into FMM104

matrices without destroying the FMM structure. This enhances the stabil-105

ity of eigenvalue solution, leading to improved eigenvalue accuracy and also106

better convergence of iterative secular equation solution.107

4. We also provide clarifications and improvements on several aspects such as108

the precise structure of the resulting eigenmatrix, the eigenvalue deflation109

criterion with a user-supplied tolerance, and the stopping criterion in iterative110

eigenvalue solution.111

5. With all the stabilization strategies, SuperDC still nicely preserve the nearly112

linear complexity. The eigendecomposition complexity is still O(r2n log2 n),113

with O(rn log n) storage. No extra tridiagonal reduction is needed for dense114

HSS matrices. We provide extensive numerical tests a SuperDC package in115

Matlab. For modest matrix sizes n, SuperDC already has significantly lower116

runtime and storage than some other eigensolvers while producing satisfactory117

accuracies. Benefits of our stabilization strategies are also demonstrated.118

In the remaining sections, we begin in Section 2 with a quick review of the basic119

HSS divide-and-conquer eigensolver in [44]. Then the improved structured dividing120

strategy is discussed in Section 3, followed by the efficient structured conquering121

scheme in Section 4. Section 5 gives some numerical experiments to demonstrate the122

efficiency and accuracy. Then Section 6 concludes the paper. A list of the major123

algorithms is given in the supplementary materials.124

Throughout this paper, the following notation is used.125

• Lower-case letters in bold fonts like u are used to denote vectors.126

• (Aij)n×n means an n× n matrix with the (i, j)-entry Aij .127

• Sometimes, a vector s may be viewed as an ordered set formed by its compo-128

nents si. Then si ∈ s means si is a component of s. Accordingly, for vectors129

s and t, a matrix (κ(si, tj))si∈s,tj∈t may be defined by the evaluation of a130

function κ(s, t) at the components of s and t.131

• diag(· · · ) denotes a (block) diagonal matrix.132

• rowsize(A) and colsize(A) mean the row and column sizes of A, respectively.133

• u� v denotes the entrywise (Hadamard) product of two vectors u and v.134

• For a binary tree T , we suppose it is in postordering so that it has nodes135

i = 1, 2, . . . , root(T ), where root(T ) is the root.136

• fl(x) denotes the floating point result of x.137

• εmach represents the machine precision.138

2. Review of the basic superfast divide-and-conquer eigensolver. We139

first briefly summarize the basic superfast divide-and-conquer eigensolver in [44],140

which generalizes the classical divide-and-conquer method for tridiagonal matrices141

to HSS matrices.142

A symmetric HSS matrix A [54] may be defined with the aid of a postordered full143

This manuscript is for review purposes only.



4 XIAOFENG OU AND JIANLIN XIA

binary tree T called HSS tree, and has a nested structure that looks like144

(2.1) Dp =

(
Di UiBiU

T
j

UjB
T
i U

T
i Dj

)
,145

where p ∈ T has child nodes i and j, so that Dp with p = root(T ) is the entire HSS146

matrix A. Here, the U matrices are off-diagonal basis matrices and also satisfy a147

nested relationship Up =

(
Ui

Uj

)(
Ri
Rj

)
. The Di, Ui, Bi matrices are called HSS148

generators associated with node i. The maximum size of the B generators is usually149

referred as the HSS rank of A. We suppose root(T ) is at level 0, and the children of150

a node i at level l are at level l + 1.151

The superfast divide-and-conquer eigensolver in [44] finds the eigendecomposition152

(1.1) of A through a dividing stage and a conquering stage as follows.153

2.1. Dividing stage. In the dividing stage in [44], A and its submatrices are154

recursively divided into block-diagonal HSS forms plus low-rank updates. Start with155

p = root(T ) and its two children i and j. A = Dp in (2.1) can be written as156

(2.2) Dp =

(
Di − UiBiBTi UTi

Dj − UjUTj

)
+

(
UiBi
Uj

)(
BTi U

T
i UTj

)
.157

For notational convenience, we suppose the HSS rank of A is r and each B generator158

has column size r. Let159

(2.3) D̂i = Di − UiBiBTi UTi , D̂j = Dj − UjUTj , Zp =

(
UiBi
Uj

)
,160

and we arrive at161

(2.4) Dp = diag(D̂i, D̂j) + ZpZ
T
p .162

Here, the diagonal blocks Di and Dj are modified so that a rank-r update ZpZ
T
p can163

be used instead of a rank-2r update. The column size of Zp is referred as the rank of164

the low-rank update and here we have colsize(Zp) = colsize(Bi).165

During this process, the blocks D̂i and D̂j remain to be HSS forms. In fact,166

it is shown in [44, 54] that any matrix of the form Di − UiHU
T
i can preserve the167

off-diagonal basis matrices of Di. Specifically, the following lemma can be used for168

generator updates.169

Lemma 2.1. [44] Let Ti be the subtree of the HSS tree T that has the node i as170

the root. Then Di −UiHUTi has HSS generators D̃k, Ũk, R̃k, B̃k for each node k ∈ Ti171

as follows:172

Ũk = Uk, R̃k = Rk,173

B̃k = Bk − (RkRkl · · ·Rk1)H(RTk1 · · ·R
T
kl
RT
k̃

),(2.5)174

D̃k = Dk − Uk(RkRkl · · ·Rk1)H(RTk1 · · ·R
T
kl
RTk )UTk for a leaf k,175176

where k̃ is the sibling node of k and k → kl → · · · → k1 → i is the path connecting k177

to i. Accordingly, Di − UiHUTi and Di have the same off-diagonal basis matrices.178

Thus, the HSS generators of D̂i and D̂j can be conveniently obtained via the179

generator update procedure (2.5). Then the dividing process can continue on D̂i and180

D̂j like above with p in (2.2) replaced by i and j, respectively.181

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 5

2.2. Conquering stage. Suppose eigenvalue decompositions of the subprob-182

lems D̂i and D̂j in (2.3) have been computed respectively as183

(2.6) D̂i = QiΛiQ
T
i , D̂j = QjΛjQ

T
j .184

Then from (2.4), we have185

Dp = diag(Qi, Qj)
(

diag(Λi,Λj) + ẐpẐ
T
p

)
diag(QTi , Q

T
j ), with(2.7)186

Ẑp = diag(QTi , Q
T
j )Zp.(2.8)187188

Consequently, if we can solve the rank-r updating problem189

(2.9) diag(Λi,Λj) + ẐpẐ
T
p = Q̂pΛpQ̂

T
p ,190

then the eigendecomposition of Dp can be simply retrieved as191

(2.10) Dp = QpΛpQ
T
p , with Qp = diag(Qi, Qj)Q̂p.192

Therefore, the main task is to compute the eigendecomposition of the low-rank193

update problem (2.9). To this end, suppose Ẑp =
(
z1 · · · zr

)
, where zk’s are the194

columns of Ẑp. Then (2.9) can be treated as r rank-1 updating problems diag(Λi,Λj)+195 ∑r
k=1 zkz

T
k . As a result, a basic component is to quickly find the eigenvalue decom-196

position of a diagonal plus rank-1 updating problem in the following form:197

(2.11) Λ̃ + vvT = Q̃ΛQ̃T ,198

where Λ̃ = diag(d1, . . . , dn) with d1 ≤ · · · ≤ dn, v = (v1, . . . , vn)T , Q̃ = (q̃1, . . . , q̃n),199

and Λ = diag(λ1, . . . , λn).200

As in standard divide-and-conquer eigensolvers (see, e.g., [5, 16, 24]), the eigen-201

values λk are found through the solution of the following secular equation [22]:202

(2.12) f(x) = 1 +

n∑
k=1

v2
k

dk − x
= 0.203

Newton iterations with rational interpolations may be used and the cost for finding204

all the n roots is O(n2). Once λk is computed, a corresponding eigenvector looks like205

q̃k = (Λ̃ − λkI)−1v. Such an analytical form is not directly used in general for the206

stability reason, since any loss of precision in the computed λk can be significantly207

amplified in (Λ̃ − λkI)−1v, which will result in the loss of eigenvector orthogonality208

[18, 24]. A stable way to obtain q̃k is given in [24] based on Löwner’s formula.209

It is also mentioned in [24] that nearly O(n) complexity may be achieved by210

assembling multiple operations into matrix-vector multiplications that can be accel-211

erated by the FMM. This is first verified in [44], where the complexity of the algorithm212

for finding the entire eigendecomposition is O(r2n log2 n) instead of O(n3), with the213

eigenmatrix Q in (1.1) given in a structured form that needs O(rn log n) storage in-214

stead of O(n2). In the following sections, we give a series of stability enhancements215

to get an improved superfast divide-and-conquer eigensolver.216

3. Improved structured dividing strategy. In this section, we point out a217

stability risk in the original dividing method as given in (2.2)–(2.3) and propose a218

more stable dividing strategy. We also design a way to minimize colsize(Zp).219

This manuscript is for review purposes only.



6 XIAOFENG OU AND JIANLIN XIA

The stability risk can be illustrated as follows. Consider D̂i in (2.2) which is220

the result of updating Di in the dividing process associated with the parent p of i.221

Suppose i has children c1 and c2 such that222

(3.1) Di =

(
Dc1 Uc1Bc1U

T
c2

Uc2Bc2U
T
c1 Dc2

)
, Ui =

(
Uc1

Uc2

)(
Rc1
Rc2

)
.223

Then224

D̂i = Di − UiBiBTi UTi =

(
D̃c1 Uc1B̃c1U

T
c2

Uc2B̃
T
c1U

T
c1 D̃c2

)
,225

where226

D̃c1 = Dc1 − Uc1Rc1BiBTi RTc1U
T
c1 , D̃c2 = Dc2 − Uc2Rc2BiBTi RTc2U

T
c2 ,227

B̃c1 = Bc1 −Rc1BiBTi RTc2 .(3.2)228229

In HSS constructions [54], to ensure stability of HSS algorithms, the U basis gen-230

erators often have orthonormal columns [46, 47]. Then due to (3.1), the R generators231

also satisfy that

(
Rc1
Rc2

)
has orthonormal columns. Then each B generator has 2-232

norm equal to its associated off-diagonal block. For example, ‖Bi‖2 = ‖UiBiUTj ‖2.233

Furthermore, ‖Rc1‖2 ≤ 1, ‖Rc2‖2 ≤ 1, and (3.2) means234

(3.3) ‖B̃c1‖2 ≤ ‖Bc1‖2 + ‖Bi‖22.235

If the off-diagonal block UiBiU
T
j has a large norm, ‖B̃c1‖2 can potentially be much236

larger than ‖Bc1‖2. We can similarly observe the norm growth with the updated D237

generators. Moreover, when the dividing process proceeds on D̃c1 , the norms of the238

updated B,D generators at lower levels can grow exponentially.239

Proposition 3.1. Suppose the Uk generator of A associated with each node k240

of T with k 6= root(T ) has orthonormal columns and all the original Bk generators241

satisfy ‖Bk‖2 ≤ β with β � 1. Also suppose the leaves of T are at level lmax ≤ log2 n.242

When the original dividing process in Section 2.1 proceeds from root(T ) to a nonleaf243

node i, immediately after finishing the dividing process associated with node i,244

• with i at level l ≤ lmax−2, the updated Bk generator (denoted B̃k) associated245

with any descendant k of i satisfies246

(3.4) ‖B̃k‖2 = O(β2l

) ≤ O(βn/4),247

where O(·) denotes the asymptotic upper bound and is given in terms of the248

highest order term in β;249

• with i at level l ≤ lmax−1, the updated Dk generator (denoted D̃k) associated250

with any leaf descendant k of i satisfies251

(3.5) ‖D̃k‖2 = ‖Dk‖2 +O(β2l

) ≤ ‖Dk‖2 +O(βn/2).252

Proof. Following the update formulas in Lemma 2.1, we just need to show the253

norm bound for ‖B̃k‖2. The bound for ‖D̃k‖2 can be shown similarly.254

After the dividing process associated with root(T ) is finished, according to (2.5),255

B̃k associated with any descendant k of a child i of root(T ) looks like256

(3.6) B̃k = Bk − (RkRkm−1 · · ·Rk1)Hi(R
T
k1 · · ·R

T
km−1

RT
k̃

),257

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 7

where Hi = BiB
T
i if i is the left child of root(T ) or Hi = I otherwise, k is supposed258

to be at level m with sibling k̃, and k → km−1 → · · · → k1 → i is the path connecting259

k to i in the HSS tree T . Clearly, ‖Hi‖2 ≤ β2. With the orthogonality condition of260

the U basis generators,

(
Rc1
Rc2

)
also has orthogonal columns. Then we get261

(3.7) ‖B̃k‖2 ≤ ‖Bk‖2 + ‖Hi‖2 ≤ β + β2 = O(β2).262

Then in the dividing process associated with node i at level 1, for a child c of i263

(see Figure 3.1 for an illustration), the generator D̃c is further updated to264

(3.8) D̂c = D̃c − UcHcU
T
c ,265

where Hc = B̃cB̃
T
c if c is the left child of i or Hc = I otherwise. We have ‖Hc‖2 ≤266

‖B̃c‖22 for the first case and ‖Hc‖2 = 1 for the second case. From (3.7), we have267

‖Hc‖2 ≤ (β2 + β)2. For any descendant k of c with sibling k̃, (3.8) needs to update268

the generator Bk to269

B̃k = Bk − (RkRkm−1 · · ·Rk2Rc)Hi(R
T
c R

T
k2 · · ·R

T
km−1

RT
k̃

)(3.9)270

− (RkRkm−1
· · ·Rk2)Hc(R

T
k2 · · ·R

T
km−1

)RT
k̃
,271

272

where the last term on the right-hand side is because of the update associated with273

the dividing of Di like in (3.6). Then274

(3.10) ‖B̃k‖2 ≤ ‖Bk‖2 + ‖Hi‖2 + ‖Hc‖2 ≤ β + β2 + (β2 + β)2 = O(β4).275

root(T )

i
c

k

Fig. 3.1. Nodes involved in the dividing process.

276

If the dividing process continues to c, it is similar to obtain ‖B̃k‖2 = O(β8) for277

any descendant k of a child of c. We can then similarly reach the conclusion on the278

general pattern of the norm growth as in (3.4). Also, if i is at level lmax − 1, then Bk279

associated with a child k of i is not updated, which is why only i at level l ≤ lmax− 2280

contributes to the norm growth of lower level B generators.281

The bound O(β2l

) in (3.4) for ‖B̃k‖2 and the bound ‖Dk‖2 +O(β2l

) in (3.5) for282

‖D̃k‖2 are attainable. To see this, suppose i is a child of root(T ) and ‖Bi‖2 = β.283

Note the multiplicative forms like Hi below (3.6) and Hc below (3.8). Following the284

proof, we can see that the asymptotic upper bounds (3.4) and (3.5) can be attained285

at some leaf level node k after the dividing process associated with the parent of k is286

completed.287

This proposition indicates that, during the original hierarchical dividing process,288

the updated B,D generators associated with a lower-level node may potentially have289

exponential norm accumulation, as long as one of its ancestors is associated with a290

B generator with a large norm. This can cause stability issues or even overflow, as291

confirmed in the numerical tests later.292

This manuscript is for review purposes only.



8 XIAOFENG OU AND JIANLIN XIA

To resolve this, we introduce balancing/scaling into the updates and propose a293

new dividing strategy. That is, we replace the original dividing method (2.2) by294

Dp =

(
Di − 1

‖Bi‖2UiBiB
T
i U

T
i

Dj − ‖Bi‖2UjUTj

)
(3.11)295

+

(
1√
‖Bi‖2

UiBi√
‖Bi‖2Uj

)(
1√
‖Bi‖2

BTi U
T
i

√
‖Bi‖2UTj

)
.296

297

Then we still have (2.4), but with298

(3.12)

D̂i = Di −
1

‖Bi‖2
UiBiB

T
i U

T
i , D̂j = Dj − ‖Bi‖2UjUTj , Zp =

(
1√
‖Bi‖2

UiBi√
‖Bi‖2Uj

)
.299

We show how this strategy controls the norms of the updated B,D generators.300

Proposition 3.2. Suppose the same conditions as in Proposition 3.1 hold, except301

that (2.2) is replaced by (3.11) so that (2.3) is replaced by (3.12). Then (3.4) and302

(3.5) become, respectively,303

(3.13) ‖B̃k‖2 ≤ 2lβ ≤ n

4
β, ‖D̃k‖2 ≤ ‖Dk‖2 + 2lβ ≤ ‖Dk‖2 +

n

2
β.304

Proof. The proof follows a procedure similar to the proof for Proposition 3.1.305

Again, we just show the result for ‖B̃k‖2. After the dividing process associated with306

root(T ) is finished, we still have (3.6) for any descendant k of a child i of root(T ),307

except that Hi =
BiB

T
i

‖Bi‖2 if i is the left child of root(T ) or Hi = ‖Bi‖2I otherwise. In308

either case, we have ‖Hi‖2 ≤ β. Then (3.7) becomes309

(3.14) ‖B̃k‖2 ≤ 2β.310

Then in the dividing process associated with node i at level 1, for a child c of311

i, the generator D̃c is updated like in (3.8), except that Hc =
B̃cB̃

T
c

‖B̃c‖2
if c is the left312

child of i or Hc = ‖B̃c‖2I otherwise. We have ‖Hc‖2 ≤ ‖B̃c‖2 for both cases. From313

(3.14), ‖Hc‖2 ≤ 2β. For any descendant k of c, (3.8) still requires the update of the314

generator Bk to B̃k like in (3.9), except that (3.10) now becomes315

‖B̃k‖2 ≤ ‖Bk‖2 + ‖Hi‖2 + ‖Hc‖2 ≤ β + β + 2β = 4β.316

If the dividing process continues to c, it is similar to obtain ‖B̃k‖2 ≤ 8β for any317

descendant k of the left child of c. We can similarly get the norm growth as in (3.13)318

in general.319

Therefore, the norm growth now becomes at most linear in n and is well controlled,320

in contrast to the exponential growth in Proposition 3.1. Here again, the upper bounds321

2lβ for ‖B̃k‖2 and ‖Dk‖2 + 2lβ for ‖D̃k‖2 are attainable.322

Next, we can also minimize colsize(Zp), the rank of the low-rank update. Note323

that in the original dividing method (2.2) in [44], the updates to the two diago-324

nal blocks involve the Bi generator in different ways. That is, Di is updated by325

−UiBiBTi UTi while Dj is updated by −UjUTj . In fact, (2.2) may be reformulated so326

that Di is updated by −UiUTi while Dj is updated by −UjBTi BiUTj . It is not clear327

from [44] which way is better.328

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 9

In fact, in (2.2) and also (3.11)–(3.12), the rank of the low-rank update is equal329

to colsize(Bi). In practice, Bi may not be a square matrix. Thus, (3.12) shall be used330

only if colsize(Bi) ≤ rowsize(Bi). Otherwise, we replace (3.12) by the following:331

(3.15)

D̂i = Di − ‖Bi‖2UiUTi , D̂j = Dj −
1

‖Bi‖2
UjB

T
i BiU

T
j , Zp =

( √
‖Bi‖2Ui
1√
‖Bi‖2

UjB
T
i

)
,332

so that (2.4) still holds. In (3.15), the low-rank update size is now rowsize(Bi). With333

such a choice between (3.12) and (3.15), we ensure that the size of the low-rank334

update colsize(Zp) is always min(rowsize(Bi), colsize(Bi)). This strategy benefits the335

efficiency in the conquering stage since it reduces the number of rank-1 updates. With336

these new ideas, we have a more stable and efficient dividing stage.337

4. Improved structured conquering stage. In this section, we discuss the338

solution of the eigenvalues and eigenvectors in the conquering stage via the integra-339

tion of various stability strategies into FMM accelerations. We first show a flexible340

deflation strategy. Then we give a triangular FMM idea for accelerating the secu-341

lar equation solution and a local shifting strategy for solving shifted secular equations342

and constructing structured eigenvectors. We also discuss the framework of the overall343

eigendecomposition and the precise structure of the overall eigenmatrix.344

4.1. User-controlled deflation. As reviewed in Section 2.2, the key problem345

in the conquering stage is to quickly find the eigendecomposition of the rank-one346

updating problem (2.11). Like in earlier studies in [9, 18], an eigenvalue deflation step347

may be first applied to reduce the size of (2.11) if |vj | or the difference |dj − dj+1| is348

small. In the implementations of the tridiagonal divide-and-conquer eigensolver (see,349

e.g., [5]), the deflation is performed in a two-step procedure with a tolerance related to350

εmach. Here, we follow the same steps, but replace εmach with a user-supplied deflation351

tolerance τ to get a more flexible deflation procedure.352

(i) If |vj | < τ , without loss of generality, we assume j = n, v =

(
v1

vn

)
and get353

Λ̃ + vvT =

(
Λ̃1

dn

)
+

(
v1

vn

)(
vT1 vn

)
≈
(

Λ̃1 + v1v
T
1

dn

)
,354

where the approximation has an error proportional to τ . Then we only need to find355

the eigendecomposition of the smaller problem Λ̃1 + v1v
T
1 .356

(ii) If |(dj − dj+1)vjvj+1| < (v2
j + v2

j+1)τ , we can find a Givens rotation matrix G357

such that G

(
vj
vj+1

)
=

(
0
w

)
with w =

√
v2
j + v2

j+1. Then358

G

((
dj

dj+1

)
+

(
vj
vj+1

)(
vj vj+1

)T)
GT =

(
dj µ
µ dj+1

)
+

(
0
w

)(
0 w

)T
359

≈
(
dj

dj+1

)
+

(
0
w

)(
0 w

)T
=

(
dj

dj+1 + w2

)
,360

361

where µ =
(dj−dj+1)vjvj+1

v2j +v2j+1
and the approximation has a 2-norm error |µ| < τ . This362

then leads to a diagonal subproblem.363

After the above deflation steps, the problem size of (2.11) is reduced and the364

simplified problem satisfies365

(4.1) |vj | ≥ τ and |dj − dj+1| ≥
(v2
j + v2

j+1)τ

|vjvj+1|
.366

This manuscript is for review purposes only.



10 XIAOFENG OU AND JIANLIN XIA

The parameter τ offers the flexibility to control the accuracy of the eigenvalues.367

When only moderate accuracy is needed, a larger τ can be used for a more significant368

reduction in the problem size. Moreover, this can sometimes avoid the need to deal369

with situations where |λj − dj | or |λj − dj+1| is too small.370

4.2. Fast secular equation solution. Assume (4.1) holds for (2.11) so that371

no deflation is needed. We consider the solution of the secular equation (2.12) for372

its eigenvalues λk, k = 1, 2, . . . , n. Without loss of generality, suppose the diagonal373

entries dk of Λ̃ are ordered from the smallest to the largest.374

4.2.1. Standard FMM accelerations and the limitation. When the modi-375

fied Newton’s method is used to solve for λk, it needs to evaluate f (referred to as the376

secular function) in (2.12) and its derivative f ′ at certain xk ∈ (dk, dk+1). The idea in377

[13, 24, 44] is to assemble the function evaluations for all k together as matrix-vector378

multiplications that can be accelerated by the standard FMM. That is, let379

f =
(
f(x1) · · · f(xn)

)T
, f ′ =

(
f ′(x1) · · · f ′(xn)

)T
,380

v =
(
v1 · · · vn

)T
, w = v � v, e =

(
1 · · · 1

)T
,(4.2)381

C =

(
1

dj − xi

)
n×n

, S =

(
1

(dj − xi)2

)
n×n

,(4.3)382

f = e + Cw, f ′ = Sw.(4.4)383384

The vectors f and f ′ can be quickly evaluated by the FMM with the kernel functions385

κ(s, t) = 1
s−t and κ(s, t) = 1

(s−t)2 , respectively.386

A basic idea of the FMM for computing, say, Cw is as follows. Note that C is387

the evaluation of κ(s, t) = 1
s−t at interlaced points s ∈ {dj}1≤j≤n and t ∈ {xi}1≤i≤n:388

(4.5) di < xi < di+1 < xi+1, 1 ≤ i ≤ n− 1.389

The sets {xi}1≤i≤n and {dj}1≤j≤n together are treated as one set and then hier-390

archically partitioned. This also naturally leads to a hierarchical partition of both391

{xi}1≤i≤n and {dj}1≤j≤n. Consider two subsets produced in this partitioning:392

(4.6) sx ⊂ {xi}1≤i≤n, sd ⊂ {dj}1≤j≤n.393

Use Csx,sd = (κ(dj , xi))xi∈sx,dj∈sd to denote the block of C defined by sx and sd,394

which is often referred as the interaction between sx and sd.395

• If sx and sd are well separated (a precise definition of the separation can be396

found in [23, 37]), then Csx,sd can be approximated by a low-rank form397

(4.7) Csx,sd ≈ UsxBsx,sdV
T
sd
.398

Such a low-rank approximation can be obtained via a degenerate expansion399

of κ(s, t) and has a bounded rank for any specified approximation accuracy.400

That is, the size of Bsx,sd is bounded. (See [10] for an example of the accuracy401

study.) The subsets sx and sd are also said to be far-field clusters and the402

submatrix Csx,sd is a far-field interaction/block.403

• On the other hand, if sx and sd are not well separated, then they are said404

to be near-field clusters, and Csx,sd = (κ(dj , xi))xi∈sx,dj∈sd is treated as a405

regular dense block (near-field interaction/block).406

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 11

The FMM further considers the interactions between parent and child clusters407

during the hierarchical partitioning, so that the U, V basis matrices in (4.7) satisfy408

nested relationships (like in (3.1)). The details can be found in [23] and are not our409

focus here. (Also see [10] particularly for a stable 1D matrix version.) The FMM410

essentially constructs an FMM matrix approximation to C and multiplies it with w.411

The complexity of each FMM matrix-vector mutliplication is O(n).412

In light of (4.3) and (4.4), a straightforward idea in [13, 24, 44] is to apply the413

standard FMM to C and S for fast evaluations of f and f ′. However, in practical414

implementations of secular equation solution methods, it is preferred to write f(x) in415

the following form so as to avoid cancellation (see, [5, 9, 18]):416

f(x) = 1 + ψk(x) + φk(x),417

where the splitting depends on k (when λk ∈ (dk, dk+1) is to be found):418

(4.8) ψk(x) =
k∑
j=1

v2
j

dj − x
, φk(x) =

n∑
j=k+1

v2
j

dj − x
.419

Because of the interlacing property (4.5), all the terms in the sum for ψk or φk have420

the same sign for x ∈ (dk, dk+1). Furthermore, ψk and φk capture the behavior of f421

near two poles dk and dk+1 respectively.422

A reliable and widely used scheme to find the roots of f(x) is given in [28] based423

on a modified Newton’s method with a hybrid scheme for rational interpolations of424

ψk(x) and φk(x). The scheme mixes a middle way method and a fixed weight method425

and is implemented in LAPACK [5]. In the middle way method, rational functions426

ξk,1(x) = a1 + b1
dk−x and ξk,2(x) = a2 + b2

dk+1−x are decided to interpolate ψk and φk427

respectively at xk ∈ (dk, dk+1), so that428

ξk,1(xk) = ψk(xk), ξ′k,1(xk) = ψ′k(xk), ξk,2(xk) = φk(xk), ξ′k,2(xk) = φ′k(xk).429

(We also follow this hybrid scheme to find the first n− 1 roots λ1, λ2, . . . , λn−1. The430

last root λn has only one pole dn next to it, so a simple rational interpolation is used431

as in [5, 28]).432

The modified Newton’s method requires evaluations of the functions ψk, φk, ψ′k,433

and φ′k at some xk ∈ (dk, dk+1), 1 ≤ k ≤ n−1. (Note that even though the summands434

in ψ′k and φ′k have the same sign, ψ′k and φ′k are used separately in the rational435

interpolations by ξk,1 and ξk,2, respectively [28].) Since these functions all depend on436

individual k, the standard FMM cannot be applied directly. The reason is that the437

standard FMM handles the evaluation of a kernel κ(s, t) at a fixed set of data points,438

while here it needs to evaluate κ(s, t) at different k-dependent subsets of {dj}1≤j≤n439

and {xi}1≤i≤n to produce multiple k-dependent functions.440

4.2.2. Triangular FMM for fast evaluations of ψk and φk. To resolve the441

difficulty of applying FMM accelerations to (4.8), we let442

ψ =
(
ψ1(x1) · · · ψn(xn)

)T
, φ =

(
φ1(x1) · · · φn−1(xn−1) 0

)T
,(4.9)443

ψ′ =
(
ψ′1(x1) · · · ψ′n(xn)

)T
, φ′ =

(
φ′1(x1) · · · φ′n−1(xn−1) 0

)T
.(4.10)444445

The key idea is to write446

(4.11) f = e +ψ + φ = e + CLw + CUw, f ′ = ψ′ + φ′ = SLw + SUw,447

This manuscript is for review purposes only.



12 XIAOFENG OU AND JIANLIN XIA

where e is given in (4.2), CL and SL are the lower triangular parts of C and S,448

respectively, and CU and SU are the strictly upper triangular parts of C and S,449

respectively. This suggests that the FMM idea should be applied to the lower and450

upper triangular parts of C and S separately. That is, we need a special triangular451

FMM that can be used to quickly evaluate the triangular matrix-vector products452

CLw, CUw, SLw, SUw. We illustrate the triangular FMM in terms of the evaluation453

of CLw. For two subsets sx and sd as in (4.6), we similarly use (CL)sx,sd to denote454

the block of CL defined by sx and sd.455

• When sx and sd are neighbor clusters, the interlacing property (4.5) means456

Csx,sd is a diagonal block of C. Then (CL)sx,sd is just the lower triangular457

part of Csx,sd .458

• When sx and sd are well separated, (CL)sx,sd is a far-field block.459

– If sx is on the right of sd or max sx > min sd, the interlacing property460

(4.5) means (CL)sx,sd is in the lower triangular part of CL. Since CL is461

the lower triangular part of C, (4.7) gives462

(4.12) (CL)sx,sd = Csx,sd ≈ UsxBsx,sdV
T
sd
.463

– If sx is on the left of sd, (CL)sx,sd is in the upper triangular part of CL464

and is thus a zero block. This case can still be accommodated by (4.12),465

with Bsx,sd = 0.466

The far-field blocks of CL then have the same U, V basis matrices as those of C.467

Thus, we can conveniently obtain a lower triangular FMM approximation matrix for468

CL based on an FMM approximation matrix for C, just with the difference in the469

lower triangular diagonal blocks and in some zero B generators. The multiplication470

of the triangular FMM matrix with w takes only O(n) operations. The cost of one471

simultaneous iteration step for all xk’s is then O(n).472

4.2.3. Iterative secular equation solution. During the modified Newton’s473

method, let x
(j)
k be an approximation to the eigenvalue λk at the iteration step j. A474

correction ∆x
(j)
k is computed to update x

(j)
k as475

(4.13) x
(j+1)
k ← x

(j)
k + ∆x

(j)
k .476

(We sometimes write x
(j)
k as xk when the focus is not on the iteration steps j.)477

We adopt the following stopping criterion from [24]:478

(4.14) |f(x
(j)
k )| < cn(1 + |ψ(x

(j)
k )|+ |φ(x

(j)
k )|)εmach,479

where c is a small constant. This stopping criterion can be conveniently checked after480

the FMM-accelerated function evaluations, which is an advantage over a criterion481

in [28]. The factor n in (4.14) is related to error propagations of general matrix482

multiplications. Although (4.14) might be loose for an extremely large n, it works483

well in our tests and leads to satisfactory accuracies. It is possible to refine (4.14) to484

a tighter convergence estimate using the backward stability studies of FMM matrix-485

vector multiplication algorithms in [10, 46]. This is our ongoing work.486

Typically, a very small number of iterations is needed for convergence, similarly487

to the tridiagonal divide-and-conquer algorithm as mentioned in [17]. (In our tests,488

each eigenvalue converges in 2 to 5 iterations on average.) With the total number489

of iterations bounded, the total iterative solution cost for finding all the eigenvalues490

(from one secular equation) is O(n).491

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 13

4.3. Local shifting in triangular FMM for shifted secular equation solu-492

tion. When there are clustered eigenvalues or when updates to previous eigenvalues493

are small, typically the standard secular equation (2.12) is not directly solved. In-494

stead, shifted secular equations are solved for the purpose of stability and accuracy, as495

discussed in [9, 18, 24]. However, it is nontrivial to apply FMM to accelerate shifted496

secular equation solution. In fact, the paper [24] mentions the possibility of FMM497

accelerations for the standard secular equation but does not consider the shifted ones.498

The FMM-accelerated algorithm in [44] does not use shifted secular equations either.499

In this subsection, we discuss the necessity of shifting and its challenges to FMM500

accelerations. Moreover, we develop a new strategy that makes it feasible to apply501

FMM accelerations to the solution of shifted secular equations. In the following, we502

suppose deflation in Section 4.1 has already been applied.503

4.3.1. Shifted secular equation solution and its challenge to FMM ac-504

celerations. During the solution for λk ∈ (dk, dk+1), if λk is very close to dk or dk+1,505

evaluating
v2k

λk−dk or
v2k+1

λk−dk+1
in the secular function with a computed λk might lose506

accuracy because of cancellations in the denominator. Without loss of generality, we507

always assume λk is closer to dk. Let the difference between λk and dk be508

ηk ≡ λk − dk,509

which is also said to be the gap between λk and dk. With a very small gap ηk,510

instead of directly solving for λk, the remedy in [9, 18, 24] is to solve a shifted secular511

equation for ηk. For this purpose, we shift the origin to dk and rewrite the original512

secular equation (2.12) as the equivalent shifted secular equation (see, e.g., [9, 18, 24]):513

gk(y) ≡ f(dk + y) = 1 +

n∑
j=1

v2
j

δjk − y
= 0, with(4.15)514

δjk = dj − dk, j = 1, 2, . . . , n.(4.16)515516

(4.15) is solved for y = ηk. The benefits of this shifting within our context are as517

follows.518

One benefit is to avoid catastrophic cancellation or division by zero (see, e.g.,519

[5, 9, 24]). (Basically, for computations like di − λk, although di − λk = δik − ηk520

in exact arithmetic, it is preferred to use δik − ηk to avoid cancellation [9, 24].) For521

example, let xk be an approximation to λk. In exact arithmetic, xk ∈ (dk, dk+1). At522

each modified Newton iteration, it needs to guarantee dk < fl(xk) < dk+1. However,523

this might not be satisfied in floating point arithmetic when xk is very close to dk:524

(4.17) |dk − xk| = O(εmach) or smaller,525

which may lead to cancellation when computing dk − fl(xk):526

(4.18) fl(dk − fl(xk)) = o(εmach) or even fl(dk − fl(xk)) = 0.527

This will cause stability issues in the numerical solutions of the standard secular528

function: fl
(

v2k
dk−fl(xk)

)
either is highly inaccurate or becomes ∞.529

Note that (4.17) and (4.18) are still possible even if deflation in Section 4.1 has530

been applied with a tolerance τ that is not too small. To see this, suppose vk =531

O(τ) ≥ τ and the exact root λk satisfies |λk − dj | � v2
j for j 6= k. Substituting λk532

This manuscript is for review purposes only.



14 XIAOFENG OU AND JIANLIN XIA

into the secular equation (2.12) yields
v2k

dk−λk
= −1 +

∑n
j 6=k

v2j
λk−dj = O(1). In this533

case, λk shall be very close to dk in the following sense:534

|dk − λk| = v2
k ·O(1) = O(τ2).535

If τ = O(ε
1/2
mach) which is not extremely small, we can have (4.17) so that (4.18) may536

happen when solving the standard secular equation.537

Another benefit for solving the shifted equation is faster convergence. It is ob-538

served in our tests that computing with ηk instead of λk can speed up the convergence539

of the modified Newton’s method. To illustrate this, suppose λk is solved directly from540

the standard secular equation (2.12), then the approximation x
(j)
k at iteration step j541

is updated as in (4.13). Suppose |λk| = O(1) and |ηk| = |λk − dk| = O(εmach). Since542

x
(j)
k converges to λk as j →∞, we also have |x(j)

k | = O(1) and |x(j)
k − dk| = O(εmach)543

after some iterations. In the modified Newton’s method, the correction ∆x
(j)
k ap-544

proaches 0 as j increase. This may lead to loss of digits in the updated x
(j+1)
k :545

fl(x
(j+1)
k ) = fl(x

(j)
k + ∆x

(j)
k ) = fl(x

(j)
k ). As a result, the iteration stagnates. On the546

other hand, if ηk is solved from the shifted secular equation (4.15), as in [5, 9, 18],547

the update (4.13) is replaced by548

(4.19) y
(j+1)
k ← y

(j)
k + ∆x

(j)
k ,549

where y
(j)
k = x

(j)
k − dk is an approximation to ηk at step j of the iterative solution.550

Although (4.13) and (4.19) are equivalent in exact arithmetic, the latter preserves a551

lot more digits of accuracy since |y(j)
k | = O(εmach).552

These discussions illustrate the importance of solving the shifted secular equation553

(4.15) instead of the original equation (2.12). However, in an FMM-accelerated scheme554

where all λk’s are solved simultaneously, it is not plausible to shift the secular equation555

simultaneously for all λk’s. The reason is the shift in (4.15) depends on each individual556

eigenvalue and there is no such a uniform shift that would work for all λk’s.557

To see this, let yk = xk − dk be an approximation to ηk during the iterative558

solution of (4.15). The evaluations of gk(y) in (4.15) at y = yk for all k = 1, 2, . . . , n559

can be assembled into the matrix form560

g = e + Ĉw, with(4.20)561

g =
(
g1(y1) · · · gn(yn)

)T
, Ĉ =

(
1

δjk − yk

)
1≤k,j≤n

,562

563

where δjk is given in (4.16). Recall that when the FMM is used to accelerate the564

matrix-vector product Cw in (4.11), it relies on the separability of s and t in a565

degenerate approximation of κ(s, t) = 1
s−t . (Note that in κ(dj , xk), xk only involves566

the row index k and dj only involves the column index j, so that the separability can567

be understood in terms of the row and column indices.) However, to evaluate Ĉw in568

(4.20), we have569

(4.21) κ(dj , xk) = κ(dj − dk, xk − dk) = κ(δjk, yk).570

δjk involves both the row and column indices, so that the separability in terms of571

the row and column indices does not hold. Therefore, we need to adapt the FMM to572

accelerate the shifted matrix-vector multiplication in (4.20).573

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 15

4.3.2. FMM accelerations with local shifting. In this subsection, we pro-574

pose a strategy called local shifting that makes it feasible to apply triangular FMM575

accelerations to solve (4.15). As mentioned in Section 4.2.1, multiple terms involving576

xk − dj are assembled into matrices in order to apply FMM accelerations. See, e.g.,577

(4.3). When |xk−dj | is small, the shifting helps get xk−dj accurately. However, when578

k is not near j or when |k − j| is large, xk − dj can actually be computed accurately579

without involving any shift dk. To see this, recall that dk < xk < dk+1 and also after580

deflation in Section 4.1, we have (4.1) holds and |dj − dj+1| ≥
vj

2+v2j+1

|vjvj+1| ≥ 2τ for all j.581

Thus, for j 6= k, k + 1,582

(4.22) |xk − dj | ≥ min(|dk − dj |, |dk+1 − dj |) ≥ 2(|k − j| − 1)τ.583

Hence, |xk−dj | is not too small and xk−dj can be computed accurately when |k− j|584

is large.585

Following this justification, we have the basic ideas of our local shifting strategy:586

(i) small gaps resulting from shifting is used just in near-field interactions of the FMM,587

which does not interfere with the FMM rank structure; (ii) it is safe to not shift the588

numerical eigenvalues in far-field interactions, which makes it feasible to exploit the589

rank structure. More specifically, the major components are as follows.590

1. For k = 1, 2, . . . , n, the shifted secular equations (4.15) are solved together591

for the gaps ηk = λk − dk (so as to get the roots λk of the original secular592

equation (2.12)). An intermediate gap during the iterative solution looks like593

yk = xk − dk. The relevant function evaluations in the iterative solutions are594

assembled into matrix-vector products like in (4.20).595

2. The FMM is used to accelerate the resulting matrix-vector products like Ĉw596

in (4.20) as follows. Suppose two subsets sx and sd like in (4.6) are well597

separated. As mentioned above, for xk ∈ sx and dj ∈ sd, xk and dj are far598

away from each other and |k − j| is large, so xk − dj can then be computed599

accurately because of (4.22). Thus, we can recover xk from dk+yk to directly600

exploit the low-rank structure like in (4.7). As a result, the far-field block601

Ĉsx,sd of Ĉ is now just a block of C in (4.3):602

Ĉsx,sd = (κ(δjk, yk))xk∈sx,dj∈sd = (κ(dj , xk))xk∈sx,dj∈sd = Csx,sd603

3. On the other hand, when two subsets sx and sd are not well separated, the604

near-field interaction Ĉsx,sd is dense and each entry κ(δjk, yk) can be evaluated605

accurately via yk and the gap δjk. This has no impact on the structures606

needed for FMM accelerations.607

4. These ideas are then combined with the triangular FMM in Section 4.2.2608

to stably and quickly perform function evaluations like (4.20) and solve the609

shifted secular equations.610

This local shifting strategy successfully integrates shifting into triangular FMM611

accelerations. As a result, we can quickly and reliably solve the shifted secular equa-612

tions (4.15) via the modified Newton’s method. The overall complexity to find all the613

n roots is still O(n). In addition, since the relevant functions are now evaluated more614

accurately than with the method in [44], the convergence is also improved. When the615

iterative solution of the shifted secular equations converge, we can use the resulting616

gaps ηk to recover the desired eigenvalues as617

(4.23) λk = dk + ηk, k = 1, 2, . . . , n,618

This manuscript is for review purposes only.



16 XIAOFENG OU AND JIANLIN XIA

The local shifting strategy can also be used to stably apply FMM accelerations619

to other operations like finding the eigenmatrix. See the next subsection.620

4.4. Structured eigenvectors via FMM with local shifting. With the iden-621

tified eigenvalues λk in (4.23), the eigenvectors can be obtained stably as in [24]. An622

eigenvector corresponding to λk looks like623

(4.24) qk =
(

v̂1
d1−λk

· · · v̂k
dk−λk

· · · v̂n
dn−λk

)T
,624

where v̂ ≡ ( v̂1 · · · v̂n )T is given by Löwner’s formula625

(4.25) v̂i =

√ ∏
j(λj − di)∏
j 6=i(dj − di)

, i = 1, 2, . . . , n.626

To quickly form v̂, the standard FMM acceleration would look like the following [24].627

Rewrite (4.25) as628

(4.26) log v̂i =
1

2

n∑
j=1

log(|di − λj |)−
1

2

n∑
j=1,j 6=i

log |di − dj |.629

Now, let G1 = (log |di − λj |)n×n, G2 = (log |di − dj |)n×n, where the diagonals of G2630

are set to be zero. Then631

(4.27) log v̂ =
1

2
(G1e−G2e).632

G1e and G2e can thus be quickly evaluated by the FMM with the kernel log |s− t|.633

As in [24, 44], the eigenvectors are often normalized to form an orthogonal matrix634

Q̂ =

(
v̂ibj

di − λj

)
n×n

, with(4.28)635

b ≡ ( b1 · · · bn )T , bj =

(
n∑
i=1

v̂2
i

(di − λj)2

)−1/2

.(4.29)636

637

The vector b can be quickly obtained via the FMM with the kernel κ(s, t) = 1
(s−t)2 .638

Q̂ is a Cauchy-like matrix which gives a structured form of the eigenvectors. The639

FMM with the kernel κ(s, t) = 1
s−t can be used to quickly multiply Q̂ to a vector.640

Again, with the same reasons as before, it is challenging to stably apply the641

standard FMM to accelerate operations like the evaluations of log v in (4.27) and b in642

(4.29) and the application of Q̂ to a vector. On the other hand, just like the discussions643

in Section 4.3.2, we can integrate the local shifting strategy into FMM accelerations,644

just with appropriate kernels κ(s, t). For example, with the gaps ηk solved from the645

shifted secular equation solution, it is preferred to use δik − ηk in place of di − λk in646

the computation of some entries of qk for accuracy purpose [5, 9, 18, 24] when di and647

λk are very close. Note that, with δjk in (4.16), (4.24) can be written as648

(4.30) qk =
(

v̂1
δ1k−ηk · · · v̂k

−ηk · · · v̂n
δnk−ηk

)T
.649

When an entry of qk belongs to a near-field block of Q̂, its representation in (4.30) is650

used. Otherwise, we use its form in (4.24). This preserves the far-field rank structure.651

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 17

Thus, FMM accelerations with local shifting can be used to reliably represent and652

apply Q̂ or Q̂T . Note that653

(4.31) Q̂ = diag(v̂)

(
1

di − λj

)
n×n

diag(b),654

so that Q̂ can be stored just via five vectors:655

(4.32)
v̂, b, d ≡ ( d1 · · · dn )T , λ ≡ ( λ1 · · · λn )T , η ≡ ( η1 · · · ηn )T .656

Here, we have the storage of one more vector η than that in [44]. This only slightly657

increase the storage, but the stability is significantly enhanced.658

4.5. Overall eigendecomposition and structure of the eigenmatrix. The659

overall conquering framework is similar to [44], but with all the new stability strategies660

integrated. The conquering process is performed following the postordered traversal661

of the HSS tree T of A, where at each node i ∈ T , a local eigenproblem is solved. For662

a leaf node i, suppose D̂i is the (small) diagonal generator resulting from the overall663

dividing process. We just compute the dense eigenproblem D̂i = QiΛiQ
T
i . Then Qi664

is a local eigenmatrix associated with i.665

For a non-leaf node p with children i and j, the local eigenproblem is to find666

an eigendecomposition like in (2.10) based on (2.6) and (2.7). However, unlike (2.9)667

where a diagonal plus low-rank update eigendecomposition is computed, it is nec-668

essary to reorder the diagonal entries of diag(Λi,Λj) in order to explore the FMM669

structures that rely on the locations of the eigenvalues. Let Pp represent a sequence of670

permutations for deflation and for ordering the diagonal entries of diag(Λi,Λj) from671

the smallest to the largest. Also let the eigendecomposition of the permuted diagonal672

plus low-rank update problem be673

(4.33) Pp[diag(Λi,Λj) + ẐpẐ
T
p ]PTp = Q̂pΛpQ̂

T
p ,674

where Ẑp is given in (2.8). Write Dp in (2.7) as D̂p since Dp is likely updated after675

the hierarchical dividing process. Then we have the following eigendecomposition:676

(4.34) D̂p = QpΛpQ
T
p , with Qp = diag(Qi, Qj)P

T
p Q̂p,677

whereQi andQj are eigenmatrices of D̂i and D̂j obtained in steps i and j, respectively.678

Then the conquering process proceeds similarly.679

Here for convenience, we say Qp is a local eigenmatrix and Q̂p is an interme-680

diate eigenmatrix. The difference between the two is that a local eigenmatrix is an681

eigenmatrix of a local HSS block while the latter is an eigenmatrix of a diagonal plus682

low-rank update problem. A local eigenmatrix is formed by a sequence of interme-683

diate eigenmatrices. Since Q̂pΛpQ̂
T
p in (4.33) is obtained by solving r consecutive684

rank-1 update eigenproblems, the intermediate eigenmatrix Q̂p is the product of r685

Cauchy-like matrices like in (4.28). Of course, when FMM accelerations and deflation686

are applied, the eigendecomposition is approximate.687

Then the overall eigenmatrix Q is given in terms of all the intermediate eigenma-688

trices, organized with the aid of the tree T . Here, we give an accurate description of689

its structure as follows.690

Lemma 4.1. Assemble all the intermediate eigenmatrices and permutation matri-691

ces corresponding to the nodes at a level l of T as692

(4.35) Q(l) = diag(Q̂i, i: at level l of T ), P (l) = diag(Pi, i: at level l of T ).693

This manuscript is for review purposes only.



18 XIAOFENG OU AND JIANLIN XIA

Then the final eigenmatrix Q has the form (illustrated in Figure 4.1)694

(4.36) Q = Q(L)
0∏

l=lmax−1

(P (l)Q(l)),695

where level lmax is the leaf level of T and root(T ) is at level 0. In addition, Q also696

corresponds to (4.34) with p set to be root(T ).697

P
(2)

P
(1) P

(0)
P

(3)

Fig. 4.1. Illustration of the structure of the eigenmatrix Q, where lmax = 4 and each structured
diagonal block (marked in gray) is for an intermediate eigenmatrix Q̂p associated with a nonleaf
node p.

Thus, Q can be understood in terms of either (4.36) or the local eigenmatrices.698

Lemma 4.1 gives an efficient way to apply Q or QT to a vector, where the triangular699

FMM with local shifting is again used to multiply the intermediate eigenmatrices700

with vectors. Note that with a very similar procedure, a local eigenmatrix Qi or its701

transpose can be conveniently applied to a vector. Such an application process is used702

to multiply the local eigenmatrices QTi and QTj to Zp as in (2.8) to quickly form Ẑp703

used in (4.33).704

The main algorithms used in SuperDC are shown in the supplementary materials.705

When A is given in terms of an HSS form with HSS rank r, the total complexity for706

computing the eigendecomposition (1.1) can be counted following [44, Section 3.1]707

and is O(r2n log2 n). Note that the use of all the new stability techniques here does708

not change the overall complexity. Every local eigenmatrix Q̂i is represented by a709

sequence of r Cauchy-like matrices like in (4.28). Each such a Cauchy-like matrix is710

stored with the aid of five vectors like in (4.32). The storage for Q is then O(rn log n)711

and the cost to apply Q or QT to a vector is O(rn log n) as in [44].712

5. Numerical experiments. In this section, we perform a comprehensive test713

of the SuperDC eigensolver with different types of matrices and demonstrate its effi-714

ciency and accuracy. We compare SuperDC with the following methods.715

• BandDC: a usual divide-and-conquer eigensolver that takes advantage of716

banded structures following the framework in [3]. A sequence of rank-1 up-717

dating problems is obtained based on the banded form in each dividing step718

and is then solved in the conquering stage. The same deflation tolerances as719

SuperDC are used.720

• HSSBIS: an HSS bisection eigensolver [48] that takes advantage of fast HSS721

LDL factorization update for inertia evaluations. The stopping criterion of722

bisection is the same as the deflation tolerance of SuperDC.723

• eig: the highly optimized Matlab eig function.724

In order to run comparisons for larger matrix sizes in Matlab, we use BandDC725

and HSSBIS to compute only the eigenvalues (with accuracies comparable to those726

from SuperDC), which also gives them advantages over SuperDC. For HSSBIS, we727

decide the initial search region with ρ̃(A) ≡
√
‖A‖1‖A‖∞ ≥ ‖A‖2 as an estimate of728

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 19

the spectral radius of A. We use the following accuracy measurements:729

γ = max
1≤k≤n

‖Aqk−λkqk‖2√
n‖A‖2

(residual),

θ = max
1≤k≤n

‖QTqk−ek‖2√
n

(loss of orthogonality),

δs = ‖λ−λ∗‖2
‖λ∗‖2 , δ∞ = ‖λ−λ∗‖∞

‖λ∗‖∞ , δm = max
1≤k≤n

|λ∗k−λk|
|λ∗k|

(errors),

730

where λ∗ =
(
λ∗1 · · · λ∗n

)T
are eigenvalues from eig and are considered as the exact731

results.732

To measure the efficiency, we count the flops (total number of floating point733

arithmetic operations), the storage (total number of nonzeros to store the structured734

eigenmatrix in SuperDC or the dense eigenmatrix in eig), and the timing (seconds735

elapsed when the call of an eigensolver routine is completed). In the flop count, if a736

built-in routine is used to perform standard operations, we use known flop counts like737

those given in relevant references such as [17, 39].738

SuperDC is available at https://www.math.purdue.edu/∼xiaj. It is implemented739

fully in Matlab. The triangular FMM routine of SuperDC is developed based on740

a code used in [10], and its accuracy during each call is set to reach full machine741

precision. In all the tests, the leaf-level diagonal block size of the HSS forms is 2048.742

The tests are performed with four 2.60GHz cores and 80GB memory on a node at a743

cluster of Purdue RCAC. The request of 80GB memory is just to accommodate the744

need of eig for larger matrices.745

Example 1. First, we consider a symmetric tridiagonal matrix A. For our Su-746

perDC eigensolver, the HSS representation of A can be explicitly written out without747

any extra cost and its HSS rank is r = 2 [49]. (The HSS structure does not rely748

on the actual nonzero entries, which are 3 on the main diagonal and −1 on the first749

superdiagonal and subdiagonal. Other numbers such as random ones are also tested750

with similar performance observed.) The size n of A in the test ranges from 8192 to751

1, 048, 576. We use τ = 10−10 in the deflation criterion in Section 4.1.752

The timing of BandDC, HSSBIS, eig, and SuperDC is reported in Figure 5.1(a).753

The storage for the eigenmatrix Q from eig and SuperDC is given in Figure 5.1(b).754

The costs of SuperDC are given in Figure 5.1(c), in terms of the flops to get the755

eigendecomposition and the flops to apply Q to a vector. SuperDC achieves roughly756

linear complexity in the timing, flops, and storage. Both BandDC and HSSBIS follow757

quadratic trends in timing, though HSSBIS is quite slower. eig has a cubic trend in758

timing and an obvious quadratic storage (which is just n2 for storing the dense Q).

10
4

10
6

n

10
2

10
4

T
im

e
 (

s
)

(a) Eigendecomposition timing

10
4

10
6

n

10
8

10
10

10
12

S
to

ra
g
e

(b) Storage

10
4

10
6

n

10
6

10
8

10
10

10
12

10
14

F
lo

p
s

(c) Flops of SuperDC

Fig. 5.1. Example 1. Timing, storage, and flops.

759

This manuscript is for review purposes only.

https://www.math.purdue.edu/~xiaj


20 XIAOFENG OU AND JIANLIN XIA

SuperDC is faster than BandDC and HSSBIS for all the tested sizes, and its760

breakeven point with eig is around n = 8192. With n = 32, 768, SuperDC is already761

about 6 times as fast as eig and takes only about 6% of the storage for the eigenmatrix.762

Note that eig runs out of memory for larger n due to the dense eigenmatrix, while763

SuperDC takes much less memory and can reach much larger n.764

The conquering stage is usually much more time-consuming than the dividing765

stage. For example, for n = 65, 536, the dividing stage of SuperDC needs just 1.4 sec-766

onds and the conquering stage takes 56.4 seconds. Thus, our strategy for minimizing767

colsize(Zp) or reducing the number of rank-one updates is beneficial for the efficiency768

of the eigensolver since it reduces the amount of work in the conquering stage.769

Table 5.1 shows the accuracy of SuperDC. The eigenvalues and eigendecompo-770

sitions are computed accurately with numerically orthogonal eigenvectors. BandDC771

and HSSBIS reach comparable accuracies which are then not reported.772

Table 5.1
Example 1. Accuracy of SuperDC, where some errors are not reported since eig runs out of

memory, and γ and θ are not available for n ≥ 262, 144 since they take too long to compute.

n 4, 096 8, 192 16, 384 32, 768 65, 536 131, 072

γ 1.2e− 15 6.4e− 15 1.1e− 13 9.4e− 14 7.5e− 14 5.3e− 14

θ 1.8e− 14 2.9e− 14 3.8e− 14 5.5e− 14 8.6e− 14 1.2e− 13

δs 2.6e− 16 4.6e− 16 1.3e− 13 9.4e− 14

δ∞ 8.9e− 16 1.2e− 14 8.0e− 12 6.3e− 12

δm 9.7e− 16 1.2e− 14 8.0e− 12 6.3e− 12

Example 2. In this example, we test a symmetric matrix A which is sparse and773

nearly banded. A has a banded form with half bandwidth 5 together with some774

nonzero entries away from the band. The HSS form for A can be explicitly written775

out with the method in [49] and has HSS rank 10. The nonzero entries away from the776

band are introduced by modifying some HSS generators. The main diagonal entries777

are set as 30 and the other entries in the band are set as −10 so that the upper bound778

for all ‖Bk‖2 in Proposition 3.1 is β = 35.1 � 1. The size n in the test ranges from779

8192 to 1, 048, 576. We use τ = 10−10 in the deflation criterion.780

The entries away from the band break the banded structure of A. Still, BandDC781

can be conveniently adapted to A. The efficiency benefit of SuperDC over eig becomes782

even more significant, as shown in Figure 5.2. At n = 32, 678, SuperDC is about 8783

times as fast as eig and takes only about 7% of the storage for the eigenmatrix. Again,784

eig runs out of memory when n increases, but SuperDC works for much larger n and785

demonstrates nearly linear complexity. At n = 1, 048, 576, SuperDC is about 12 times786

as fast as BandDC (which does not even compute the eigenmatrix).787

We also show the advantage of our new dividing strategy over the original one788

(2.2). In Table 5.2, we show the norm growth of the B,D generators after the dividing789

stage. For the initial B,D generators of the original HSS form, let B̃, D̃ denote the790

updated generators after the entire dividing stage is finished. Let791

ρB = max
i<root(T )

‖Bi‖2, ρD = max
i: leaf

‖Di‖2, ρB̃ = max
i<root(T )

‖B̃i‖2, ρD̃ = max
i: leaf

‖D̃i‖2.792

When n increases, the number of levels in the HSS tree T increase and ρ(D) and793

ρ(B) stay about the same for all n. However, ρB̃ and ρD̃ grow exponentially with the794

original dividing stage, as predicted by Proposition 3.1. This poses a stability risk.795

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 21

10
4

10
6

n

10
2

10
4

T
im

e
 (

s
)

(a) Eigendecomposition timing

10
4

10
6

n

10
8

10
10

10
12

S
to

ra
g
e

(b) Storage

10
4

10
6

n

10
8

10
10

10
12

F
lo

p
s

(c) Flops of SuperDC

Fig. 5.2. Example 2. Timing, storage, and flops.

(Note that ρD̃ has a larger magnitude than ρB̃ , which is consistent with Proposition796

3.1.) In contrast, the growth of ρD̃ and ρB̃ with our new dividing strategy is much797

slower and roughly follows the linear growth pattern as predicted by Proposition 3.2.

Table 5.2
Example 2. Norms of the D,B generators before and after the dividing stage.

n 4, 096 8, 192 16, 384 32, 768 65, 536 131, 072

Number of levels lmax 2 3 4 5 6 7

Initial
ρB 3.5e1 3.5e1 3.5e1 3.5e1 3.5e1 3.5e1

ρD 7.0e1 7.0e1 7.0e1 7.0e1 7.0e1 7.0e1

After the original ρB̃ 3.5e1 7.4e2 5.5e5 3.0e11 9.2e22 8.5e45

dividing strategy ρD̃ 1.7e3 1.1e6 6.1e11 1.8e23 1.7e46 1.4e92

After the new ρB̃ 3.5e1 4.5e1 8.3e1 1.6e2 3.3e2 6.6e2

dividing strategy ρD̃ 7.3e1 1.3e2 3.0e2 6.3e2 1.3e3 2.6e3

798

In Table 5.3, we report the accuracies of SuperDC. The accuracies associated799

with the original dividing strategy deteriorate as n gets larger and the results are800

highly inaccurate for n ≥ 32, 768 so they are not shown. In contrast, the new dividing801

strategy yields nice accuracies. This accuracy difference can be understood as follows.802

For a leaf node k, we need to use a (backward stable) dense method to compute a803

numerical eigendecomposition of the updated D̃ generators (see Lemma 2.1) with804

backward error ∆D̃k (see, e.g., [24]):805

(5.1) D̃k = QkΛkQ
T
k + ∆D̃k, with ‖∆D̃k‖2 = O(‖D̃k‖2εmach).806

By Propositions 3.1 and 3.2, ‖∆D̃k‖2 is roughly in the magnitude of O(βn/2εmach)807

with the original dividing strategy (2.2), or O(n2 εmach) with the new dividing strategy.808

Therefore, the original dividing strategy will likely introduce larger errors.809

Remark 5.1. In (5.1), we often have ‖D̃k‖2 in the magnitude of O(‖A‖2) so810

that O(‖D̃k‖2εmach) is roughly O(‖A‖2εmach). Therefore, an absolute error of or-811

der O(‖A‖2εmach) is introduced to the eigenvalues, resulting in loss of digits for those812

eigenvalues that are tiny (when ‖A‖2 is large). Thus, the maximum relative errors813

δm for those tiny eigenvalues may be larger, while other measurements such as δs and814

γ are still well controlled. In addition, because of the complex nature of SuperDC,815

it is possible that some other weakness in the numerical stability may still present.816

Our ongoing work is to attempt to perform a comprehensive backward stability study817

This manuscript is for review purposes only.



22 XIAOFENG OU AND JIANLIN XIA

Table 5.3
Example 2. Accuracy of SuperDC, where some errors are not reported since eig runs out of

memory, and γ and θ are not available for n ≥ 262, 144 since they take too long to compute.

n 4, 096 8, 192 16, 384 32, 768 65, 536 131, 072

Original

γ 3.6e− 13 9.5e− 12 1.5e− 5

dividing

θ 2.2e− 13 3.0e− 13 5.3e− 13

δs 4.7e− 13 4.2e− 13 9.7e− 7

δ∞ 1.7e− 11 1.6e− 11 3.0e− 5

δm 1.8e− 11 1.6e− 9 1.2e− 4

New

γ 9.4e− 14 1.8e− 12 3.7e− 13 3.4e− 13 5.6e− 13 1.2e− 12

dividing

θ 1.9e− 13 4.4e− 13 5.6e− 13 1.1e− 12 1.4e− 12 2.0e− 12

δs 1.6e− 14 3.2e− 12 5.3e− 13 2.6e− 13

δ∞ 6.0e− 13 1.5e− 10 2.2e− 11 1.1e− 11

δm 1.6e− 12 2.9e− 10 3.2e− 11 2.2e− 11

based on the stability results for rank-1 updated eigenvalue solution in [24] and for818

the structured methods in [10].819

We also demonstrate the importance of our local shifting strategy by testing the820

eigensolver with triangular FMM accelerations applied to the standard secular equa-821

tion. Due to cancellations, Matlab returns NaN (not-a-number) for the test matrices822

with sizes larger than 8192. This shows the risk of directly applying FMM accelera-823

tions to the standard secular equation like in [44].824

Example 3. Next, we consider a dense symmetric Toeplitz matrix A with its825

first row ξ =
(
ξ1 · · · ξn

)
given by826

ξ1 = 2α, ξj =
sin(2α(j − 1)π)

(j − 1)π
, j = 2, 3, . . . , n,827

where 0 < α < 1/2. This is the so-called prolate matrix that appears frequently in828

signal processing. It is known to be extremely ill-conditioned and has special spectral829

properties (see, e.g., [43]). In fact, the prolate matrix has many small eigenvalues of830

magnitude O(εmach). Here, we set α = 1
4 . It is known that any Toeplitz matrix can be831

converted into a Cauchy-like matrix C which has small off-diagonal numerical ranks832

[14, 33, 44]. That is, C = FAF∗, where F is the normalized inverse DFT matrix.833

Then the eigendecomposition of A can be done via that of C. An HSS approximation834

to C may be quickly constructed based on randomized methods in [30, 31, 51, 55] and835

fast Toeplitz matrix-vector multiplications. The cost is nearly linear in n. Here, we836

use a tolerance 10−10 in relevant compression steps, which is the same as the deflation837

tolerance τ . The size n ranges from 4096 to 65, 536.838

SuperDC and HSSBIS are applied to the resulting HSS form and compared with839

eig applied to A. In Figure 5.3, the timing, storage, and flops are shown and they840

are consistent with the complexity estimates. SuperDC shows a significant efficiency841

advantage over eig. At n = 32, 768, SuperDC is about 122 times faster than eig. The842

accuracy is reported in Table 5.4.843

One thing to point out is that the theoretical complexityO(r2n log2 n) of SuperDC844

may overestimate the actual cost. For example, here r is typically known to be845

O(log n) based on entrywise approximation errors [10, 33, 52, 55]. One reason for the846

overestimate is that the flop count does not take into consideration a levelwise rank847

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 23

10
4

10
5

n

10
0

10
2

10
4

T
im

e
 (

s
)

(a) Eigendecomposition timing

10
4

10
5

n

10
7

10
8

10
9

S
to

ra
g
e

(b) Storage

10
4

10
5

n

10
8

10
10

10
12

F
lo

p
s

(c) Flops of SuperDC

Fig. 5.3. Example 3. Timing, storage, and flops.

Table 5.4
Example 3. Accuracy of SuperDC, where the errors δs and δ∞ for n = 65, 536 are not reported

since eig runs out of memory. δm is not available since many eigenvalues of order O(εmach) and eig
returns a numerical eigenvalue 0 for some of the matrices.

n 4, 096 8, 192 16, 384 32, 768 65, 536

γ 2.3e− 11 4.4e− 11 1.8e− 10 3.5e− 10 1.4e− 9

θ 2.2e− 15 8.6e− 15 6.0e− 15 4.2e− 15 3.0e− 15

δs 5.5e− 12 1.4e− 11 4.5e− 10 9.3e− 10

δ∞ 1.1e− 10 7.3e− 10 2.2e− 8 6.1e− 8

pattern in [50]. Another reason is our flexible deflation strategy in Section 4.1. The848

matrices actually have highly clustered intermediate eigenvalues and many of them849

get deflated. This further leads to high efficiency gain.850

We have also tested SuperDC on random Toeplitz matrices, where the associated851

Cauchy-like matrices C have off-diagonal numerical ranks r quite larger than in the852

prolate matrix case. Since the complexity of SuperDC is O(r2n log2 n), it needs larger853

n to see an obvious advantage in timing over eig. (Of course, we may also use a larger854

compression tolerance to get smaller r.) In addition, for random Toeplitz matrices,855

deflation happens much less frequently than in the prolate matrix case.856

Example 4. The last example is a discretized kernel matrix A in [12] which857

is the evaluation of the function
√
|s− t| at the Chebyshev points cos

(
2i−1
2n π

)
, i =858

1, 2, . . . , n. The HSS construction may be based on direct off-diagonal compression859

or efficient analytical methods like in [56]. We use an existing routine based on the860

former one for simplicity. To show the flexibility of accuracy controls, we aim for861

moderate accuracy in this test by using a compression tolerance 10−6 in the HSS862

construction, which is also the deflation tolerance.863

For this example, we can observe similar complexity results as in the previous864

examples. See Figure 5.4. With the larger tolerance than in the previous examples,865

we still achieve reasonable eigenvalue errors and residuals with numerically orthogonal866

eigenvectors. See Table 5.5.867

We now show how our local shifting strategy (for triangular FMM-accelerated868

solution of the shifted secular equations) can also significantly benefit the rate of869

convergence of the roots. To illustrate this, we perform the following count. Suppose r870

secular equations are solved because of r rank-1 updates associated with the root node871

of the HSS tree T . When solving the jth secular equation, let µj be the percentage of872

eigenvalues that have not converged after 5 Newton’s iterations. Let µ = max1≤j≤r µj .873

This manuscript is for review purposes only.



24 XIAOFENG OU AND JIANLIN XIA

10
4

10
5

n

10
1

10
2

10
3

10
4

T
im

e
 (

s
)

(a) Eigendecomposition timing

10
4

10
5

n

10
7

10
8

10
9

S
to

ra
g
e

(b) Storage

10
4

10
5

n

10
8

10
10

10
12

F
lo

p
s

(c) Flops of SuperDC

Fig. 5.4. Example 4. Timing, storage, and flops.

Table 5.5
Example 4. Accuracy of SuperDC, where the errors for n = 65, 536 are not reported since eig

runs out of memory.

n 4, 096 8, 192 16, 384 32, 768 65, 536

γ 7.4e− 9 2.7e− 9 2.2e− 9 1.6e− 9 1.1e− 9

θ 1.4e− 13 2.6e− 13 2.5e− 13 2.4e− 13 3.8e− 13

δs 3.8e− 8 5.5e− 8 5.7e− 8 8.7e− 8

δ∞ 2.9e− 8 3.2e− 8 2.8e− 8 5.6e− 8

δm 1.2e− 4 4.2e− 4 4.7e− 4 5.8e− 4

Table 5.6 reports this maximum percentage µ with varying n. With local shifting, a874

vast majority of those eigenvalues (about 99% or more) converges within 5 iterations.875

This is significantly better than the case without local shifting (i.e., when the standard876

secular equation is solved with FMM accelerations).877

Table 5.6
Maximum percentage (µ) of eigenvalues not converged within 5 iterations for solving the r

secular equations associated with root(T ).

n 4, 096 8, 192 16, 384 32, 768 65, 536

With local shifting 1.00% 0.88% 0.34% 0.38% 0.33%

Without local shifting 62.5% 57.6% 57.2% 58.5% 57.7%

6. Conclusions. In this work, we have designed a SuperDC eigensolver that878

significantly improves a previous development in terms of the stability and efficiency.879

A series of stability enhancements is built into the different stages of the algorithm.880

In particular, we avoid an exponential norm growth risk in the dividing stage via a881

balancing strategy. We further combine FMM accelerations with several key stabil-882

ity safeguards that have been used in practical divide-and-conquer algorithms. The883

extensive numerical tests confirm the efficiency and the accuracy.884

The SuperDC eigensolver makes it feasible to use full eigendecompositions to885

solve various challenging numerical problems as mentioned at the beginning of the886

paper. A list of applications is expected to be included in [35]. In addition, we expect887

that the novel local shifting strategy and triangular FMM accelerations are also useful888

for other FMM-related matrix computations when stability and accuracy are crucial.889

In our future work, we plan to provide the proof of backward stability, as well as a890

high-performance parallel implementation, which will extend the applicability of the891

This manuscript is for review purposes only.



SUPERDC: SUPERFAST EIGENDECOMPOSITION 25

algorithm to large-scale numerical computations.892

Acknowledgements. Thank the editor and the three anonymous reviewers for893

providing valuable suggestions that have helped greatly improve the paper.894

REFERENCES895

[1] S. Ambikasaran and E. Darve, An O(n logn) fast direct solver for partial hierarchically896
semi-separable matrices, J. Sci. Comput., 57 (2013), pp. 477–501.897

[2] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weis-898
becker, Improving multifrontal methods by means of block low-rank representations, SIAM899
J. Sci. Comp., 37 (2015), pp. A1451–A1474.900

[3] P. Arbenz, Divide and conquer algorithms for the bandsymmetric eigenvalue problem, Parallel901
Comput., 18(10), 1105–1128 (1992).902

[4] A. Cortinovis, D. Kressner and S. Massei, Divide and conquer methods for functions of903
matrices with banded or hierarchical low-rank structure, arXiv:2107.04337 (2021).904

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,905
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’906
Guide, SIAM, Philadelphia, PA, third ed., 1999.907

[6] P. Benner and T. Mach, Computing all or some eigenvalues of symmetric Hl-matrices, SIAM908
J. Sci. Comput., 34 (2012), pp. A485–A496.909

[7] D. A. Bini, L. Gemignani, and V. Y. Pan, Fast and stable QR eigenvalue algorithms for910
generalized companion matrices and secular equations, Numer. Math., 100 (2005), pp.911
373–408.912

[8] D. Bini and V. Y. Pan, Parallel complexity of tridiagonal symmetric eigenvalue problem, Proc.913
Annu. ACM-SIAM Symp. Discrete Algorithms, SIAM, Philadelphia, 1991 pp. 384–393.914

[9] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-one modification of the symmetric915
eigenproblem, Numer. Math., 31 (1978), pp. 31–48.916

[10] D. Cai and J. Xia, A stable matrix version of the fast multipole method: stabilization strategies917
and examples, Electron. Trans. Numer. Anal., 54 (2021), pp. 581-609.918

[11] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A. J. van der Veen, and919
D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.920
Matrix Anal. Appl., 27 (2005), pp. 341–364.921

[12] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS922
representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67–81.923

[13] S. Chandrasekaran and M. Gu, A divide-and-conquer algorithm for the eigendecomposition924
of symmetric block diagonal plus semiseparable matrices, Numer. Math., 96 (2004), pp.925
723–731.926

[14] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, A superfast algorithm for Toeplitz927
systems of linear equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1247–1266.928

[15] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for companion ma-929
trices, Oper. Theory: Adv. Appl., Birkhaeuser Basel, 179 (2007), pp. 111–143.930

[16] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem,931
Numer. Math., 36 (1981), pp. 177–195.932

[17] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.933
[18] J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue934

problem, SIAM J. Sci. Stat. Comput., 8 (1987), s139–s154.935
[19] Y. Eidelman, I. Gohberg, and V. Olshevsky, The QR iteration method for Hermitian936

quasiseparable matrices of an arbitrary order, Linear Algebra Appl., 404 (2005), pp. 305–937
324.938

[20] Y. Eidelman and I. Haimovici, Divide and conquer method for eigenstructure of quasisepa-939
rable matrices using zeroes of rational matrix functions, Oper. Theory: Adv. Appl., 218940
(2012), Springer, Basel, pp. 299–328.941

[21] Y. Eidelman, I. Gohberg, and I. Haimovici, Separable type representations of matrices and942
fast algorithms, Vol. 1, 2, Oper. Theory: Adv. Appl., 234, 235.943

[22] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318–334.944
[23] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,945

73 (1987), pp. 325–348.946
[24] M. Gu and S. C. Eisenstat, A stable and efficient algorithm for the rank-one modification of947

the symmetric eigenproblem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1266-1276.948
[25] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal949

This manuscript is for review purposes only.



26 XIAOFENG OU AND JIANLIN XIA

eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–191.950
[26] W. Hackbusch and S. Borm, Data-sparse approximation by adaptive H2-matrices, Comput-951

ing, 69 (2002), pp.1–35.952
[27] W. Hackbusch, A sparse matrix arithmetic based on H-matrices, Computing, 62 (1999), pp.953

89–108.954
[28] R. C. Li, Solving secular equations stably and efficiently, University of California, Berkeley,955

Technical Report No. UCB/CSD-94-851 (1994).956
[29] X. Liao, S. Li, L. Cheng, and M. Gu, An improved divide-and-conquer algorithm for the957

banded matrices with narrow bandwidths, Comput. Math. Appl., 71 (2016), pp. 1933–1943.958
[30] X. Liu, J. Xia, and M. V. De Hoop, Parallel randomized and matrix-free direct solvers for959

large structured dense linear systems, SIAM J. Sci. Comput., 38 (2016), pp. S508–S538.960
[31] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable961

representation of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.962
[32] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in963

two dimensions, J. Comput. Phys. 205 (2005), pp. 1–23.964
[33] P. G. Martinsson, V. Rokhlin, and M. Tygert, A fast algorithm for the inversion of general965

Toeplitz matrices, Comput. Math. Appl., 50 (2005), pp. 741–752.966
[34] D. P. O’Leary and G. W. Stewart, Computing the eigenvalues and eigenvectors of symmetric967

arrowhead matrices, J. Comput. Phys., 90 (1990), pp. 497–505.968
[35] X. Ou, J. Vogel, J. Xia, and Z. Xin, Efficient numerical computations via superfast eigen-969

value decompositions, preprint, 2021.970
[36] J. Shen, Y. Wang, and J. Xia, Fast structured direct spectral methods for differential equations971

with variable coefficients, I. The one-dimensional case, SIAM J. Sci. Comput., 38 (2016),972
pp. A28–A54.973

[37] X. Sun and N. P. Pitsianis, A matrix version of the fast multipole method, SIAM Rev., 43974
(2001), pp. 289–300.975

[38] A. Šušnjara and D. Kressner, A fast spectral divide-and-conquer method for banded matrices,976
Numer. Linear Algebra Appl., 28 (2021), e2365.977

[39] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.978
[40] M. Tygert, Recurrence relations and fast algorithms, Appl. Comput. Harmon. Anal., 28.1979

(2010), 121–128.980
[41] M. Van Barel, R. Vandebril, P. Van Dooren, and K. Frederix, Implicit double shift981

QR-algorithm for companion matrices, Numer. Math., 116 (2010), pp. 177–212.982
[42] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semisepa-983

rable Matrices, Vol. 1. Johns Hopkins University Press, Baltimore, MD, 2008.984
[43] J. M. Varah, The prolate matrix, Linear Algebra Appl., 187 (1993), pp. 269–278.985
[44] J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan, Superfast divide-and-conquer method986

and perturbation analysis for structured eigenvalue solutions, SIAM J. Sci. Comput., 38987
(2016), pp. A1358–A1382.988

[45] Y. Wang, Fast Structured Spectral Methods, Ph.D. thesis, Purdue University, 2017.989
[46] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix algorithms,990

SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1279–1303.991
[47] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for992

Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),993
pp. 44–72.994

[48] Y. Xi, J. Xia and R. Chan, A fast randomized eigensolver with structured LDL factorization995
update, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 974–996.996

[49] J. Xia, Fast Direct Solvers for Structured Linear Systems of Equations, Ph.D. thesis, University997
of California, Berkeley, 2006.998

[50] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix999
Anal. Appl., 33 (2012), pp. 388–410.1000

[51] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.1001
[52] J. Xia, Multi-layer hierarchical structures, CSIAM Trans. Appl. Math., 2 (2021), pp. 263–296.1002
[53] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large1003

structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–1004
1411.1005

[54] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-1006
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.1007

[55] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via ran-1008
domized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.1009

[56] X. Ye, J. Xia, and L. Ying, Analytical low-rank compression via proxy point selection, SIAM1010
J. Matrix Anal. Appl., 41 (2020), pp. 1059–1085.1011

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS:
LIST OF MAJOR ALGORITHMS

Title of paper: SuperDC: Superfast divide-and-conquer eigenvalue decomposition with
improved stability for rank-structured matrices

Authors: Xiaofeng Ou and Jianlin Xia

These supplementary materials are pseudocodes that can help better understand
the major algorithms in the paper.

• Algorithm 1: the HSS dividing stage.
• Algorithm 2: solving the secular equation for the eigenvalues with triangular

FMM accelerations and local shifting.
• Algorithm 3: the conquering stage for producing the eigendecomposition.
• Algorithm 4: application of the a local eigenmatrix Qi or its transpose to a

vector. This is used in Algorithm 3 and also can be used to apply the global
eigenmatrix Q or its transpose to a vector when i = root(T ).

For notational convenience, we use r to represent the column sizes of all Zi ma-
trices in the pseudocodes. Ti is also used to denote the subtree of T rooted at node
i ∈ T . Z(:, j) means the j-th column of Z.

The following utility routines are used in the algorithms. To save space, we are
not showing pseudocodes for these routines.

• updhss(Di, Ui, H): for an HSS block Di corresponding to the subtree Ti,
update its D,B generators to get those of Di − UiHUTi using Lemma 2.1.

• trifmm(d,x,y,w, κ): compute a matrix-vector product Kw with the trian-
gular FMM and local shifting as in Sections 4.2.2 and 4.3.2, where K =
(κ(di, xj))di∈d,xj∈x is a kernel matrix and y is the gap vector (for accurately
evaluating x − d). Note that the triangular FMM is used to multiply the
lower triangular part of K with w and the strictly upper triangular part of
K with w and the final result is the sum of the two products.

• mnewton(ψ,φ,ψ′,φ′): use the modified Newton’s method to compute cor-
rections to the current approximate gap as in (4.19), where ψ,φ,ψ′,φ′ look
like (4.9) and (4.10).

• iniguess(d,w): compute the initial guess as in [28] for the solution of the
secular equation (2.12).

• deflate(d,v, τ): apply deflation with the criterion in Section 4.1.

1

This manuscript is for review purposes only.



2 XIAOFENG OU AND JIANLIN XIA

Algorithm 1 SuperDC dividing stage

1: procedure divide({Di}i∈T , {Ui}i∈T , {Ri}i∈T , {Bi}i∈T )
2: for node i = root(T ), . . . , 1 do . Dividing Di in a top-down traversal
3: if i is a non-leaf node then
4: if colsize(Bc1) ≤ rowsize(Bc1) then . c1, c2: children of i
5: Dc1 ← updhss(Dc1 , Uc1 ,

1
‖Bc1‖2

Bc1B
T
c1) . Update generators of Dc1

to get those of Dc1 − 1
‖Bc1

‖2Uc1Bc1B
T
c1U

T
c1 like in Lemma 2.1

6: Dc2 ← updhss(Dc2 , Uc2 , ‖Bc1‖2I) . Update generators of Dc2

to get those of Dc2 − ‖Bc1‖2Uc2UTc2 like in Lemma 2.1
7: else
8: Dc1 ← updhss(Dc1 , Uc1 , ‖Bc1‖2I) . Update generators of Dc1

to get those of Dc1 − ‖Bc1‖2Uc1UTc1 like in Lemma 2.1
9: Dc2 ← updhss(Dc2 , Uc2 ,

1
‖Bc1

‖2B
T
c1Bc1) . Update generators of Dc2

to get those of Dc2 − 1
‖Bc1‖2

Uc2B
T
c1Bc1U

T
c2 like in Lemma 2.1

10: end if
11: end if
12: end for
13: for node i = 1, . . . , root(T ) do . Form Zi in a bottom-up traversal
14: if i is a non-leaf node then
15: if colsize(Bc1) ≤ rowsize(Bc1) then . c1, c2: children of i

16: Zi ←

(
1√
‖Bc1

‖2
Uc1Bc1√

‖Bc1‖2Uc2

)
. Local update Z matrix like in (3.12)

17: else

18: Zi ←

( √
‖Bc1‖2Uc2
1√
‖Bc1

‖2
Uc2B

T
c1

)
. Local update Z matrix like in (3.15)

19: end if
20: if i 6= root(T ) then

21: Ui ←
(
Uc1Rc1
Uc2Rc2

)
. Assemble Ui for parent node of i

22: end if
23: end if
24: end for
25: return updated generators {Di}i∈T , {Bi}i∈T , {Zi}i∈T
26: end procedure

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS 3

Algorithm 2 Secular equation solution for eigenvalues (of diag(d) + vvT )

1: procedure secular(d,v)
. Eigenvalue solution via the solution of the shifted secular equation (4.15)

2: w← v � v
3: x(0) ← iniguess(d,w) . Computation of the initial guess as in [28]
4: y(0) ← x(0) − d
5: for j = 0, 1, . . . do
6: [ψ,φ]← trifmm(d,x(j),y(j),w, 1

s−t ) . Computation of ψ,φ in (4.9)

7: [ψ′,φ′]← trifmm(d,x(j),y(j),w, 1
(s−t)2 ). Computation of ψ′,φ′ in (4.10)

8: f ← e +ψ + φ
9: if |f | < cn(e + |ψ|+ |φ|)ε then . Stopping criterion

10: break
11: end if
12: ∆x(j) ← mnewton(ψ,φ,ψ′,φ′)

. Computation of root update with modified Newton’s method
13: y(j+1) ← y(j) + ∆x(j) . Updated gap approximation as in (4.19)
14: x(j+1) ← y(j+1) + d . Updated eigenvalue approximation
15: end for
16: λ← x(j), η ← y(j) . Eigenvalue and gap upon convergence
17: return λ,η
18: end procedure

This manuscript is for review purposes only.



4 XIAOFENG OU AND JIANLIN XIA

Algorithm 3 SuperDC conquering stage

1: procedure conquer({Di}i∈T , {Ui}i∈T , {Ri}i∈T , {Bi}i∈T , {Zi}i∈T , τ)
. The Di, Bi generators have been updated in the dividing stage

2: for node i = 1, . . . , root(T ) do . Conquering in a postordered traversal
3: if i is a leaf node then . Leaf-level eigendecomposition
4: (λi, Q̂i)← eig(Di) . Via Matlab eig function
5: else

6:

(
Zi,1
Zi,2

)
← Zi . Partitioning following the sizes of Dc1 and Dc2

7: Zi,1 ← superdcmv(Qc1 , Zi,1, 1) . QTc1Zi,1
8: Zi,2 ← superdcmv(Qc2 , Zi,2, 1) . QTc2Zi,2

9: Zi ←
(
Zi,1
Zi,2

)
. Ẑi like in (2.8)

10: [λ
(0)
i , Pi]← sort(λc1 ,λc2) . Ordering of all the diagonal entries

of λc1 ,λc2 together, with Pi the permutation matrix
11: for j = 1, 2 . . . , r do . r = colsize(Zi)

12: [d
(j)
i , Zi(:, j)]← deflate(λ

(j−1)
i , Zi(:, j), τ) . Deflation (Section 4.1)

13: [λ
(j)
i ,η

(j)
i ]← secular(d

(j)
i , Zi(:, j)) . Secular equation solution

14: v1 ← trifmm(d
(j)
i ,λ

(j)
i ,η

(j)
i , e, log |s− t|) . G1e as needed in (4.27)

15: v2 ← trifmm(d
(j)
i ,d

(j)
i ,0, e, log |s− t|) . G2e as needed in (4.27)

16: v̂
(j)
i ← exp (v1−v2

2 ) . Löwner’s formula for v̂ as in (4.25)–(4.27)

17: b
(j)
i ← (trifmm(d

(j)
i ,λ

(j)
i ,η

(j)
i , v̂

(j)
i � v̂

(j)
i , 1

(s−t)2 ))−1/2

. Normalization factor as in (4.29)

18: Q̂
(j)
i ← {v̂

(j)
i ,b

(j)
i ,d

(j)
i ,λ

(j)
i ,η

(j)
i } . Cauchy-like structured

representation of the local eigenmatrix as in (4.28)

19: for k = j + 1, j + 2, . . . , r do . Multiplication of Q̂
(j)
i

to the remaining columns of Zi via the steps as in (4.31)

20: Zi(:, k)← v̂
(j)
i � Zi(:, k)

21: Zi(:, k)← trifmm(d
(j)
i ,λ

(j)
i ,η

(j)
i , Zi(:, k), 1

s−t )

22: Zi(:, k)← b
(j)
i � Zi(:, k)

23: end for
24: end for
25: λi ← λ

(r)
i . Local eigenvalues associated with node i

26: end if
27: end for
28: λ← λroot(T ), Q← {{Q̂

(j)
i }rj=1, Pi}i∈T . Final eigenvalues

and eigenmatrix Q in (4.36), with Q̂i in (4.35) given by
∏r
j=1 Q̂

(j)
i

29: return λ, Q
30: end procedure

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS 5

Algorithm 4 SuperDC eigenmatrix-vector multiplication

1: procedure superdcmv(Qi,x, transpose) . Application of a local eigenmatrix Qi
or its transpose to a vector x, depending on whether ‘transpose’ is 0 or 1

2: i1 ← smallest descendant of i
3: if transpose = 0 then . y = Qix
4: yi ← x
5: for k = i, i− 1, . . . , i1 do . Reverse postordered traversal of Ti
6: if k is leaf then
7: yk ← Qkyk . Dense Qk at the leaf level
8: else
9: for j = r, r − 1, . . . , 1 do . Multiplication of Q̂

(j)
k

via the steps like in (4.31)

10: yk ← b
(j)
k � yk

11: yk ← trifmm(d
(j)
k ,λ

(j)
k ,η

(j)
k ,yk,

1
s−t )

12: yk ← v̂
(j)
k � yk

13: end for
14: yk ← PTk yk . Permutation like in (4.34)

15:

(
yc1
yc2

)
← yk . Partitioning following the sizes of Qc1 , Qc2 ,

with c1, c2 the children of k
16: end if
17: end for
18: else . y = QTi x
19: Partition x into xk pieces following the leaf-level Qk sizes
20: for k = i1, i1 + 1, . . . , i do . Postordered traversal of Ti
21: if k is leaf then
22: yk ← QTk xk . Dense Qk at the leaf level
23: else

24: yk ←
(

yc1
yc2

)
. c1, c2: children of k

25: yk ← Pkyk . Permutation like in (4.34)

26: for j = 1, 2, . . . , r do . Multiplication of (Q̂
(j)
k )T

via the steps like in (4.31)

27: yk ← v̂
(j)
k � yk

28: yk ← −trifmm(λ
(j)
k ,d

(j)
k ,η

(j)
k ,yk,

1
s−t ) . The negative sign

and the switch of λ
(j)
k and d

(j)
k are because of the transpose

29: yk ← b
(j)
k � yk

30: end for
31: end if
32: end for
33: end if
34: return y
35: end procedure

This manuscript is for review purposes only.


	Introduction
	Review of the basic superfast divide-and-conquer eigensolver
	Dividing stage
	Conquering stage

	Improved structured dividing strategy
	Improved structured conquering stage
	User-controlled deflation
	Fast secular equation solution
	Standard FMM accelerations and the limitation
	Triangular FMM for fast evaluations of k and k
	Iterative secular equation solution

	Local shifting in triangular FMM for shifted secular equation solution
	Shifted secular equation solution and its challenge to FMM accelerations
	FMM accelerations with local shifting

	Structured eigenvectors via FMM with local shifting
	Overall eigendecomposition and structure of the eigenmatrix

	Numerical experiments
	Conclusions
	References

