N

16
17
18
19

SUPERDC: SUPERFAST DIVIDE-AND-CONQUER EIGENVALUE
DECOMPOSITION WITH IMPROVED STABILITY FOR
RANK-STRUCTURED MATRICES*

XIAOFENG OUT AND JIANLIN XIAT

Abstract. For dense symmetric matrices with small off-diagonal (numerical) ranks and in a
hierarchically semiseparable form, we give a divide-and-conquer eigendecomposition method with
nearly linear complexity (called SuperDC) that significantly improves an earlier basic algorithm in
[Vogel, Xia, et al., STAM J. Sci. Comput., 38 (2016)]. Some stability risks in the original algorithm are
analyzed, including potential exponential norm growth, cancellations, loss of accuracy with clustered
eigenvalues or intermediate eigenvalues, etc. In the dividing stage, we give a new structured low-rank
updating strategy with balancing that eliminates the exponential norm growth and also minimizes
the ranks of low-rank updates. In the conquering stage with low-rank updated eigenvalue solution,
the original algorithm directly uses the standard fast multipole method (FMM) to accelerate function
evaluations, which has the risks of cancellation, division by zero, and slow convergence. Here, we
design a triangular FMM to avoid cancellation. Furthermore, when there are clustered intermediate
eigenvalues, we design a novel local shifting strategy to integrate FMM accelerations into the solution
of shifted secular equations. This helps achieve both the efficiency and the reliability. We also provide
a deflation strategy with a user-supplied tolerance and give a precise description of the structure of
the resulting eigenvector matrix. The SuperDC eigensolver has significantly improved stability while
keeping the nearly linear complexity for finding the entire eigenvalue decomposition. Extensive
numerical tests are used to show the efficiency and accuracy of SuperDC.

Key words. superfast eigenvalue decomposition, divide-and-conquer method, rank-structured
matrix, triangular fast multipole method, shifted secular equation, local shifting

AMS subject classifications. 65F15, 65F55, 15A18, 15A23

1. Introduction. In this paper, we consider the full eigenvalue decomposition of
n X n real symmetric matrices A with small off-diagonal ranks (and also A that can be
approximated well by matrices with small off-diagonal ranks). Such matrices belong to
the class of rank-structured matrices. Examples include banded matrices with finite
bandwidth, Toeplitz matrices in Fourier space [33, 47, 55], some matrices arising
from discretized PDEs and integral equations [32, 36, 51, 53], some kernel matrices
[10, 56], etc. The eigenvalue decompositions of relevant matrices are very useful
in computations such as matrix function evaluations [4], discretized linear system
solutions [45], matrix equation solutions [35], and quadrature approximations [40].
They are also very useful in fields such as optimization, imaging, Gaussian processes,
and machine learning [35].

There are several types of rank-structured forms, such as H/H? matrices [26, 27],
hierarchical semiseparable (HSS) matrices [12, 54], quasiseparable /semiseparable ma-
trices [11, 21, 42], BLR matrices [2], and HODLR matrices [1]. Examples of eigen-
solvers for these rank-structured matrices include divide-and-conquer methods [3, 13,
20, 29, 38, 44], QR iterations [7, 15, 19, 21, 41], bisection, [6, 48], and methods using
accelerated characteristic polynomial evaluations [8].

Our work here focuses on the divide-and-conquer method for HSS matrices (that
may be dense or sparse). The divide-and-conquer method has previously been well
studied for tridiagonal matrices (which may be considered as special HSS forms). See,
e.g., [5,9, 16, 18, 24, 34]. In particular, a stable version is given in [24]. The algorithms

*The research of Jianlin Xia was supported in part by an NSF grant DMS-1819166.

TDepartment of Mathematics, Purdue University, West Lafayette, IN 47907 (oul7@purdue.edu,
xiaj@purdue.edu).

This manuscript is for review purposes only.

O s s R
= O © 0w 3 O

w N

(SN, G SN G G B I
N O © =

ot
oo

59
60
61
62
63
64
65
66
67

68

~J ~J (@)
— o ©

U o W N

[«

-

I 4 9

=
©

Z

81
82
83
84
85
86
87
88
89
90
91
92
93
94

2 XIAOFENG OU AND JIANLIN XIA

can compute all the eigenvalues in O(n?) flops and can compute the eigenvectors in
O(n3) flops. It is also mentioned in [24] that it is possible to accelerate the operations
in the divide-and-conquer process via the fast multipole method (FMM) [23] to reach
nearly linear complexity. However, this was not actually done in [24] or later relevant
work [13, 29]. Only recently, the feasibility of the FMM acceleration of the divide-
and-conquer process was verified in a structured eigensolver in [44], which works for
HSS matrices without the need of tridiagonal reductions. For an HSS matrix with
off-diagonal ranks bounded by r (which may be a constant or a power of logn), the
method in [44] computes a structured eigendecomposition in O(r2nlog2 n) flops with
storage O(rnlogn). The method is then said to be superfast.

The work in [44] presents the basic framework of a rank-structured divide-and-
conquer eigensolver. It gives a proof-of-concept algorithm and verifies the feasibility
of such superfast eigenvalue solution for HSS matrices. Due to the complex nature of
the entire framework with many components, that preliminary work has some limita-
tions. It does not consider some crucial stability issues in the HSS divide-and-conquer
process, such as the risks of exponential norm growth and potential cancellations in
some function evaluations. Moreover, it does not incorporate several key stability
strategies that are used in practical tridiagonal divide-and-conquer algorithms. These
limitations are due to some major challenges in combining FMM accelerations with
those stability strategies, especially for problems with clustered eigenvalues.

Specifically, in the dividing stage, upper-level off-diagonal block information is
used to update lower-level diagonal blocks (also as HSS forms) of A in a hierarchical
process. The norms of the updated lower-level blocks may grow quickly during the
process, which brings stability risks and may even cause overflow. In the conquering
stage, multiple types of function evaluations are need in eigenvalue solutions (via a
modified Newton’s method applied to some secular equations). The application of
FMM accelerations needs to assemble these function evaluations into matrix-vector
multiplications. However, classical stabilization techniques involve strategies such as
splitting function evaluations to avoid cancellation (see, e.g., [5, 9, 18, 28, 24]) and
solving certain shifted secular equations to guarantee accuracy for clustered eigen-
values [5, 9, 18, 28, 24]. Such splitting and shifting strategies depend on the each
individual eigenvalue to be sought so that it is difficult to find all the eigenvalues to-
gether with the usual FMM acceleration. (Sections 4.2.1 and 4.3.1 show the details.)
The algorithm in [44] directly applies usual FMM accelerations to standard secular
equations. This may lose accuracy or even encounter cancellations.

Thus, the main purpose of this paper is to overcome these limitations. We fol-
low the basic framework in [44] but provide some important stability, accuracy, and
efficiency improvements. We show how to integrate structured accelerations with sev-
eral stabilization strategies. A more reliable superfast divide-and-conquer eigensolver
(called SuperDC) is then designed to find an approximate eigenvalue decomposition
of A:

(1.1) A=~ QAQT,

where A is a diagonal matrix for the eigenvalues and @ is for the orthogonal eigen-

vectors. For convenience, we call the matrix) an eigenmatriz. (Our presentation

focuses on real symmetric A, and the ideas can be immediately extended to complex
Hermitian matrices). The main significance of the work includes the following.

1. We analyze why the original hierarchical dividing strategy in [44] can lead to

exponential norm growth. A more stable dividing strategy is designed, where

a balancing technique guarantees the norm growth is well under control. We

This manuscript is for review purposes only.

112
113
114
115
116
117
118
119
120
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143

SUPERDC: SUPERFAST EIGENDECOMPOSITION 3

also give a strategy to choose appropriate low-rank updates in the dividing
stage so as to reduce the rank of low-rank updates and save eigenvalue solution
costs.

. In the solution of the secular equations for the eigenvalues, we design a tri-

angular FMM to accommodate the eigenvalue-dependent splitting (for the
stability purpose as mentioned above). This enables us to quickly and stably
evaluate the functions (after splitting) through matrix-vector multiplications
that are not suitable for the standard FMM.

. When shifted secular equations are used to handle clustered intermediate ei-

genvalues, we design a local shifting strategy that integrates shifts into FMM
matrices without destroying the FMM structure. This enhances the stabil-
ity of eigenvalue solution, leading to improved eigenvalue accuracy and also
better convergence of iterative secular equation solution.

. We also provide clarifications and improvements on several aspects such as

the precise structure of the resulting eigenmatrix, the eigenvalue deflation
criterion with a user-supplied tolerance, and the stopping criterion in iterative
eigenvalue solution.

. With all the stabilization strategies, SuperDC still nicely preserve the nearly

linear complexity. The eigendecomposition complexity is still 0(7'2nlog2 n),
with O(rnlogn) storage. No extra tridiagonal reduction is needed for dense
HSS matrices. We provide extensive numerical tests a SuperDC package in
Matlab. For modest matrix sizes n, SuperDC already has significantly lower
runtime and storage than some other eigensolvers while producing satisfactory
accuracies. Benefits of our stabilization strategies are also demonstrated.

In the remaining sections, we begin in Section 2 with a quick review of the basic
HSS divide-and-conquer eigensolver in [44]. Then the improved structured dividing
strategy is discussed in Section 3, followed by the efficient structured conquering
scheme in Section 4. Section 5 gives some numerical experiments to demonstrate the
efficiency and accuracy. Then Section 6 concludes the paper. A list of the major
algorithms is given in the supplementary materials.

Throughout this paper, the following notation is used.

Lower-case letters in bold fonts like u are used to denote vectors.

(Aij)nxn means an n x n matrix with the (4, j)-entry A,;.

Sometimes, a vector s may be viewed as an ordered set formed by its compo-
nents s;. Then s; € s means s; is a component of s. Accordingly, for vectors
s and t, a matrix (k(s;,%j))s;es,¢;et may be defined by the evaluation of a
function (s, t) at the components of s and t.

diag(---) denotes a (block) diagonal matrix.

rowsize(A) and colsize(A) mean the row and column sizes of A, respectively.
u ® v denotes the entrywise (Hadamard) product of two vectors u and v.
For a binary tree 7, we suppose it is in postordering so that it has nodes
i=1,2,...,root(T), where root(7) is the root.

fi(x) denotes the floating point result of .

® cmach represents the machine precision.

2. Review of the basic superfast divide-and-conquer eigensolver. We
first briefly summarize the basic superfast divide-and-conquer eigensolver in [44],
which generalizes the classical divide-and-conquer method for tridiagonal matrices
to HSS matrices.

A symmetric HSS matrix A [54] may be defined with the aid of a postordered full

This manuscript is for review purposes only.

145

146
147

158

159

160

4 XIAOFENG OU AND JIANLIN XTA

binary tree 7 called HSS tree, and has a nested structure that looks like

. B.UT
(21) Dp _ (Dz UszUj) ’

U;BfUT D,

where p € T has child nodes 7 and j, so that D, with p = root(7) is the entire HSS

matrix A. Here, the U matrices are off-diagonal basis matrices and also satisfy a
nested relationship U, = (Ui U-> <l§z> The D;,U;, B; matrices are called HSS
J J

generators associated with node i. The maximum size of the B generators is usually
referred as the HSS rank of A. We suppose root(7) is at level 0, and the children of
a node ¢ at level [are at level [+ 1.

The superfast divide-and-conquer eigensolver in [44] finds the eigendecomposition
(1.1) of A through a dividing stage and a conquering stage as follows.

2.1. Dividing stage. In the dividing stage in [44], A and its submatrices are
recursively divided into block-diagonal HSS forms plus low-rank updates. Start with
p =root(7) and its two children ¢ and j. A = D, in (2.1) can be written as

U;B; TrT 77T
DJ_UJUJ'T>+<UJ)(BiUi v

For notational convenience, we suppose the HSS rank of A is r and each B generator
has column size r. Let

D; — U;B;BTUT
(22) D, = <

(2.3) D; =D; - U;B;BI'U", D;=D;-U;U, Z,= (UUB> :
J

and we arrive at
(2.4) D, = diag(D;, D;) + Z,Z} .

Here, the diagonal blocks D; and D; are modified so that a rank-r update Zng can
be used instead of a rank-2r update. The column size of Z,, is referred as the rank of
the low-rank update and here we have colsize(Z,) = colsize(B;).

During this process, the blocks D; and ﬁj remain to be HSS forms. In fact,
it is shown in [44, 54] that any matrix of the form D; — U;HU! can preserve the
off-diagonal basis matrices of D;. Specifically, the following lemma can be used for
generator updates.

LEMMA 2.1. [44] Let T; be the subtree of the HSS tree T that has the node i as
the root. Then D; — UiHUiT has HSS generators Dy, Uy, Ry, By for each node k € T;
as follows:

Uy =Ux, Ri=Ry,
(2.5) By, = By — (RiRy, -~ Ry,)H(R[, -+ R]RY),

Dy, = Dy — Up(RiRy, -+ Ry)JH(RL -+ RE ROUL for a leaf k,
where k is the sibling node of k and k — k; — -+ — k1 — i is the path connecting k
to i. Accordingly, D; — U;HUT and D; have the same off-diagonal basis matrices.

Thus, the HSS generators of D; and Dj can be conveniently obtained via the

generator update procedure (2.5). Then the dividing process can continue on D; and
D; like above with p in (2.2) replaced by ¢ and j, respectively.

This manuscript is for review purposes only.

192

193
194
195
196
197

198

203

213
214
215

216

217
218
219

SUPERDC: SUPERFAST EIGENDECOMPOSITION 5

2.2. Conquering stage. Suppose eigenvalue decompositions of the subprob-
lems D; and D; in (2.3) have been computed respectively as

(2.6) D; = QN QT Dj = QjAjQJT-

Then from (2.4), we have

27) D, = diag(Q;,Q;) (diag(Ai, Aj) + 2,2T) diag(QT,QT), with
(2.8) Z, = diag(Q}, Q}) Zp-

Consequently, if we can solve the rank-r updating problem

(2.9) diag(A, Aj) + ZPZ;zT = QPAPQZ;a

then the eigendecomposition of D,, can be simply retrieved as

(2.10) D, = QyA,QF, with Q, = diag(Qi, Q;)Q,.

Therefore, the main task is to compute the eigendecomposition of the low-rank
update problem (2.9). To this end, suppose Zp = (zl ZT), where z;’s are the
columns of Z,. Then (2.9) can be treated as r rank-1 updating problems diag(A;, A;)+
Y oret zkzg. As a result, a basic component is to quickly find the eigenvalue decom-
position of a diagonal plus rank-1 updating problem in the following form:

(2.11) A+vvh =QAQ",

where A = diag(dy, ...,d,) with d; < --- < dp, v=(v1,...,0.)7, Q = (Q1,--.,Gn),
and A = diag(A1, ..., An).

As in standard divide-and-conquer eigensolvers (see, e.g., [5, 16, 24]), the eigen-
values Ay are found through the solution of the following secular equation [22]:

(2.12) f@y=1+% dﬁ — =0,
k=1

Newton iterations with rational interpolations may be used and the cost for finding
all the n roots is O(n?). Once)y is computed, a corresponding eigenvector looks like
qr = (1~\ — MI)71v. Such an analytical form is not directly used in general for the
stability reason, since any loss of precision in the computed A can be significantly
amplified in (]\ — A I) v, which will result in the loss of eigenvector orthogonality
[18, 24]. A stable way to obtain § is given in [24] based on Lowner’s formula.

It is also mentioned in [24] that nearly O(n) complexity may be achieved by
assembling multiple operations into matrix-vector multiplications that can be accel-
erated by the FMM. This is first verified in [44], where the complexity of the algorithm
for finding the entire eigendecomposition is O(r?nlog? n) instead of O(n?), with the
eigenmatrix @ in (1.1) given in a structured form that needs O(rnlogn) storage in-
stead of O(n?). In the following sections, we give a series of stability enhancements
to get an improved superfast divide-and-conquer eigensolver.

3. Improved structured dividing strategy. In this section, we point out a
stability risk in the original dividing method as given in (2.2)—(2.3) and propose a
more stable dividing strategy. We also design a way to minimize colsize(Z,).

This manuscript is for review purposes only.

223

236
237
238
239
240
241
242
243
244
245
246

DN
(S}

[\

NN
gt Ot Ot Ut
[G2ENTEN

[\

[\
ot
~

6 XIAOFENG OU AND JIANLIN XTA

The stability risk can be illustrated as follows. Consider D; in (2.2) which is
the result of updating D; in the dividing process associated with the parent p of i.
Suppose i has children ¢; and ¢y such that

R DCl UCl BCl U("T R UCl RCl
(31) Dz - <Uc2Bc2 Ug; -DC2 2 9 Uz - UC2 RC2 .

Then

N —). T R.RTIT _ Dcl UcléclUg;
D;,=D,-UB;B; U; = (UCQB;";UE D.. ,
where

D., =D., —U.,R.,B;BIRLUT

c1)

(3.2) B., = B., — R.,B;BI R

D., = D., — Uy, R.,B;BIRLUL

co?

In HSS constructions [54], to ensure stability of HSS algorithms, the U basis gen-
erators often have orthonormal columns [46, 47]. Then due to (3.1), the R generators
also satisfy that <gcl) has orthonormal columns. Then each B generator has 2-

2
norm equal to its associated off-diagonal block. For example, ||B;|ls = |U;B;U] 2.
Furthermore, ||Rc,|l2 <1, ||Re,|l2 < 1, and (3.2) means

(3.3) 1Bey ll2 < [1Beyllz + |1 Bill3.

If the off-diagonal block U; B;U] has a large norm, | B, |2 can potentially be much
larger than ||Be, ||2. We can similarly observe the norm growth with the updated D
generators. Moreover, when the dividing process proceeds on Dcl, the norms of the
updated B, D generators at lower levels can grow exponentially.

PROPOSITION 3.1. Suppose the Uy generator of A associated with each node k
of T with k # root(T) has orthonormal columns and all the original By, generators
satisfy || Brll2 < B with 8> 1. Also suppose the leaves of T are at level lax < logyn.
When the original dividing process in Section 2.1 proceeds from root(T) to a nonleaf
node i, immediately after finishing the dividing process associated with node 1,

o with i at level l < lyax — 2, the updated By, generator (denoted Bk) associated
with any descendant k of i satisfies

(3.4) 1Bill = O(8%) < O(8™4),

where O(+) denotes the asymptotic upper bound and is given in terms of the
highest order term in 3;

o with i at level | < lyax — 1, the updated Dy, generator (denoted Dk) associated
with any leaf descendant k of i satisfies

(3.5) IDill2 = ||Dxll2 + O(B) < | Dell2 + O(8™2).

Proof. Following the update formulas in Lemma 2.1, we just need to show the
norm bound for || By||2. The bound for ||Dy||s can be shown similarly.

After the dividing process associated with root(7) is finished, according to (2.5),
By, associated with any descendant k of a child i of root(7") looks like

(3.6) By, = By — (RiRy,,_, -+ R,)Hi(RL, - Rl R}),

This manuscript is for review purposes only.

276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291
292

SUPERDC: SUPERFAST EIGENDECOMPOSITION 7

where H; = B, BT if i is the left child of root(7") or H; = I otherwise, k is supposed
to be at level m with sibling k, and k¥ — k,,_1 — -+ — k1 — i is the path connecting
k to i in the HSS tree 7. Clearly, ||H;||2 < 2. With the orthogonality condition of

C1

the U basis generators,
R,

also has orthogonal columns. Then we get

(3.7) 1Brll2 < IBellz + | Hill2 < 8+ 8% = O(8?).

Then in the dividing process associated with node i at level 1, for a child ¢ of i
(see Figure 3.1 for an illustration), the generator D, is further updated to

(38) [)c = Dc - UCHCU(,:T’

where H, = B.BI if c is the left child of i or H, = I otherwise. We have ||H,|2 <
| B.||3 for the first case and ||H.||s = 1 for the second case. From (3.7), we have
|Hc||2 < (B? + B)%. For any descendant k of ¢ with sibling k, (3.8) needs to update
the generator By to

(3.9) By = By — (RiRy,,_, -+ Ri,Re)H(RIRE, -+ R RT)
- (RkRknL—l o sz)HC(Rgz T R{m,l)Rg7

where the last term on the right-hand side is because of the update associated with
the dividing of D; like in (3.6). Then

(3.10) [Bellz < IBilla + [Hill2 + [Hella < 8+ 8% + (8% + 8) = O(5%).

Fic. 3.1. Nodes involved in the dividing process.

If the dividing process continues to ¢, it is similar to obtain ||By|l2 = O(5®) for
any descendant k of a child of ¢. We can then similarly reach the conclusion on the
general pattern of the norm growth as in (3.4). Also, if i is at level ljyax — 1, then By,
associated with a child k of 7 is not updated, which is why only 7 at level | < [jax — 2
contributes to the norm growth of lower level B generators. |

The bound 0(621) in (3.4) for || Bg||2 and the bound || D2 + 0(521) in (3.5) for
| Dy||2 are attainable. To see this, suppose i is a child of root(7) and ||Bi|j2 = 8.
Note the multiplicative forms like H; below (3.6) and H,. below (3.8). Following the
proof, we can see that the asymptotic upper bounds (3.4) and (3.5) can be attained
at some leaf level node k after the dividing process associated with the parent of k is
completed.

This proposition indicates that, during the original hierarchical dividing process,
the updated B, D generators associated with a lower-level node may potentially have
exponential norm accumulation, as long as one of its ancestors is associated with a
B generator with a large norm. This can cause stability issues or even overflow, as
confirmed in the numerical tests later.

This manuscript is for review purposes only.

293
294

295

296
297

298

299

311
312
313
314
315

316

317
318
319
320
321
322
323
324
325
326
327
328

8 XIAOFENG OU AND JIANLIN XTA

To resolve this, we introduce balancing/scaling into the updates and propose a
new dividing strategy. That is, we replace the original dividing method (2.2) by

D; — U,B;BTUT
(3.11) D, = (BT

- ||Bi||2UjUjT>

;UZBZ.
+ [VIBil: (L_BTyT ~/||Bz-||2UjT>,
/HBiH2Uj I B:l2

Then we still have (2.4), but with

(3.12)
R . —1 __[U.B.
Di=D; - ——UBBIU, Dj=D;—|Bill2U;UF, Z,=(VIBl2 """
IIB I2 VIBiLU;

We show how this strategy controls the norms of the updated B, D generators.

PROPOSITION 3.2. Suppose the same conditions as in Proposition 3.1 hold, except
that (2.2) is replaced by (3.11) so that (2.3) is replaced by (3.12). Then (3.4) and
(3.5) become, respectively,

~ n ~ n
(3.13) [Bill2 <2'8 < 75 I1Dkllz < || Dll2 + 2'8 < || Dy 2 + 50

Proof. The proof follows a procedure similar to the proof for Proposition 3.1.
Again, we just show the result for || Bg|2. After the dividing process associated with
root(7) is finished, we still have (3.6) for any descendant k of a child 7 of root(7),

except that H; = % if i is the left child of root(7T) or H; = ||B;||2! otherwise. In

either case, we have ||H;||2 < 8. Then (3.7) becomes

(3.14) 1Byl < 26.
Then in the dividing process associated with node i at level 1, for a child ¢ of
~ "T
i, the generator D, is updated like in (3.8), except that H, = ”é B if ¢ is the left

child of i or H, = || Be||2] otherwise. We have ||He|s < ||Bcl|2 for both cases. From
(3.14), ||Hc||2 < 283. For any descendant k of ¢, (3.8) still requires the update of the
generator By, to By like in (3.9), except that (3.10) now becomes

1Brllz < | Brllz + | Hillz + | Hell2 < 8+ 5 +28 = 45.

If the dividing process continues to ¢, it is similar to obtain || By|ls < 83 for any
descendant k& of the left child of ¢. We can similarly get the norm growth as in (3.13)
in general. a

Therefore, the norm growth now becomes at most linear in n and is well controlled,
in contrast to the exponential growth in Proposition 3.1. Here again, the upper bounds
2! for || Bi||2 and || D2 + 2! for || Dyl|2 are attainable.

Next, we can also minimize colsize(Z),), the rank of the low-rank update. Note
that in the original dividing method (2.2) in [44], the updates to the two diago-
nal blocks involve the B; generator in different ways. That is, D; is updated by
—U;B;BI'U! while D; is updated by —UjU]T. In fact, (2.2) may be reformulated so
that D; is updated by —U;U" while D; is updated by —U; B} B;U]'. Tt is not clear
from [44] which way is better.

This manuscript is for review purposes only.

332

333
334
335
336
337
338
339
340
341
342
343
344

SUPERDC: SUPERFAST EIGENDECOMPOSITION 9

In fact, in (2.2) and also (3.11)—(3.12), the rank of the low-rank update is equal
to colsme(B). In practice, B; may not be a square matrix. Thus, (3.12) shall be used
only if colsize(B;) < rowsize(B;). Otherwise, we replace (3.12) by the following:

(3.15)
VIBill2U;)
1 T,

D; = D; — |Bi|2U; UL, D;=Dj— U,
| Bill2

TR,UT,
” B B = U;B; BiU; , Z, <
so that (2.4) still holds. In (3.15), the low-rank update size is now rowsize(B;). With
such a choice between (3.12) and (3.15), we ensure that the size of the low-rank
update colsize(Z),) is always min(rowsize(B;), colsize(B;)). This strategy benefits the
efficiency in the conquering stage since it reduces the number of rank-1 updates. With
these new ideas, we have a more stable and efficient dividing stage.

4. Improved structured conquering stage. In this section, we discuss the
solution of the eigenvalues and eigenvectors in the conquering stage via the integra-
tion of various stability strategies into FMM accelerations. We first show a flexible
deflation strategy. Then we give a triangular FMM idea for accelerating the secu-
lar equation solution and a local shifting strategy for solving shifted secular equations
and constructing structured eigenvectors. We also discuss the framework of the overall
eigendecomposition and the precise structure of the overall eigenmatrix.

4.1. User-controlled deflation. As reviewed in Section 2.2, the key problem
in the conquering stage is to quickly find the eigendecomposition of the rank-one
updating problem (2.11). Like in earlier studies in [9, 18], an eigenvalue deflation step
may be first applied to reduce the size of (2.11) if |v;| or the difference |d; — d;11] is
small. In the implementations of the tridiagonal divide-and-conquer eigensolver (see,
e.g., [5]), the deflation is performed in a two-step procedure with a tolerance related to
€mach- Here, we follow the same steps, but replace €,,,cn With a user-supplied deflation
tolerance 7 to get a more flexible deflation procedure.

(i) If Jvj| < 7, without loss of generality, we assume j =n, v = (:1> and get
n

Y A v A + vl
A+VVT(! dn)+(vi> (Vir vn)z< ! th dn)’

where the approximation has an error proportional to 7. Then we only need to find
the eigendecomposition of the smaller problem A; + viv?.
(ii) If |(dj — dj11)vjv541| < (v3 403 ,,)7, we can find a Givens rotation matrix G

0 .
such that G (Uj+1> = (w) with w =y /v? +v7,,. Then
dj Uj]] T T dj 12 0 T
G ((de) + (vj+1> (v; vj41))G = (u di 1w (0 w)
~ dj 0 T dj
(") (@) = (")

d;j—d
where W= (]+1%’UJ’UJ+1
vi i

then leads to a diagonal subproblem.
After the above deflation steps, the problem size of (2.11) is reduced and the
simplified problem satisfies

and the approximation has a 2-norm error || < 7. This

(v +0i)T

(4.1) lvjl 27 and |dj —dja| >
vV 41

This manuscript is for review purposes only.

367
368
369
370

371
372
373
374

375
376
377
378

379

385
386
387

388

389

390
391
392

393

394
395
396
397

10 XIAOFENG OU AND JIANLIN XTA

The parameter 7 offers the flexibility to control the accuracy of the eigenvalues.
When only moderate accuracy is needed, a larger 7 can be used for a more significant
reduction in the problem size. Moreover, this can sometimes avoid the need to deal
with situations where [\; — d;| or |\; — dj41] is too small.

4.2. Fast secular equation solution. Assume (4.1) holds for (2.11) so that
no deflation is needed. We consider the solution of the secular equation (2.12) for
its eigenvalues A,k = 1,2,...,n. Without loss of generality, suppose the diagonal
entries dj, of A are ordered from the smallest to the largest.

4.2.1. Standard FMM accelerations and the limitation. When the modi-
fied Newton’s method is used to solve for A\, it needs to evaluate f (referred to as the
secular function) in (2.12) and its derivative f” at certain xy, € (dg, dk+1). The idea in
[13, 24, 44] is to assemble the function evaluations for all k together as matrix-vector
multiplications that can be accelerated by the standard FMM. That is, let

f=(flz) - fl@) . =) - Flan),
(4.2) v:(v1 vn)T, wW=vQovV, e:(l 1)T,
1 1
(4.3) C<dj—$i>nm’ S((dj—fﬂi)2>nxn’
(4.4) f=e+Cw, f =Sw.

The vectors f and f’ can be quickly evaluated by the FMM with the kernel functions
K(s,t) = é and k(s,t) = ﬁ, respectively.

A basic idea of the FMM for computing, say, Cw is as follows. Note that C is
the evaluation of k(s,t) = - at interlaced points s € {d;}1<;j<, and t € {z;}1<i<n:
(45) di<l‘i<di+1 < Tjt1, 1<i1<n—1.

The sets {z;}1<i<n and {d;}1<;j<n together are treated as one set and then hier-
archically partitioned. This also naturally leads to a hierarchical partition of both
{zi}1<i<n and {d;}1<j<n. Consider two subsets produced in this partitioning:

(4.6) sz C {zi}ti<i<n, Sa C {dj}hi<j<n.

Use Cs, s, = (k(dj,%i))z,es,,d,es, to denote the block of C defined by s, and sq,
which is often referred as the interaction between s, and sg.
e If s, and s, are well separated (a precise definition of the separation can be
found in [23, 37]), then Cs, s, can be approximated by a low-rank form
(4.7) Cs, 50 = Us, Bs, s, Va-.
Such a low-rank approximation can be obtained via a degenerate expansion
of k(s,t) and has a bounded rank for any specified approximation accuracy.
That is, the size of Bs, s, is bounded. (See [10] for an example of the accuracy
study.) The subsets s, and s, are also said to be far-field clusters and the
submatrix Cs_ s, is a far-field interaction/block.
e On the other hand, if s, and s; are not well separated, then they are said
to be near-field clusters, and Cs, s, = (k(dj, T;))z;es,.d;es, 18 treated as a
regular dense block (near-field interaction/block).

This manuscript is for review purposes only.

107
408
409
410
411
412
113
414
415
416

417

418

419

420
121
122

423

424

425
426
427

428

429

430
431
432
433
134
135
436
437
438
439
440

441
442

446

447

SUPERDC: SUPERFAST EIGENDECOMPOSITION 11

The FMM further considers the interactions between parent and child clusters
during the hierarchical partitioning, so that the U,V basis matrices in (4.7) satisfy
nested relationships (like in (3.1)). The details can be found in [23] and are not our
focus here. (Also see [10] particularly for a stable 1D matrix version.) The FMM
essentially constructs an FMM matriz approximation to C' and multiplies it with w.
The complexity of each FMM matrix-vector mutliplication is O(n).

In light of (4.3) and (4.4), a straightforward idea in [13, 24, 44] is to apply the
standard FMM to C and S for fast evaluations of f and f’. However, in practical
implementations of secular equation solution methods, it is preferred to write f(x) in
the following form so as to avoid cancellation (see, [5, 9, 18]):

f(@) =1+ ¢p(x) + ¢u(2),
where the splitting depends on k (when A; € (dg, dr+1) is to be found):
2 2
J J

(4.8) Yp(z) = Z dlv_ o on(x) = Z djv— -

j=1 j=k+1

Because of the interlacing property (4.5), all the terms in the sum for ¢y or ¢, have
the same sign for z € (dg,dg+1). Furthermore, ¢y and ¢y capture the behavior of f
near two poles di and dj1 respectively.

A reliable and widely used scheme to find the roots of f(z) is given in [28] based
on a modified Newton’s method with a hybrid scheme for rational interpolations of
Y (z) and ¢ (). The scheme mixes a middle way method and a fixed weight method
and is implemented in LAPACK [5]. In the middle way method, rational functions
Epa(x) =a1 + dkbix and & o(x) = as + dkff_x are decided to interpolate ¥ and ¢
respectively at zy € (dg,dg+1), so that

Eea(mr) = Ynlar), Epaler) = Up(er), Era(rr) = or(wr), & o(wr) = O (k).

(We also follow this hybrid scheme to find the first n — 1 roots A1, Ag, ..., Ap—1. The
last root A, has only one pole d,, next to it, so a simple rational interpolation is used
as in [5, 28]).

The modified Newton’s method requires evaluations of the functions ¥y, ¢k, ¥},
and ¢}, at some zy, € (dg, dig+1), 1 <k <n—1. (Note that even though the summands
in v and ¢}, have the same sign, ¢} and ¢}, are used separately in the rational
interpolations by & 1 and & 2, respectively [28].) Since these functions all depend on
individual k, the standard FMM cannot be applied directly. The reason is that the
standard FMM handles the evaluation of a kernel k(s,t) at a fixed set of data points,
while here it needs to evaluate x(s,t) at different k-dependent subsets of {d;}1<;j<n
and {z;}1<i<n to produce multiple k-dependent functions.

4.2.2. Triangular FMM for fast evaluations of ¥, and ¢;. To resolve the
difficulty of applying FMM accelerations to (4.8), we let

T

(4.9) P = (¢1($1) 1/)n($n)) RS (¢1(~T1) o Gp-1(Tn-1) O)T,
(4.10) @' = (¥i(x1) - Whlza) . @ = (¢h(@) o & q(zamr) 0).
The key idea is to write

(4.11) f=e+p+odp=e+Crw+Cyw, f =9 +¢ =5.w+Syw,

This manuscript is for review purposes only.

148
449
450
451
452
453
154
455
456
457
458
159
460
461
462

463

464
465
166

467

468

469
470
471

472

479

4180
481
482
483
484
485
486
487
488
489
190
491

12 XIAOFENG OU AND JIANLIN XTA

where e is given in (4.2), Cr and Sy, are the lower triangular parts of C' and S,
respectively, and Cy and Sy are the strictly upper triangular parts of C' and S,
respectively. This suggests that the FMM idea should be applied to the lower and
upper triangular parts of C' and S separately. That is, we need a special triangular
FMM that can be used to quickly evaluate the triangular matrix-vector products
Crw, Cyw, Spw, Syw. We illustrate the triangular FMM in terms of the evaluation
of Cpw. For two subsets s, and sq4 as in (4.6), we similarly use (Cr)s, s, to denote
the block of C, defined by s, and sq.
e When s, and sy are neighbor clusters, the interlacing property (4.5) means
Cs, s, is a diagonal block of C. Then (Cp)s, s, is just the lower triangular
part of Cs,_ s,
e When s, and sy are well separated, (Cr)s, s, is a far-field block.
— If s, is on the right of s4 or maxs, > minsg, the interlacing property
(4.5) means (CL)s, s, is in the lower triangular part of C. Since Cf, is
the lower triangular part of C, (4.7) gives

Sa,

(4.12) (CL)sy.5a = Cs, 50 = Us, Bs, s, V.-

— If s, is on the left of s4, (CL)s, s, is in the upper triangular part of Cp,
and is thus a zero block. This case can still be accommodated by (4.12),
with Bs, s, = 0.

The far-field blocks of Cf, then have the same U, V basis matrices as those of C.
Thus, we can conveniently obtain a lower triangular FMM approximation matrix for
Cr, based on an FMM approximation matrix for C, just with the difference in the
lower triangular diagonal blocks and in some zero B generators. The multiplication
of the triangular FMM matrix with w takes only O(n) operations. The cost of one
simultaneous iteration step for all z’s is then O(n).

4.2.3. Iterative secular equation solution. During the modified Newton’s
method, let xfj) be an approximation to the eigenvalue A\, at the iteration step j. A

correction Az,(j) is computed to update xéj) as

(4.13) eIt e 4+ Az

(We sometimes write x,(ej) as z, when the focus is not on the iteration steps j.)
We adopt the following stopping criterion from [24]:

(4.14) £ (@) < en(1 + [p(@9)] + 16(29)] emacn,

where c is a small constant. This stopping criterion can be conveniently checked after
the FMM-accelerated function evaluations, which is an advantage over a criterion
in [28]. The factor n in (4.14) is related to error propagations of general matrix
multiplications. Although (4.14) might be loose for an extremely large n, it works
well in our tests and leads to satisfactory accuracies. It is possible to refine (4.14) to
a tighter convergence estimate using the backward stability studies of FMM matrix-
vector multiplication algorithms in [10, 46]. This is our ongoing work.

Typically, a very small number of iterations is needed for convergence, similarly
to the tridiagonal divide-and-conquer algorithm as mentioned in [17]. (In our tests,
each eigenvalue converges in 2 to 5 iterations on average.) With the total number
of iterations bounded, the total iterative solution cost for finding all the eigenvalues
(from one secular equation) is O(n).

This manuscript is for review purposes only.

510
511
512
513

Ut
v

\] O = = =
N = O © 0w

(SN, G, BN, BING) SIS, BNe) BN |
NN

ot
[\o}
ot

526

SUPERDC: SUPERFAST EIGENDECOMPOSITION 13

4.3. Local shifting in triangular FMM for shifted secular equation solu-
tion. When there are clustered eigenvalues or when updates to previous eigenvalues
are small, typically the standard secular equation (2.12) is not directly solved. In-
stead, shifted secular equations are solved for the purpose of stability and accuracy, as
discussed in [9, 18, 24]. However, it is nontrivial to apply FMM to accelerate shifted
secular equation solution. In fact, the paper [24] mentions the possibility of FMM
accelerations for the standard secular equation but does not consider the shifted ones.
The FMM-accelerated algorithm in [44] does not use shifted secular equations either.

In this subsection, we discuss the necessity of shifting and its challenges to FMM
accelerations. Moreover, we develop a new strategy that makes it feasible to apply
FMM accelerations to the solution of shifted secular equations. In the following, we
suppose deflation in Section 4.1 has already been applied.

4.3.1. Shifted secular equation solution and its challenge to FMM ac-
celerations. During the solution for Ay € (dg, d+1), if Ax is very close to di, or djy1,

2 2
evaluating)\:f 7 or)\:f‘d*;rl in the secular function with a computed \; might lose
accuracy because of cancellations in the denominator. Without loss of generality, we

always assume A is closer to dj. Let the difference between \x and dj be

M = A — dp,

which is also said to be the gap between A\, and di. With a very small gap 7,
instead of directly solving for Ag, the remedy in [9, 18, 24] is to solve a shifted secular
equation for 7. For this purpose, we shift the origin to dj and rewrite the original
secular equation (2.12) as the equivalent shifted secular equation (see, e.g., [9, 18, 24]):

noow?

(4.15) gk(y) = fldk+y) =1+ ko_y =0, with
j=1"

(4.16) 6jk::dj_dk; jZl,Q,...,?’L.

(4.15) is solved for y = . The benefits of this shifting within our context are as
follows.

One benefit is to avoid catastrophic cancellation or division by zero (see, e.g.,
[5, 9, 24]). (Basically, for computations like d; — Ag, although d; — A\ = 6 — i
in exact arithmetic, it is preferred to use d;; — nx to avoid cancellation [9, 24].) For
example, let z;;, be an approximation to Ag. In exact arithmetic, x € (di, dg41). At
each modified Newton iteration, it needs to guarantee dy < fl(zy) < dgy1. However,
this might not be satisfied in floating point arithmetic when xj, is very close to dj:

(4.17) |di — x| = O(€mach) or smaller,
which may lead to cancellation when computing dy — fl(xy):
(4.18) fl(dy, — fl(xk)) = o(€mach) or even fl(dy — fl(zx)) = 0.

This will cause stability issues in the numerical solutions of the standard secular
2
function: fl (#’@) either is highly inaccurate or becomes co.

Note that (4.17) and (4.18) are still possible even if deflation in Section 4.1 has
been applied with a tolerance 7 that is not too small. To see this, suppose v, =
O(r) > 7 and the exact root Ay satisfies |\, — d;| > vjz for j # k. Substituting A

This manuscript is for review purposes only.

U o= W N

Ot Ot Ot Ot Ut Ut
(e}

J

oo

v Ot ot ot QOr ot ot Ot Ot
T
Nej

(=2}

561

562

ot
(@)
w

SN

(S I, S, B B I
co =

e

14 XIAOFENG OU AND JIANLIN XTA

2
into the secular equation (2.12) yields d;ﬁz)\k =-1+ Z;.l#k)\;%dj = O(1). In this

case, \ shall be very close to dj in the following sense:
|dr, — A\i| = v,% -0(1) = 0(72).

Ifr= O(erln/jch) which is not extremely small, we can have (4.17) so that (4.18) may
happen when solving the standard secular equation.

Another benefit for solving the shifted equation is faster convergence. It is ob-
served in our tests that computing with 7y instead of A\x can speed up the convergence
of the modified Newton’s method. To illustrate this, suppose Ay is solved directly from
the standard secular equation (2.12), then the approximation x,(c]) at iteration step j
is updated as in (4.13). Suppose |\x| = O(1) and |ni| = |Ax — di| = O(€mach). Since
xg) converges to Ay as j — 0o, we also have |x,(j)| = O(1) and |x§€]) —di| = O(emach)
after some iterations. In the modified Newton’s method, the correction Aa:gj) ap-

proaches 0 as j increase. This may lead to loss of digits in the updated x,(ﬂj),

ﬂ(m,(cjﬂ)) = ﬂ(x,(gj) + Ax,(cj)) = ﬂ(xg)). As a result, the iteration stagnates. On the
other hand, if 7 is solved from the shifted secular equation (4.15), as in [5, 9, 18],
the update (4.13) is replaced by

(4.19) gy 1+ Az,
where y,(cj) = ZCECj) _ dy, is an approximation to 7 at step j of the iterative solution.

Although (4.13) and (4.19) are equivalent in exact arithmetic, the latter preserves a
lot more digits of accuracy since |y,(cj)| = O(€mach)-

These discussions illustrate the importance of solving the shifted secular equation
(4.15) instead of the original equation (2.12). However, in an FMM-accelerated scheme
where all A\g’s are solved simultaneously, it is not plausible to shift the secular equation
simultaneously for all A;’s. The reason is the shift in (4.15) depends on each individual
eigenvalue and there is no such a uniform shift that would work for all A\;’s.

To see this, let yp = xp — di be an approximation to 7 during the iterative
solution of (4.15). The evaluations of gx(y) in (4.15) at y =y forall k =1,2,...,n
can be assembled into the matrix form

(4.20) g=e+Cw, with

g=(qa1(y1) - gn(yn))T, C= <51> ,

ik — Yk /) 1<k, j<n
where ;5 is given in (4.16). Recall that when the FMM is used to accelerate the
matrix-vector product Cw in (4.11), it relies on the separability of s and ¢ in a
degenerate approximation of x(s,t) = %_t (Note that in k(dj, xx), xx only involves
the row index k and d; only involves the column index j, so that the separability can

be understood in terms of the row and column indices.) However, to evaluate C'w in
(4.20), we have

(4.21) k(dj, xr) = K(d; — di, xp — d) = £(6jk, Yr)-

0k involves both the row and column indices, so that the separability in terms of
the row and column indices does not hold. Therefore, we need to adapt the FMM to
accelerate the shifted matrix-vector multiplication in (4.20).

This manuscript is for review purposes only.

v Ov Ot Ot Ot Ot Ot

80

581

583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

SUPERDC: SUPERFAST EIGENDECOMPOSITION 15

4.3.2. FMM accelerations with local shifting. In this subsection, we pro-
pose a strategy called local shifting that makes it feasible to apply triangular FMM
accelerations to solve (4.15). As mentioned in Section 4.2.1, multiple terms involving
x, — d; are assembled into matrices in order to apply FMM accelerations. See, e.g.,
(4.3). When |z, —d;| is small, the shifting helps get x —d; accurately. However, when
k is not near j or when |k — j| is large,) — d; can actually be computed accurately
without involving any shift dj. To see this, recall that dj, < xx < dk4+1 and also after

i +v? .
deflation in Section 4.1, we have (4.1) holds and |d; — d; 41| > vljviifll > 27 for all 5.
JYi+1
Thus, for j # k, k+ 1,

(4.22) lox — dj| = min(|di — d;l, |[dra — d;]) = 2(]k — 5[= D)7

Hence, |z —d;| is not too small and 3 — d; can be computed accurately when |k — j|
is large.

Following this justification, we have the basic ideas of our local shifting strategy:
(i) small gaps resulting from shifting is used just in near-field interactions of the FMM,
which does not interfere with the FMM rank structure; (ii) it is safe to not shift the
numerical eigenvalues in far-field interactions, which makes it feasible to exploit the
rank structure. More specifically, the major components are as follows.

1. For k = 1,2,...,n, the shifted secular equations (4.15) are solved together
for the gaps m = Ar — di (so as to get the roots Ay of the original secular
equation (2.12)). An intermediate gap during the iterative solution looks like
yr = T — dg. The relevant function evaluations in the iterative solutions are
assembled into matrix-vector products like in (4.20).

2. The FMM is used to accelerate the resulting matrix-vector products like Cw
in (4.20) as follows. Suppose two subsets s, and sq like in (4.6) are well
separated. As mentioned above, for), € s, and d; € sq, x; and d; are far
away from each other and |k — j| is large, so zy — d; can then be computed
accurately because of (4.22). Thus, we can recover xy, from dy + yi to directly
exploit the low-rank structure like in (4.7). As a result, the far-field block
Cs, s, of C is now just a block of C' in (4.3):

OSI,Sd = (H((Sjkvyk))frkGSz,deSd = (H(dj7xk))mkesz,dj€5d = CSde

3. On the other hand, when two subsets s, and sy4 are not well separated, the
near-field interaction CA’SZ,S . 1s dense and each entry £(d,;x, yx) can be evaluated
accurately via y, and the gap d;,. This has no impact on the structures
needed for FMM accelerations.

4. These ideas are then combined with the triangular FMM in Section 4.2.2
to stably and quickly perform function evaluations like (4.20) and solve the
shifted secular equations.

This local shifting strategy successfully integrates shifting into triangular FMM
accelerations. As a result, we can quickly and reliably solve the shifted secular equa-
tions (4.15) via the modified Newton’s method. The overall complexity to find all the
n roots is still O(n). In addition, since the relevant functions are now evaluated more
accurately than with the method in [44], the convergence is also improved. When the
iterative solution of the shifted secular equations converge, we can use the resulting
gaps n, to recover the desired eigenvalues as

(4.23) A =dp+nr, kE=1,2,...,n,

This manuscript is for review purposes only.

626

-3

(=)
N DN
0d]

629

630
631

633
634

636
637
638
639
640
641
642
643
644
645
646
647
648

16 XIAOFENG OU AND JIANLIN XTA

The local shifting strategy can also be used to stably apply FMM accelerations
to other operations like finding the eigenmatrix. See the next subsection.

4.4. Structured eigenvectors via FMM with local shifting. With the iden-
tified eigenvalues Ay in (4.23), the eigenvectors can be obtained stably as in [24]. An
eigenvector corresponding to \x looks like

. . . T
(4.24) qk::< B TR S d;TM;) ’

where V= (0, -+ 0,)7 is given by Léwner’s formula

Hj(/\j —d;)
Hj;éi(dj - di)7

To quickly form ¥, the standard FMM acceleration would look like the following [24].
Rewrite (4.25) as

(4.25) b = i=1,2,...,n.

n

1 1
(4.26) logvi:§ZIOg(|di—)\j|)—§ > logld; — djl.
i=1 j=1j#i
Now, let G1 = (log |d; — Aj])
are set to be zero. Then

Go = (logld; — d;l) where the diagonals of G,

nxn’ nxn’

1
(4.27) logV = §(G1e — Gae).

Ghe and Gae can thus be quickly evaluated by the FMM with the kernel log|s — ¢|.
As in [24, 44], the eigenvectors are often normalized to form an orthogonal matrix

A 0ib;
(4.28) Q(J) . with
di = X nxn
n ~1/2
_ T 0
1=1
The vector b can be quickly obtained via the FMM with the kernel k(s,t) = ﬁ

Q is a Cauchy-like matrix which gives a structured form of the eigenvectors. The
FMM with the kernel (s, t) = Sit can be used to quickly multiply Q to a vector.

Again, with the same reasons as before, it is challenging to stably apply the
standard FMM to accelerate operations like the evaluations of log v in (4.27) and b in
(4.29) and the application of Q to a vector. On the other hand, just like the discussions
in Section 4.3.2, we can integrate the local shifting strategy into FMM accelerations,
just with appropriate kernels k(s,t). For example, with the gaps 7y solved from the
shifted secular equation solution, it is preferred to use d;; —), in place of d; — Ay in
the computation of some entries of q;, for accuracy purpose [5, 9, 18, 24] when d; and
A are very close. Note that, with d;; in (4.16), (4.24) can be written as

. N R T
(430) ar = (51ki77k —7’;1« e 5nki77k') ’

When an entry of q; belongs to a near-field block of @, its representation in (4.30) is
used. Otherwise, we use its form in (4.24). This preserves the far-field rank structure.

This manuscript is for review purposes only.

678
679
680
681
682
683
684
685
686
687
688
689
690

691
692

693

SUPERDC: SUPERFAST EIGENDECOMPOSITION 17

Thus, FMM accelerations with local shifting can be used to reliably represent and
apply @ or QT. Note that

(4.31) Q = diag(¥) (L > diag(b),
di = Aj nxn
so that Q can be stored just via five vectors:
(4.32)
{’a badE(dl dn)TaAE()\l)\n)Tanz(nl Tn)T~

Here, we have the storage of one more vector 1 than that in [44]. This only slightly
increase the storage, but the stability is significantly enhanced.

4.5. Overall eigendecomposition and structure of the eigenmatrix. The
overall conquering framework is similar to [44], but with all the new stability strategies
integrated. The conquering process is performed following the postordered traversal
of the HSS tree T of A, where at each node i € T, a local eigenproblem is solved. For
a leaf node i, suppose ﬁl is the (small) diagonal generator resulting from the overall
dividing process. We just compute the dense eigenproblem D; = QN QT. Then Q;
is a local eigenmatriz associated with <.

For a non-leaf node p with children ¢ and j, the local eigenproblem is to find
an eigendecomposition like in (2.10) based on (2.6) and (2.7). However, unlike (2.9)
where a diagonal plus low-rank update eigendecomposition is computed, it is nec-
essary to reorder the diagonal entries of diag(A;, A;) in order to explore the FMM
structures that rely on the locations of the eigenvalues. Let P, represent a sequence of
permutations for deflation and for ordering the diagonal entries of diag(A;, A;) from
the smallest to the largest. Also let the eigendecomposition of the permuted diagonal
plus low-rank update problem be

(4.33) Py[diag(Ai, Aj) + Z,ZL|PT = Q,A, QT

where Z,, is given in (2.8). Write D,, in (2.7) as D,, since D,, is likely updated after
the hierarchical dividing process. Then we have the following eigendecomposition:

(4.34) D, =QpAQF, with Q, = diag(Q:, Q;)PFQ,,

where (); and Q); are eigenmatrices of D, and ﬁj obtained in steps ¢ and j, respectively.
Then the conquering process proceeds similarly.

Here for convenience, we say (), is a local eigenmatriz and Qp is an interme-
diate eigenmatriz. The difference between the two is that a local eigenmatrix is an
eigenmatrix of a local HSS block while the latter is an eigenmatrix of a diagonal plus
low-rank update problem. A local eigenmatrix is formed by a sequence of interme-
diate eigenmatrices. Since QPAPQZ in (4.33) is obtained by solving r consecutive

rank-1 update eigenproblems, the intermediate eigenmatrix Qp is the product of r
Cauchy-like matrices like in (4.28). Of course, when FMM accelerations and deflation
are applied, the eigendecomposition is approximate.

Then the overall eigenmatrix @ is given in terms of all the intermediate eigenma-
trices, organized with the aid of the tree 7. Here, we give an accurate description of
its structure as follows.

LEMMA 4.1. Assemble all the intermediate eigenmatrices and permutation matri-
ces corresponding to the nodes at a level | of T as

(4.35) QWY = diag(Qi, i: at level l of T), PO = diag(P;, i: at levell of T).

This manuscript is for review purposes only.

18 XIAOFENG OU AND JIANLIN XIA

Then the final eigenmatriz Q has the form (illustrated in Figure 4.1)
0
(4.36) Q=0" TI (PUQY),
I=lmax—1

where level lyax is the leaf level of T and root(T) is at level 0. In addition, Q also
corresponds to (4.34) with p set to be root(T).

T —— —
mn |
A L

[I

F1a. 4.1. Illustration of the structure of the eigenmatriz Q, where {max =4 and each structured

diagonal block (marked in gray) is for an intermediate eigenmatriz Qp associated with a nonleaf
node p.

Thus, @ can be understood in terms of either (4.36) or the local eigenmatrices.
Lemma, 4.1 gives an efficient way to apply @ or Q7 to a vector, where the triangular
FMM with local shifting is again used to multiply the intermediate eigenmatrices
with vectors. Note that with a very similar procedure, a local eigenmatrix @; or its
transpose can be conveniently applied to a vector. Such an application process is used
to multiply the local eigenmatrices Q7 and QJT to Z, as in (2.8) to quickly form Zp
used in (4.33).

The main algorithms used in SuperDC are shown in the supplementary materials.
When A is given in terms of an HSS form with HSS rank r, the total complexity for
computing the eigendecomposition (1.1) can be counted following [44, Section 3.1]
and is O(r?nlog®n). Note that the use of all the new stability techniques here does
not change the overall complexity. Every local eigenmatrix Ql is represented by a
sequence of r Cauchy-like matrices like in (4.28). Each such a Cauchy-like matrix is
stored with the aid of five vectors like in (4.32). The storage for Q is then O(rnlogn)
and the cost to apply @ or Q' to a vector is O(rnlogn) as in [44].

5. Numerical experiments. In this section, we perform a comprehensive test
of the SuperDC eigensolver with different types of matrices and demonstrate its effi-
ciency and accuracy. We compare SuperDC with the following methods.

e BandDC: a usual divide-and-conquer eigensolver that takes advantage of
banded structures following the framework in [3]. A sequence of rank-1 up-
dating problems is obtained based on the banded form in each dividing step
and is then solved in the conquering stage. The same deflation tolerances as
SuperDC are used.

e HSSBIS: an HSS bisection eigensolver [48] that takes advantage of fast HSS
LDL factorization update for inertia evaluations. The stopping criterion of
bisection is the same as the deflation tolerance of SuperDC.

e eig: the highly optimized Matlab eig function.

In order to run comparisons for larger matrix sizes in Matlab, we use BandDC
and HSSBIS to compute only the eigenvalues (with accuracies comparable to those
from SuperDC), which also gives them advantages over SuperDC. For HSSBIS, we
decide the initial search region with p(A) = v/||A]|1||Allcc > ||A]|2 as an estimate of

This manuscript is for review purposes only.

729

742

[S2 BTSNV

3

PNEEES BEEN BECN SIS PN |
ot ot Ut Ot ot Ut

oo

759

SUPERDC: SUPERFAST EIGENDECOMPOSITION 19

the spectral radius of A. We use the following accuracy measurements:

[[Aqk —Arqkl2

= max residual
v 1<k<n VnllAll2 ()’
QT ar—exll2 :
0 = max =—_2tl2 (Jogs of orthogonality),
1<k<n n
A=A [A=A"]lo A% =]
g =2z 5 = A A 5 max P2kl (errors
s Az 2 o0 R [- o RV (),
T . . .
where A* = (/\’1k e AZ) are eigenvalues from eig and are considered as the exact

results.

To measure the efficiency, we count the flops (total number of floating point
arithmetic operations), the storage (total number of nonzeros to store the structured
eigenmatrix in SuperDC or the dense eigenmatrix in eig), and the timing (seconds
elapsed when the call of an eigensolver routine is completed). In the flop count, if a
built-in routine is used to perform standard operations, we use known flop counts like
those given in relevant references such as [17, 39].

SuperDC is available at https://www.math.purdue.edu/~xiaj. It is implemented
fully in Matlab. The triangular FMM routine of SuperDC is developed based on
a code used in [10], and its accuracy during each call is set to reach full machine
precision. In all the tests, the leaf-level diagonal block size of the HSS forms is 2048.
The tests are performed with four 2.60GHz cores and 80GB memory on a node at a
cluster of Purdue RCAC. The request of 80GB memory is just to accommodate the
need of eig for larger matrices.

ExAMPLE 1. First, we consider a symmetric tridiagonal matrix A. For our Su-
perDC eigensolver, the HSS representation of A can be explicitly written out without
any extra cost and its HSS rank is r = 2 [49]. (The HSS structure does not rely
on the actual nonzero entries, which are 3 on the main diagonal and —1 on the first
superdiagonal and subdiagonal. Other numbers such as random ones are also tested
with similar performance observed.) The size n of A in the test ranges from 8192 to
1,048,576. We use 7 = 10710 in the deflation criterion in Section 4.1.

The timing of BandDC, HSSBIS, eig, and SuperDC is reported in Figure 5.1(a).
The storage for the eigenmatrix @ from eig and SuperDC is given in Figure 5.1(b).
The costs of SuperDC are given in Figure 5.1(c), in terms of the flops to get the
eigendecomposition and the flops to apply @ to a vector. SuperDC achieves roughly
linear complexity in the timing, flops, and storage. Both BandDC and HSSBIS follow
quadratic trends in timing, though HSSBIS is quite slower. eig has a cubic trend in
timing and an obvious quadratic storage (which is just n? for storing the dense Q).

10'2
104 / 10" /
— (0]
= 102 —a—BandDC @» ; ,;/ —o— Eigendecomposition
—o—SuperDC 2] —e—cig —>— Application of Q
O(n®) 108ts ——SuperDC - - -O(nlog*n)
————— O(n®) -—-O(nlogn)
- - -O(nlogn) 108
10t 108 10° 10 10°
n n n
(a) Eigendecomposition timing (b) Storage (c) Flops of SuperDC

Fic. 5.1. Example 1. Timing, storage, and flops.

This manuscript is for review purposes only.

https://www.math.purdue.edu/~xiaj

760
761
762
763
764
765
766
767
768
769
770
e
772

793
794

795

20 XIAOFENG OU AND JIANLIN XIA

SuperDC is faster than BandDC and HSSBIS for all the tested sizes, and its
breakeven point with eig is around n = 8192. With n = 32,768, SuperDC is already
about 6 times as fast as eig and takes only about 6% of the storage for the eigenmatrix.
Note that eig runs out of memory for larger n due to the dense eigenmatrix, while
SuperDC takes much less memory and can reach much larger n.

The conquering stage is usually much more time-consuming than the dividing
stage. For example, for n = 65, 536, the dividing stage of SuperDC needs just 1.4 sec-
onds and the conquering stage takes 56.4 seconds. Thus, our strategy for minimizing
colsize(Z,) or reducing the number of rank-one updates is beneficial for the efficiency
of the eigensolver since it reduces the amount of work in the conquering stage.

Table 5.1 shows the accuracy of SuperDC. The eigenvalues and eigendecompo-
sitions are computed accurately with numerically orthogonal eigenvectors. BandDC
and HSSBIS reach comparable accuracies which are then not reported.

TABLE 5.1
Example 1. Accuracy of SuperDC, where some errors are not reported since eig runs out of
memory, and v and 0 are not available for n > 262,144 since they take too long to compute.

n 4,096 8,192 16, 384 32,768 65, 536 131,072
v | 1.2e—-15 | 64e—15 | 1.1e—13 | 94e—14 | 7.5e—14 | 5.3e — 14
0 | 1.8¢e—14 | 29¢—14 | 3.8e — 14 | 5.5be — 14 | 8.6e — 14 | 1.2¢ — 13
0s | 2.6e—16 | 4.6e —16 | 1.3e — 13 | 9.4e — 14
0co | 89 —16 | 1.2e — 14 | 8.0e — 12 | 6.3e — 12

Om | 9.7¢—16 | 1.2e —14 | 8.0e — 12 | 6.3e — 12

EXAMPLE 2. In this example, we test a symmetric matrix A which is sparse and
nearly banded. A has a banded form with half bandwidth 5 together with some
nonzero entries away from the band. The HSS form for A can be explicitly written
out with the method in [49] and has HSS rank 10. The nonzero entries away from the
band are introduced by modifying some HSS generators. The main diagonal entries
are set as 30 and the other entries in the band are set as —10 so that the upper bound
for all || Bi||2 in Proposition 3.1 is § = 35.1 > 1. The size n in the test ranges from
8192 to 1,048, 576. We use 7 = 107! in the deflation criterion.

The entries away from the band break the banded structure of A. Still, BandDC
can be conveniently adapted to A. The efficiency benefit of SuperDC over eig becomes
even more significant, as shown in Figure 5.2. At n = 32,678, SuperDC is about 8
times as fast as eig and takes only about 7% of the storage for the eigenmatrix. Again,
eig runs out of memory when n increases, but SuperDC works for much larger n and
demonstrates nearly linear complexity. At n = 1,048,576, SuperDC is about 12 times
as fast as BandDC (which does not even compute the eigenmatrix).

We also show the advantage of our new dividing strategy over the original one
(2.2). In Table 5.2, we show the norm growth of the B, D generators after the dividing
stage. For the initial B, D generators of the original HSS form, let B, D denote the
updated generators after the entire dividing stage is finished. Let
pB = i<g13>(<T)IIB¢||2, pp = max [|Dill2, pp = KgggT)IIBiIIQ, pp = max || Dillz.
When n increases, the number of levels in the HSS tree 7 increase and p(D) and
p(B) stay about the same for all n. However, pz and pp grow exponentially with the
original dividing stage, as predicted by Proposition 3.1. This poses a stability risk.

This manuscript is for review purposes only.

796

797

SUPERDC: SUPERFAST EIGENDECOMPOSITION 21

1012 /
. HSSBIS B é =
—o—cig e i 100
—e—BandDC _ +{/‘> —o— Eigendecomposition
—6—SuperDC qg Do —>— Application of Q
On*) —e—>Super - - -O(nlog?n)
2 0(n?) 108 I3
77777 O(n?) om -—-O(nlogn)
-~ -O(nlog?n) -~ -Olnlogn)
10* 10° 10° 10* 10°
n n n
(a) Eigendecomposition timing (b) Storage (c) Flops of SuperDC

Fic. 5.2. Example 2. Timing, storage, and flops.

(Note that pj has a larger magnitude than pg, which is consistent with Proposition
3.1.) In contrast, the growth of ps and pz with our new dividing strategy is much
slower and roughly follows the linear growth pattern as predicted by Proposition 3.2.

TABLE 5.2
Example 2. Norms of the D, B generators before and after the dividing stage.

n 4,096 | 8,192 | 16,384 | 32,768 | 65,536 | 131,072
Number of levels lax 2 3 4 5 6 7
Initial pe | 3.5el | 3.5el | 3.5el 3.5el 3.5el 3.5el

pp | 7.0el | 7.0el | 7.0el 7.0el 7.0el 7.0el
After the original | ps | 3.5el | 7.4e2 | 5.5e5 | 3.0ell | 9.2¢22 | 8.5e45
dividing strategy | pp | 1.7e3 | 1.1e6 | 6.1ell | 1.8e23 | 1.7e46 | 1.4e92

After the new pg | 3.5el | 4.5el | 8.3el 1.6e2 3.3e2 6.6e2
dividing strategy | pp | 7.3el | 1.3e¢2 | 3.0e2 6.3e2 1.3e3 2.6e3

In Table 5.3, we report the accuracies of SuperDC. The accuracies associated
with the original dividing strategy deteriorate as n gets larger and the results are
highly inaccurate for n > 32, 768 so they are not shown. In contrast, the new dividing
strategy yields nice accuracies. This accuracy difference can be understood as follows.
For a leaf node k, we need to use a (backward stable) dense method to compute a
numerical eigendecomposition of the updated D generators (see Lemma 2.1) with
backward error AD, (see, e.g., [24]):

(5.1) Dy = QuAyQF + ADy, with ||ADg|l2 = O(|| D ||2€mach)-

By Propositions 3.1 and 3.2, ||Al~);€||2 is roughly in the magnitude of O(8"?emach)
with the original dividing strategy (2.2), or O(%§ €macn) With the new dividing strategy.
Therefore, the original dividing strategy will likely introduce larger errors.

Remark 5.1. In (5.1), we often have ||Dll» in the magnitude of O(||All2) so
that O(||Dill2€mach) is roughly O(||Al|2€macn). Therefore, an absolute error of or-
der O(]|Al|2€macn) is introduced to the eigenvalues, resulting in loss of digits for those
eigenvalues that are tiny (when ||A|2 is large). Thus, the maximum relative errors
Om for those tiny eigenvalues may be larger, while other measurements such as d5 and
~ are still well controlled. In addition, because of the complex nature of SuperDC,
it is possible that some other weakness in the numerical stability may still present.
Our ongoing work is to attempt to perform a comprehensive backward stability study

This manuscript is for review purposes only.

818
819

820
821
822
823
824
825
826

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

22 XIAOFENG OU AND JIANLIN XIA

TABLE 5.3
Example 2. Accuracy of SuperDC, where some errors are not reported since eig runs out of
memory, and v and 6 are not available for n > 262,144 since they take too long to compute.

n | 4,096 | 8,192 | 16,384 | 32,768 | 65,536 | 131,072
v |3.6e—13|95e— 12| 1.5e — 5
Original 9 |2.2¢—13]3.0e —13|5.3¢c — 13
dividing bs | 4.7e — 13| 4.2 — 13| 9.7e — 7
oo | 1.7 — 11| 1.6e — 11| 3.0 — 5
om |1.8¢ — 11| 1.6e—9 | 1.2¢ — 4
~ |94e— 14| 1.8c—12|3.7¢ — 13 | 3.4c — 13 | 5.6e — 13 | 1.2¢ — 12
New | 0 |19e—13|4de—13 5.6 13 | Lle — 12| Lde — 12| 2.0¢ — 12
dividing s | 1.6e —14(3.2¢ — 12| 5.3¢ — 13| 2.6¢ — 13
boo | 6.0 — 13| 1.5¢ — 10| 2.2¢ — 11 | 1.1e — 11
m | 1.66 — 12 2.9¢ — 10 | 3.2¢ — 11 | 2.2¢ — 11

based on the stability results for rank-1 updated eigenvalue solution in [24] and for
the structured methods in [10].

We also demonstrate the importance of our local shifting strategy by testing the
eigensolver with triangular FMM accelerations applied to the standard secular equa-
tion. Due to cancellations, Matlab returns NaN (not-a-number) for the test matrices
with sizes larger than 8192. This shows the risk of directly applying FMM accelera-
tions to the standard secular equation like in [44].

ExXAMPLE 3. Next, we consider a dense symmetric Toeplitz matrix A with its
first row € = (51 §n) given by

sin(2a(j — 1))
(=D

where 0 < o < 1/2. This is the so-called prolate matrix that appears frequently in
signal processing. It is known to be extremely ill-conditioned and has special spectral
properties (see, e.g., [43]). In fact, the prolate matrix has many small eigenvalues of
magnitude O(€mach). Here, we set o = 1. It is known that any Toeplitz matrix can be
converted into a Cauchy-like matrix C which has small off-diagonal numerical ranks
[14, 33, 44]. That is, C = FAF*, where F is the normalized inverse DFT matrix.
Then the eigendecomposition of A can be done via that of C. An HSS approximation
to C may be quickly constructed based on randomized methods in [30, 31, 51, 55] and
fast Toeplitz matrix-vector multiplications. The cost is nearly linear in n. Here, we
use a tolerance 10710 in relevant compression steps, which is the same as the deflation

tolerance 7. The size n ranges from 4096 to 65, 536.

SuperDC and HSSBIS are applied to the resulting HSS form and compared with
eig applied to A. In Figure 5.3, the timing, storage, and flops are shown and they
are consistent with the complexity estimates. SuperDC shows a significant efficiency
advantage over eig. At n = 32,768, SuperDC is about 122 times faster than eig. The
accuracy is reported in Table 5.4.

One thing to point out is that the theoretical complexity O(r?n log? n) of SuperDC
may overestimate the actual cost. For example, here r is typically known to be
O(logn) based on entrywise approximation errors [10, 33, 52, 55]. One reason for the
overestimate is that the flop count does not take into consideration a levelwise rank

51:20‘7 gj: aj:2733"'7n3

This manuscript is for review purposes only.

SUPERDC: SUPERFAST EIGENDECOMPOSITION 23

10* o —o—eig 10° P
. _|—e—SuperDC - —o— Eigendecomposition
@ B —+—HSSBIS g = @ —»>— Application of Q
2 om?) g » S 10™0 - - -O(nlog’n)
£ , R - 0O(n?) S g - [Y N O(nlogn)
= 10 T otmtogtn) & 10 5
= i o= ——SuperDC s
0(n?) 10
10 107 - - -O(nlogn)
10* 10° 10* 10° 10* 10°
n n n
(a) Eigendecomposition timing (b) Storage (c) Flops of SuperDC

Fic. 5.3. Example 3. Timing, storage, and flops.

TABLE 5.4
Example 3. Accuracy of SuperDC, where the errors §s and doo for n = 65,536 are not reported
since eig runs out of memory. dm is not available since many eigenvalues of order O(€mqcn) and eig
returns a numerical eigenvalue 0 for some of the matrices.

n 4,096 8,192 16, 384 32,768 65, 536
v [23e—11 | 44e—11 | 1.8e—10 | 3.5e —10 | 1.4e—9
0 | 22¢—15 | 86e—15 | 6.0e —15 | 4.2¢ — 15 | 3.0e — 15
s | B.be—12 | 1.4e — 11 | 4.5e—10 | 9.3e — 10
0o | 1.1e—10 | 7.3e—10 | 2.2e—8 | 6.1le—8

pattern in [50]. Another reason is our flexible deflation strategy in Section 4.1. The
matrices actually have highly clustered intermediate eigenvalues and many of them
get deflated. This further leads to high efficiency gain.

We have also tested SuperDC on random Toeplitz matrices, where the associated
Cauchy-like matrices C have off-diagonal numerical ranks r quite larger than in the
prolate matrix case. Since the complexity of SuperDC is O(r%n log? n), it needs larger
n to see an obvious advantage in timing over eig. (Of course, we may also use a larger
compression tolerance to get smaller r.) In addition, for random Toeplitz matrices,
deflation happens much less frequently than in the prolate matrix case.

ExXAMPLE 4. The last example is a discretized kernel matrix A in [12] which
is the evaluation of the function y/|s — ¢| at the Chebyshev points cos (2;1 7r) b=
1,2,...,n. The HSS construction may be based on direct off-diagonal compression
or efficient analytical methods like in [56]. We use an existing routine based on the
former one for simplicity. To show the flexibility of accuracy controls, we aim for
moderate accuracy in this test by using a compression tolerance 10~° in the HSS

construction, which is also the deflation tolerance.

For this example, we can observe similar complexity results as in the previous
examples. See Figure 5.4. With the larger tolerance than in the previous examples,
we still achieve reasonable eigenvalue errors and residuals with numerically orthogonal
eigenvectors. See Table 5.5.

We now show how our local shifting strategy (for triangular FMM-accelerated
solution of the shifted secular equations) can also significantly benefit the rate of
convergence of the roots. To illustrate this, we perform the following count. Suppose r
secular equations are solved because of r rank-1 updates associated with the root node
of the HSS tree 7. When solving the jth secular equation, let p; be the percentage of
eigenvalues that have not converged after 5 Newton’s iterations. Let i = max; <<, /4;.

This manuscript is for review purposes only.

874
875
876

877

878
879
880
881
882
883
884
885
886
887
888
889
890
891

24 XIAOFENG OU AND JIANLIN XTA

4 A - 12
10 10° P 1
. = o L —o— Rigendecomposition
Z403 P] . 2 s Application of Q
) o [- o - - -O(nlog’n)
E. > % 10 .- / c10°r e O(nlogn)
F10 —o—cig —o—cig
- ——SuperDC ——SuperDC
10! s« HSSBIS 107 O(n?)
O(nlog®n) - --O(nlogn) g
10
10* 10° 10* 10° 104 10°
n n n
(a) Eigendecomposition timing (b) Storage (c) Flops of SuperDC

Fic. 5.4. Example 4. Timing, storage, and flops.

TABLE 5.5
Example 4. Accuracy of SuperDC, where the errors for n = 65,536 are not reported since eig
runs out of memory.

n 4,096 8,192 16,384 32,768 65, 536
¥ 7.4e — 9 2.7e -9 2.2e—-9 1.6e —9 1.1le—-9
0 | 14de—13 | 2.6e —13 | 2.5e—13 | 2.4e— 13 | 3.8e — 13
s 3.8 — 8 5.5¢ — 8 5.7¢ — 8 8.7¢ — 8
doo | 29¢—8 | 3.2¢e—8 | 2.8¢6—8 | 5.6e—8

Om | 1.2e—4 | 42¢e—4 | 47e—4 | 58¢—4

Table 5.6 reports this maximum percentage p with varying n. With local shifting, a
vast majority of those eigenvalues (about 99% or more) converges within 5 iterations.
This is significantly better than the case without local shifting (i.e., when the standard
secular equation is solved with FMM accelerations).

TABLE 5.6
Mazimum percentage (p) of eigenvalues not converged within 5 iterations for solving the r
secular equations associated with root(T).

n 4,096 | 8,192 | 16,384 | 32,768 | 65,536
With local shifting 1.00% | 0.88% | 0.34% | 0.38% | 0.33%
Without local shifting | 62.5% | 57.6% | 57.2% | 58.5% | 57.7%

6. Conclusions. In this work, we have designed a SuperDC eigensolver that
significantly improves a previous development in terms of the stability and efficiency.
A series of stability enhancements is built into the different stages of the algorithm.
In particular, we avoid an exponential norm growth risk in the dividing stage via a
balancing strategy. We further combine FMM accelerations with several key stabil-
ity safeguards that have been used in practical divide-and-conquer algorithms. The
extensive numerical tests confirm the efficiency and the accuracy.

The SuperDC eigensolver makes it feasible to use full eigendecompositions to
solve various challenging numerical problems as mentioned at the beginning of the
paper. A list of applications is expected to be included in [35]. In addition, we expect
that the novel local shifting strategy and triangular FMM accelerations are also useful
for other FMM-related matrix computations when stability and accuracy are crucial.
In our future work, we plan to provide the proof of backward stability, as well as a
high-performance parallel implementation, which will extend the applicability of the

This manuscript is for review purposes only.

892

893
894

SUPERDC: SUPERFAST EIGENDECOMPOSITION 25

algorithm to large-scale numerical computations.

Acknowledgements. Thank the editor and the three anonymous reviewers for
providing valuable suggestions that have helped greatly improve the paper.

G.
L.

REFERENCES

. AMBIKASARAN AND E. DARVE, An O(nlogn) fast direct solver for partial hierarchically

semi-separable matrices, J. Sci. Comput., 57 (2013), pp. 477-501.

. AMEsTOY, C. ASHCRAFT, O. BOITEAU, A. BUTTARI, J.-Y. L’EXCELLENT, AND C. WEIs-

BECKER, Improving multifrontal methods by means of block low-rank representations, STAM
J. Sci. Comp., 37 (2015), pp. A1451-A1474.

. ARBENZ, Divide and conquer algorithms for the bandsymmetric eigenvalue problem, Parallel

Comput., 18(10), 1105-1128 (1992).

. CorrINOVIS, D. KRESSNER AND S. MASSEIL, Divide and conquer methods for functions of

matrices with banded or hierarchical low-rank structure, arXiv:2107.04337 (2021).

. ANDERSON, Z. BAIl, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. Du CROZ,

A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK Users’
Guide, STAM, Philadelphia, PA, third ed., 1999.

. BENNER AND T. MAcCH, Computing all or some eigenvalues of symmetric H;-matrices, STAM

J. Sci. Comput., 34 (2012), pp. A485-A496.

. A. Bini, L. GEMIGNANI, AND V. Y. PAN, Fast and stable QR eigenvalue algorithms for

generalized companion matrices and secular equations, Numer. Math., 100 (2005), pp.
373-408.

. BINT AND V. Y. PAN, Parallel complexity of tridiagonal symmetric eigenvalue problem, Proc.

Annu. ACM-SIAM Symp. Discrete Algorithms, STAM, Philadelphia, 1991 pp. 384-393.

. R. BuncH, C. P. NIELSEN, AND D. C. SORENSEN, Rank-one modification of the symmetric

eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

. CA1 AND J. X1A, A stable matrix version of the fast multipole method: stabilization strategies

and examples, Electron. Trans. Numer. Anal., 54 (2021), pp. 581-609.

. CHANDRASEKARAN, P. DEwILDE, M. Gu, T. PaLs, X. SuN, A. J. VAN DER VEEN, AND

D. WHITE, Some fast algorithms for sequentially semiseparable representations, STAM J.
Matrix Anal. Appl., 27 (2005), pp. 341-364.

. CHANDRASEKARAN, P. DEWILDE, M. Gu, W. Lyons, AND T. PaLS, A fast solver for HSS

representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67-81.

. CHANDRASEKARAN AND M. Gu, A divide-and-conquer algorithm for the eigendecomposition

of symmetric block diagonal plus semiseparable matrices, Numer. Math., 96 (2004), pp.
723-731.

. CHANDRASEKARAN, M. Gu, X. SUN, J. XIA, AND J. ZHU, A superfast algorithm for Toeplitz

systems of linear equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1247-1266.

. CHANDRASEKARAN, M. GuU, J. XIA, AND J. ZHU, A fast QR algorithm for companion ma-

trices, Oper. Theory: Adv. Appl., Birkhaeuser Basel, 179 (2007), pp. 111-143.

. J. M. CuPPEN, A divide and conquer method for the symmetric tridiagonal eigenproblem,

Numer. Math., 36 (1981), pp. 177-195.

. W. DEMMEL, Applied Numerical Linear Algebra, STAM, 1997.
. J. DONGARRA AND D. C. SORENSEN, A fully parallel algorithm for the symmetric eigenvalue

problem, STAM J. Sci. Stat. Comput., 8 (1987), s139-s154.

. EIDELMAN, I. GOHBERG, AND V. OLSHEVSKY, The QR iteration method for Hermitian

quasiseparable matrices of an arbitrary order, Linear Algebra Appl., 404 (2005), pp. 305—
324.

. EIDELMAN AND I. HAMovICI, Divide and conquer method for eigenstructure of quasisepa-

rable matrices using zeroes of rational matriz functions, Oper. Theory: Adv. Appl., 218
(2012), Springer, Basel, pp. 299-328.

. EIDELMAN, I. GOHBERG, AND 1. HAIMOVICI, Separable type representations of matrices and

fast algorithms, Vol. 1, 2, Oper. Theory: Adv. Appl., 234, 235.
H. GorLuB, Some modified matriz eigenvalue problems, SIAM Rev., 15 (1973), pp. 318-334.
GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325-348.

M. GuU AND S. C. EI1SENSTAT, A stable and efficient algorithm for the rank-one modification of

the symmetric eigenproblem, STAM J. Matrix Anal. Appl., 15 (1994), pp. 1266-1276.

M. Gu AND S. C. EISENSTAT, A divide-and-conquer algorithm for the symmetric tridiagonal

This manuscript is for review purposes only.

=

T OT Ot

W N = O

ot

1

ut

>
5
5

)

~

9!
9t
9!
9¢
9!
9!
9
9
9

58
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000

1001

1002

1003

1009
1010
1011

26

[26]
[27]
28]
[29]
EY
[31]
[32]
[33]
[34]
[35]

[36]

(37)
[38]

39]
[40]

XIAOFENG OU AND JIANLIN XTA

eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172-191.

W. HACKBUSCH AND S. BORM, Data-sparse approzimation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp.1-35.

W. HACKBUSCH, A sparse matriz arithmetic based on H-matrices, Computing, 62 (1999), pp.
89-108.

R. C. L1, Solving secular equations stably and efficiently, University of California, Berkeley,
Technical Report No. UCB/CSD-94-851 (1994).

X. L1ao, S. L1, L. CHENG, AND M. Gu, An tmproved divide-and-conquer algorithm for the
banded matrices with narrow bandwidths, Comput. Math. Appl., 71 (2016), pp. 1933-1943.

X. Liu, J. X1A, AND M. V. DE Hoopr, Parallel randomized and matrixz-free direct solvers for
large structured dense linear systems, STAM J. Sci. Comput., 38 (2016), pp. S508-S538.

P. G. MARTINSSON, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matriz, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251-1274.

P. G. MARTINSSON AND V. ROKHLIN, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys. 205 (2005), pp. 1-23.

P. G. MARTINSSON, V. ROKHLIN, AND M. TYGERT, A fast algorithm for the inversion of general
Toeplitz matrices, Comput. Math. Appl., 50 (2005), pp. 741-752.

D. P. O’LEARY AND G. W. STEWART, Computing the eigenvalues and eigenvectors of symmetric
arrowhead matrices, J. Comput. Phys., 90 (1990), pp. 497-505.

X. Ou, J. VOGEL, J. XIA, AND Z. XIN, Efficient numerical computations via superfast eigen-
value decompositions, preprint, 2021.

J. SHEN, Y. WANG, AND J. XIA, Fast structured direct spectral methods for differential equations
with variable coefficients, I. The one-dimensional case, SIAM J. Sci. Comput., 38 (2016),
pp- A28-Ab4.

X. Sun AND N. P. PITSIANIS, A matriz version of the fast multipole method, STAM Rev., 43
(2001), pp. 289-300.

A. SUSNJARA AND D. KRESSNER, A fast spectral divide-and-conquer method for banded matrices,
Numer. Linear Algebra Appl., 28 (2021), €2365.

L. N. TREFETHEN AND D. BAU, Numerical Linear Algebra, SIAM, 1997.

M. TYGERT, Recurrence relations and fast algorithms, Appl. Comput. Harmon. Anal., 28.1
(2010), 121-128.

M. VAN BAREL, R. VANDEBRIL, P. VAN DOOREN, AND K. FREDERIX, Implicit double shift
QR-algorithm for companion matrices, Numer. Math., 116 (2010), pp. 177-212.

R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, Matriz Computations and Semisepa-
rable Matrices, Vol. 1. Johns Hopkins University Press, Baltimore, MD, 2008.

J. M. VARAH, The prolate matriz, Linear Algebra Appl., 187 (1993), pp. 269-278.

VocGEL, J. X1A, S. CAULEY, AND V. BALAKRISHNAN, Superfast divide-and-conquer method
and perturbation analysis for structured eigenvalue solutions, STAM J. Sci. Comput., 38
(2016), pp. A1358-A1382.

Y. WANG, Fast Structured Spectral Methods, Ph.D. thesis, Purdue University, 2017.

Y. X1 AND J. X1A, On the stability of some hierarchical rank structured matriz algorithms,

SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1279-1303.

Y. X1, J. X1A, S. CAULEY, AND V. BALAKRISHNAN, Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling, STAM J. Matrix Anal. Appl., 35 (2014),
pp. 44-72.

Y. X1, J. Xia AND R. CHAN, A fast randomized eigensolver with structured LDL factorization
update, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 974-996.

J. X1A, Fast Direct Solvers for Structured Linear Systems of Equations, Ph.D. thesis, University
of California, Berkeley, 2006.

J. X1a, On the complexity of some hierarchical structured matriz algorithms, STAM J. Matrix

Anal. Appl., 33 (2012), pp. 388-410.

. X1A, Randomized sparse direct solvers, STAM J. Matrix Anal. Appl., 34 (2013), pp. 197-227.

. X1A, Multi-layer hierarchical structures, CSIAM Trans. Appl. Math., 2 (2021), pp. 263-296.

. X1A, S. CHANDRASEKARAN, M. Gu, AND X. S. L1, Superfast multifrontal method for large

structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382—
1411.

J. XIA, S. CHANDRASEKARAN, M. Gu, AND X. S. L1, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953-976.

J. X1A, Y. X1, AND M. Gu, A superfast structured solver for Toeplitz linear systems via ran-
domized sampling, STAM J. Matrix Anal. Appl., 33 (2012), pp. 837-858.

X. YE, J. XI1A, AND L. YING, Analytical low-rank compression via prozy point selection, SIAM
J. Matrix Anal. Appl., 41 (2020), pp. 1059-1085.

—

[]

This manuscript is for review purposes only.

SUPPLEMENTARY MATERIALS:
LIST OF MAJOR ALGORITHMS

Title of paper: SuperDC': Superfast divide-and-conquer eigenvalue decomposition with
improved stability for rank-structured matrices

Authors: Xiaofeng Ou and Jianlin Xia

These supplementary materials are pseudocodes that can help better understand
the major algorithms in the paper.

Algorithm 1: the HSS dividing stage.
Algorithm 2: solving the secular equation for the eigenvalues with triangular
FMM accelerations and local shifting.

e Algorithm 3: the conquering stage for producing the eigendecomposition.
e Algorithm 4: application of the a local eigenmatrix @; or its transpose to a

vector. This is used in Algorithm 3 and also can be used to apply the global
eigenmatrix @ or its transpose to a vector when i = root(7).

For notational convenience, we use r to represent the column sizes of all Z; ma-
trices in the pseudocodes. 7; is also used to denote the subtree of 7 rooted at node
i €T. Z(:,j) means the j-th column of Z.

The following utility routines are used in the algorithms. To save space, we are
not showing pseudocodes for these routines.

updhss(D;, U;, H): for an HSS block D; corresponding to the subtree 7,
update its D, B generators to get those of D; — U;HU! using Lemma 2.1.
trifmm(d, x, y, w, k): compute a matrix-vector product K'w with the trian-
gular FMM and local shifting as in Sections 4.2.2 and 4.3.2, where K =
(k(di, T5))d;ed,z;ex is a kernel matrix and y is the gap vector (for accurately
evaluating x — d). Note that the triangular FMM is used to multiply the
lower triangular part of K with w and the strictly upper triangular part of
K with w and the final result is the sum of the two products.
mnewton (v, ¢, %', ¢'): use the modified Newton’s method to compute cor-
rections to the current approximate gap as in (4.19), where 1, ¢, ', ¢ look
like (4.9) and (4.10).

iniguess(d, w): compute the initial guess as in [28] for the solution of the
secular equation (2.12).

deflate(d, v, 7): apply deflation with the criterion in Section 4.1.

This manuscript is for review purposes only.

XIAOFENG OU AND JIANLIN XIA

Algorithm 1 SuperDC dividing stage

1
2
3:
4
5

10:
11:
12:
13:
14:
15:

16:

17:

18:

19:
20:

21:

22:
23:
24:
25:

: procedure divide({D;}ie7, {Ui}ieT, { Ri}ieT, { Bi}ieT)

for node i = root(T),...,1 do > Dividing D; in a top-down traversal
if i is a non-leaf node then
if colsize(B,,) < rowsize(B,) then > ¢1,co: children of ¢

D., « updhss(D,,,U,,, HB B BCIB) > Update generators of D,

to get those of D., — HB B Ue, Be, BLUZL like in Lemma 2.1

D., < updhss(D,,,U,,, ||Bcl||2l) > Update generators of D,

to get those of De, — || Be,||2Uc, UL like in Lemma 2.1

else

D., < updhss(D¢,,Ue,, || Be, ||21) > Update generators of D,

to get those of D., — || B¢, |2U, UL like in Lemma 2.1

D., « updhss(D,,,U,,, BIB.,) v Update generators of D,

HBL Hz
to get those of D, — HB i Ue .BL B, UL like in Lemma 2.1
end if
end if
end for
for node i =1,...,root(7) do > Form Z; in a bottom-up traversal
if 7 is a non-leaf node then
if colsize(B,,) < rowsize(B,,) then > c1,co: children of i
\/HBcl \2 Ve B) > Local update Z matriz like in (3.12)
else
Z; < |U é) > Local update Z matriz like in (3.15)
\/HBrll
end if
if i # root(7) then
U; + (UClRC1> > Assemble U; for parent node of i
Ue, R,
end if
end if
end for

return updated generators {D;};eT, {Bi}ieT: {Zi}icT

26: end procedure

This manuscript is for review purposes only.

SUPPLEMENTARY MATERIALS 3

Algorithm 2 Secular equation solution for eigenvalues (of diag(d) + vv7T)

1: procedure secular(d, v)
> Figenvalue solution via the solution of the shifted secular equation (4.15)

2: W VOV
3: x(©) « iniguess(d, w) > Computation of the initial guess as in [28]
4: y©@ —xO0 _¢g
5: for y=0,1,... do
6: [, P < trifmm(d,x\7), y) w, 4 > Computation of 1, ¢ in (4.9)
7 [, @] « trifmm(d, x), yU) w, @)D Computation of ', ¢’ in (}.10)
8: f—et+trp+o¢
9: if |f| < en(e + |¢| + |¢|)e then > Stopping criterion
10: break
11: end if
12: AxU) « mnewton(v, ¢, ¢, @)

> Computation of root update with modified Newton’s method
13: yUtD 4y 4 Ax() > Updated gap approzimation as in (4.19)
14: xU+TD) 40+ 4 d > Updated eigenvalue approzimation
15: end for
16: A+ x0) gyl > Figenvalue and gap upon convergence
17: return A\, n

18: end procedure

This manuscript is for review purposes only.

4 XIAOFENG OU AND JIANLIN XIA

Algorithm 3 SuperDC conquering stage

1: procedure conquer({D; }ieT, {UitieT, {RitieT {Bi}ieT,{Zi}ieT, 7)
> The D;, B; generators have been updated in the dividing stage

2 for node i =1,...,root(7) do > Conquering in a postordered traversal
3: if ¢ is a leaf node then > Leaf-level eigendecomposition
4: (X, Q) < eig(D;) > Via Matlab eig function
5 else
6 g:;) — Z; > Partitioning following the sizes of D., and D.,
7: Z; 1 + superdemv(Q.,, Z; 1, 1) > QL Z:1
8: Z; 9 < superdemv(Qe,, Z; 2,1) > QgZi72
9: Zi @1) > Z; like in (2.8)
4,2
10: [AEO),PZ-] < sort(Ac;; Aey) > Ordering of all the diagonal entries
of ey, Ae, together, with P; the permutation matriz
11: forj=1,2...,rdo > r = colsize(Z;)
12: [dl(j), Zi(:,9)] deflate()\l(-jfl), Z;(:,4),7) > Deflation (Section 4.1)
13: [)\Ej), ngj)} — secular(dz(-j)7 Zi(:,4)) > Secular equation solution
14: \ 28 trifmm(dgj),)\Ej)7m(-j),e,log |s —t|) > Gie as needed in (4.27)
15: A\ R trifmm(dgj),dgj),o,e, log|s —t|) > Gae as needed in (4.27)
16: \“fgj) —exp (Y52) > Lowner’s formula for ¥ as in (4.25)-(4.27)
17: bt « (trifmm(d”, A, n v 0 v, Lo)-1/2
> Normalization factor as in (4.29)
18: ng) — {\Afgj),bz(-j), dl(-j)7)\Ej),nl(-j)} > Cauchy-like structured
representation of the local eigenmatriz as in (4.28)
19: fork=j+1,7+2,...,rdo > Multiplication of QZ(.j)
to the remaining columns of Z; via the steps as in (4.31)
20: Zi(: k) « 99 © Z,(:, k)
21; Zi(:, k) trifmm(d, A9 0 Z,(: k), 5)
22: Zi(:,k) « b © Zi(:, k)
23: end for
24: end for
25: A)\ET) > Local eigenvalues associated with node 1
26: end if
27: end for
28: A Aroot(1), @ {{Qz('j)};:ppi}ieT > Final eigenvalues

and eigenmatriz Q in (4.36), with Q;: in (4.35) given by H§=1 ng)
29: return \, Q)
30: end procedure

This manuscript is for review purposes only.

SUPPLEMENTARY MATERIALS 5

Algorithm 4 SuperDC eigenmatrix-vector multiplication

1: procedure superdcmv(Q);, x, transpose) > Application of a local eigenmatriz Q;

10:
11:

12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:

27:
28:

29:
30:
31:
32:
33:
34:

© P NPT

or its transpose to a vector X, depending on whether ‘transpose’ is 0 or 1
11 < smallest descendant of ¢

if transpose = 0 then >y =Q;x
Yi <X
for k=14,i—1,...,i1 do > Reverse postordered traversal of T;
if k is leaf then
Vi — Qryk > Dense Qy, at the leaf level
else _
for j=r,r—1,...,1do > Multiplication of Q,(j)

via the steps like in (4.51)
yi ¢ b O i S
Vi — trifmm(d,(j),)\,(j),n,(j),yk,)

Vi ‘A’;(Cj) OYk

end for
vi < Plys > Permutation like in (/.34)
(;,Cl — Vi > Partitioning following the sizes of Q¢ , Qcs
ca
with c1,co the children of k
end if
end for
else >y =QI'x
Partition x into x; pieces following the leaf-level Q. sizes
for k=1i1,i1+1,...,ido > Postordered traversal of T;
if k is leaf then
Vi ngk > Dense Qi at the leaf level
else
Vi & (§01> > c1,co: children of k
co
Yi — Pyk > Permutation like in (/.34)
for j=1,2,...,r do > Multiplication of (QS))T

via the steps like in (4.51)
Vi < \A’,(j) OYk ' 4 ,
Vi —trifmm()\g), d,(j), nfj),y;€7 i) > The negative sign
and the switch of)\,(Cj) and d,(j) are because of the transpose
Vi bEj’ O Yk
end for
end if
end for
end if
return y

35: end procedure

This manuscript is for review purposes only.

	Introduction
	Review of the basic superfast divide-and-conquer eigensolver
	Dividing stage
	Conquering stage

	Improved structured dividing strategy
	Improved structured conquering stage
	User-controlled deflation
	Fast secular equation solution
	Standard FMM accelerations and the limitation
	Triangular FMM for fast evaluations of k and k
	Iterative secular equation solution

	Local shifting in triangular FMM for shifted secular equation solution
	Shifted secular equation solution and its challenge to FMM accelerations
	FMM accelerations with local shifting

	Structured eigenvectors via FMM with local shifting
	Overall eigendecomposition and structure of the eigenmatrix

	Numerical experiments
	Conclusions
	References

