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SUPERFAST AND STABLE STRUCTURED SOLVERS FOR
TOEPLITZ LEAST SQUARES VIA RANDOMIZED SAMPLING∗
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VENKATARAMANAN BALAKRISHNAN§

Abstract. We present some superfast (O((m + n) log2(m + n)) complexity) and stable struc-
tured direct solvers for m× n Toeplitz least squares problems. Based on the displacement equation,
a Toeplitz matrix T is first transformed into a Cauchy-like matrix C, which can be shown to have
small off-diagonal numerical ranks when the diagonal blocks are rectangular. We generalize stan-
dard hierarchically semiseparable (HSS) matrix representations to rectangular ones, and construct a
rectangular HSS approximation to C in nearly linear complexity with randomized sampling and fast
multiplications of C with vectors. A new URV HSS factorization and a URV HSS solution are designed
for the least squares solution. We also present two structured normal equation methods. Systematic
error and stability analysis for our HSS methods is given, which is also useful for studying other HSS
and rank structured methods. We derive the growth factors and the backward error bounds in the
HSS factorizations, and show that the stability results are generally much better than those in dense
LU factorizations with partial pivoting. Such analysis has not been done before for HSS matrices.
The solvers are tested on various classical Toeplitz examples ranging from well-conditioned to highly
ill-conditioned ones. Comparisons with some recent fast and superfast solvers are given. Our new
methods are generally much faster, and give better (or at least comparable) accuracies, especially
for ill-conditioned problems.
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1. Introduction. Toeplitz least squares problems arise frequently in practical
applications such as signal and image processing [26]. Consider a Toeplitz least squares
problem in the following form:

(1.1) min
x
‖Tx− b‖2 , T =
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where T ∈ Cm×n is a Toeplitz matrix with m ≥ n, and b ∈ Cm. That is, if the (j, k)
element of T is denoted by Tj,k, then we have Tj,k = Tj+1,k+1 for j = 1, 2, . . . ,m− 1
and k = 1, 2, . . . , n− 1.
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1.1. Displacement structures. Our methods are based on displacement equa-
tions. The idea of displacement structures is first proposed in [20], and some further
investigations and generalizations are made in [4, 10, 17, 18, 27]. The Toeplitz matrix
T satisfies the following generalized Sylvester-type displacement equation [13]:

(1.2) Z(1)
m T − TZ(δ)

n = GH∗,

where Z
(δ)
n =

(
0 δ

In−1 0

)
with In−1 the identity matrix of size n − 1, Z

(1)
m is defined

following Z
(δ)
n , and G ∈ Cm×2, H ∈ Cn×2. The choice of δ is mentioned after (1.7)

below. The matrices G and H can be explicitly written down based on the Toeplitz

vector t−(n−1):(m−1) since Z
(1)
m and Z

(δ)
n are just shifting operators to make the left-

hand side of (1.2) a rank-2 matrix. Clearly, Z
(δ)
n can be diagonalized by a normalized

inverse discrete Fourier transform matrix

(1.3) Fn =
1√
n
(ω(j−1)(k−1)

n )1≤j,k≤n, ωn = e
2πi
n , i =

√
−1.

That is, T can be transformed into a Cauchy-like matrix C:

(1.4) C = FmTD−1F∗
n,

where

(1.5) D = diag
(
1, δ

1
n , δ

2
n , . . . , δ

n−1
n

)
.

(The notation diag() means a diagonal matrix and is defined at the end of section 1.3.)
(1.2) can then be transformed into another displacement equation [13]:

(1.6) ΦC − CΛ = ĜĤ∗,

where

Ĝ = FmG ≡ (ĝ1, . . . , ĝm)∗, Ĥ = FnDH ≡ (ĥ1, . . . , ĥn)
∗,

Φ = diag(1, ωm, ω2
m, . . . , ωm−1

m ), Λ = δ
1
n diag(1, ωn, ω

2
n, . . . , ω

n−1
n ).

An entry of C looks like

(1.7) Cj,k =
ĝ∗jhk

ωj
m − δ

1
nωk

n

.

(1.4) is used to perform the fast multiplication of C with vectors, and (1.7) is used to
form selected (about O(m + n)) entries of C, as needed later. Traditionally, choose
δ to have unit modulus. For the stability purpose, we seek to maximize the minimal
value of the denominator in (1.7), especially when j = k [13, 31]. In [31], it is proven

that the optimal value of δ is eiπ
gcd(m,n)

m .
Thus, the least squares problem (1.1) can be converted into a Cauchy-like one:

(1.8) min
x̃
||Cx̃− b̃||2,

where x̃ = FnDx and b̃ = Fmb.
Algorithms that solve (1.1) with O(mn) flops are called fast algorithms and algo-

rithms with roughly O(m+ n) flops are called superfast ones. For the Toeplitz linear
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system case with m = n, some superfast direct solvers based on low-rank structures
are developed in [8, 25, 38]. That is, the off-diagonal blocks of C are shown to have
small numerical ranks bounded by O(log n) [8, 25, 29, 38]. This property enables
the approximation of C with data-sparse structured matrices such as sequentially
semiseparable matrices [7] as in [8] and hierarchically semiseparable (HSS) matrices
[6, 39] as in [38]. In [38], randomized sampling is used to quickly construct an HSS
approximation to C with fast Toeplitz matrix-vector multiplications.

1.2. Main results. Here, we work on the least squares case where C is a rectan-
gular matrix. We partition C into diagonal and off-diagonal blocks. Unlike in classical
structured matrix methods, the diagonal blocks we use are rectangular and do not
necessarily contain the diagonal entries Cj,j . Then similarly to the square matrix
case, we can show that the rectangular C has off-diagonal numerical ranks bounded
by O(log(m+ n)) (independent of δ since (1.2) and (1.7) hold independent of δ). We
thus define a rectangular HSS representation and generalize the algorithms in [24, 38]
to construct a rectangular HSS approximation to C or a square HSS approximation
to C∗C. This enables quick solutions of (1.2). We take advantage of the fast multipli-
cation of C (or C∗C) with vectors in the hierarchical compression of the off-diagonal
blocks of C (or C∗C) based on randomized sampling like in [24, 38]. Similarly to the
case in [38], additional structures are built into the HSS approximations.

Three superfast schemes are then developed. One computes directly a rectangu-
lar HSS approximation to C with randomized sampling. Then a URV factorization
algorithm and a row size reduction strategy are designed for the HSS form. Existing
HSS factorization algorithms generally introduce zeros into appropriate off-diagonal
block rows, and may not be efficient for rectangular matrices. Our URV algorithm
introduces zeros into the off-diagonal block columns instead, and factorizes the HSS
form into the product of a sequence of small factors. (The name URV is from these
factors, as explained at the beginning of section 2.3.)

Another two schemes solve the normal equation, where an HSS approximation to
C∗C is computed by either randomized sampling or via HSS multiplications involv-
ing the HSS approximation to C. The HSS multiplication scheme is followed by a
recompression step to enhance the compactness of the HSS approximation to C∗C.

We provide detailed error and stability analysis for our randomized HSS methods.
We also show the analysis for standard HSS methods as corollaries. Such analysis is
not done in [38] or in existing HSS work, and is very useful for studying HSS and other
rank structured methods. The stability analysis shares some common features with
that in [1]. However, some factors here are not unitary, and hierarchical structures
are used here instead of sequential ones. We also show a growth factor ρ for the norms
of the factors in the URV HSS factorization. ρ is much smaller than the worst case
element growth factor for LU factorizations with column pivoting. The backward
stability of the URV factorization is proven in detail.

The HSS constructions cost O((m+n) log2(m+n)) flops, and the HSS factoriza-
tions and solutions cost O(m+ n) flops. Thus, our methods are stable and superfast.

In comparison, the first fast algorithm for (1.1) is proposed in [32], followed by
some other developments in [3, 9, 30]. However, none of these algorithms is proven to
be stable. The fast methods in [13, 31] are also based on displacement equations, and
the Cauchy-like systems are solved by stable generalized Schur algorithms. In [34],
an augmented matrix approach is used to convert (1.1) into a tangential interpolation
problem, and then the solution is given by a divide and conquer method with a
stabilized technique in O((m + n) log2(m + n)) complexity. Generalized inverses for
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Toeplitz matrices are computed in parallel in [28]. An algorithm based on Newton’s
iterations is given in [2]. See [5, 26] for more reviews.

Here, we compare our three superfast methods with the two recently developed
methods (the fast one in [31] and the superfast one in [34]) and the QR factorization
through various numerical tests on classical Toeplitz examples, and demonstrate the
stability and efficiency of our methods. The new methods are generally faster, and
give better or comparable accuracies, especially for ill-conditioned problems. They
still give satisfactory results for some cases when the methods in [31, 34] fail. In
general, when the matrix size grows, our methods becomes significantly faster.

1.3. Outline. The remaining sections are organized as follows. Section 2 shows
the construction of a rectangular HSS approximation to C via randomized sampling,
followed by the new URV HSS factorization and least squares solution. In section 3,
the two normal equation schemes are presented. The detailed stability and error
analysis for the HSS methods are given in section 4. The numerical results are shown
in section 5, and we draw some conclusions in section 6. The following notation is
used in the presentation for an m× n matrix A.

• Aj,k denotes an entry of A with the row index j and the column index k.
• Let I be a subset of {1 : m} ≡ {1, 2, . . . ,m} and J be a subset of {1 : n} ≡
{1, 2, . . . , n}. We use A|I to denote a submatrix of A with the row index set
I, and use A|I×J to denote a submatrix of A with the row index set I and the
column index set J.
• |I| denotes the number of elements in the set I.
• diag(D1, . . . , Dk) or diag(Dj)j=1:k denotes a diagonal matrix with the diag-
onal blocks D1, . . . , Dk.

2. Structured rectangular least squares solution for C. We first show some
HSS algorithms for the rectangular matrix C.

2.1. Rectangular HSS representations. Here, we extend the square HSS
representations in [6, 39] to rectangular ones. The diagonal blocks are allowed to be
rectangular and may not contain the diagonal entries. An m × n matrix A is in a
(rectangular) HSS form with the associated HSS tree T if the following conditions
hold.

• T is a postordered full binary tree with nodes i = 1, 2, . . . , root(T ), where
root(T ) is the root. That is, any nonleaf node i of T has a left child c1 and
a right child c2 satisfying c1 < c2 < i.
• There are two index sets Ii and Ji associated with each node i of T , which
satisfy the following recursions for a nonleaf node i with children c1 and c2:

Iroot(T ) = {1, 2, . . . ,m}, Jroot(T ) = {1, 2, . . . , n},
Ii = Ic1 ∪ Ic2 , Ic1 ∩ Ic2 = ∅, Ji = Jc1 ∪ Jc2 , Jc1 ∩ Jc2 = ∅.

• There are matrices Di, Ui, Vi, Ri, Wi, Bi (called HSS generators) associated
with each node i of T , which satisfy the following recursions for a nonleaf
node i with children c1 and c2:

Di ≡ A|Ii×Ji =

(
Dc1 Uc1Bc1V

∗
c2

Uc2Bc2V
∗
c1 Dc2

)
,(2.1)

Ui =

(
Uc1

Uc2

)(
Rc1

Rc2

)
, Vi =

(
Vc1

Vc2

)(
Wc1

Wc2

)
.(2.2)
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U3B3V6T
U1B1V2TD1

D2
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D5
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U6B6V3T

U2B2V1T
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Fig. 2.1. A rectangular HSS matrix and its HSS tree, where Ui =
(Uc1Rc1
Uc2Rc2

)
, Vi =

( Vc1Wc1
Vc2Wc2

)

for i = 3 and 6.

(The node i ≡ root(T ) is associated with only the generator Di ≡ A and Ui,
Vi, Ri, Wi, Bi are not needed.)

See Figure 2.1 for an example. It is clear that Ui and V ∗
i (called basis matrices)

are appropriate bases for the column or row spaces of the following blocks:

(2.3) A−
i = A|Ii×(Jroot(T )\Ji), A

|
i = A|(Iroot(T )\Ii)×Ji

.

A−
i andA

|
i are calledHSS block rows and columns, respectively. Each node corresponds

to an HSS block row and column. Thus, associated with the nodes at the same level of
T , the numbers of HSS block rows and HSS block columns are equal. The maximum
(numerical) rank of all the HSS blocks of A is called the HSS rank of A.

The HSS tree T is formed in the following way. We first decide the number (α)
of leaves or the number of bottom level blocks. This is usually based on the criterion
that the bottom level diagonal blocks have sizes close to the HSS rank [39]. Then we
form a binary tree T with 2α− 1 nodes. For scalability purposes, we usually make T
as balanced as possible.

For convenience, the following notation is used for a node i of T :
• par(i) and sib(i) denote the parent and the sibling of i in T , respectively;
• if i is a nonleaf node, c1 and c2 denote its left and right children, respectively.

2.2. Randomized HSS construction and URV least squares solution
for C. Similarly to the method in [38], a rectangular HSS approximation to C can
be quickly constructed. Here, the main steps in [38] are briefly reviewed, with the
differences emphasized.

2.2.1. Randomized sampling. The essential idea of randomized sampling [16,
21] for compressing an M ×N block Θ (finding a low-rank approximation to it) is to
work on a skinny matrix Z = ΘX instead of the original Θ, where X is a Gaussian
random matrix. X is chosen to be N × (r+γ), where r is the rank of Θ (or numerical
rank when a tolerance is used for the truncation of the singular values of Θ), and γ
is a small integer (greater than 2). This is briefly explained as follows, following [38].

Compute a strong rank-revealing factorization [14] of Z, which looks like Z ≈
ΠQS, where Π is a permutation matrix and Q is M × r. Partition Q as

(Q1

Q2

)
, where
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Table 2.1

Probabilities of failure (Pr) for (2.5) with different γ [16, 21, 24].

γ 3 4 5 6 7 8 9 10
Pr 2.22e−1 2.34e− 2 1.92e− 3 1.29e−4 7.29e−6 3.58e−7 1.55e−8 6.00e−10

Q1 is r × r, and we have

(2.4) Z ≈ Π

(
I
E

)
Q1S ≡ UZ |̂I with U = Π

(
I
E

)
, E = Q2Q

−1
1 ,

where Î is a row index set and E is obtained as in [14]. Then it is shown in [16, 21, 24]
that Θ can be approximated by

Θ ≈ UΘ|̂I,

and the following approximation error bound holds (for a slightly varied form) with
a probability of at least 1− 6γ−γ :

(2.5)
∥∥Θ− UΘ|̂I

∥∥
2
≤ (1 + 11

√
r ·min(M,N))σr+1,

where σr+1 is the (r + 1)-st largest singular value of Θ. As mentioned in [16], a
small integer γ > 2 can already give a high probability of success. For example, the
probability of failure with respect to different γ is reported in Table 2.1. The above
randomized scheme is used when we have a good estimate of r (or an empirical value)
in advance for a given accuracy. Otherwise, we can use the adaptive randomized
method in [16] by specifying the accuracy instead.

Since Θ|̂I is a subblock of Θ, such a factorization is also called a structure-
preserving rank-revealing (SPRR) factorization in [38]. We denote it by

(2.6) [U,Θ|̂I] = SPRR(Θ).

This feature of structure preservation is very important for our error and stability
analysis later in section 4.

2.2.2. Randomized HSS construction for C. The benefits of randomized
sampling for HSS constructions can be found in [22, 24, 38]. The rectangular HSS
construction for C is a direct generalization of the one in [38]. This needs the mul-
tiplication of C with random vectors, which is done with the aid of fast Toeplitz
matrix-vector multiplications. One useful way is to split the lower left and the upper
right triangular pieces (which can be extended to circulant matrices), and the remain-
ing part can be handled with a pruned FFT (http://www.fftw.org/pruned.html). This
multiplication cost is usually less significant as compared with the other costs in the
HSS construction.

To facilitate the presentation, for a node i of a given HSS tree T , let the row
dimension of C−i be mi ≡ |Ii| and its starting row index in C be li, and let the column

dimension of C|i be ni ≡ |Ji| and its starting column index in C be si. That is,

(2.7) li =

{ ∑
j: leaf, j<i

mj+1 if i is a leaf,

lc1 otherwise,
si =

{ ∑
j: leaf, j<i

nj+1 if i is a leaf,

sc1 otherwise.

See Algorithm 1 for the randomized HSS construction with the Toeplitz vector
t−(n−1):(m−1) and an estimate of the HSS rank r of C as the inputs. The main step of
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the randomized HSS construction is to recursively apply SPRR factorizations to the
HSS blocks of C. Computed basis matrices are ignored in upper level compression.
The detailed derivations are similar to those in [38] and are skipped. The algorithm
uses two Gaussian random matrices X and Y of sizes n× r̃ and m× r̃, respectively,
where r̃ = r + γ with r the HSS rank of C and γ a small integer in the previous
subsection. X and Y are partitioned into Xi and Yi block rows following the sizes mi

and ni, respectively, for the leaves i of T . The cost of the algorithm is discussed in
section 2.5.

Algorithm 1. Randomized rectangular HSS construction for C.
Input: Toeplitz vector t−(n−1):(m−1) and r̃ = r + γ
Output: HSS generators Di, Ui, Vi,Wi, Bi for the HSS approximation to C
1: procedure RectHSS

2: Z ← CX, S ← C∗Y (X ∈ Rn×r̃, Y ∈ Rm×r̃: random) � Via (1.4)
3: for node i from 1 to root (T ) do
4: if i is a leaf of T then � D,U, V generators
5: Di ← C|Ii×Ji � Via (1.7)
6: Φi ← Zi −DiXi, [Ui,Φi |̂Ii ]← SPRR(Φi) � Î: obtained as in (2.6)

7: Θi ← Si −D∗
i Yi, [Vi,Θi|Ĵi

]← SPRR(Θi) � Ĵ: obtained as in (2.6)

8: Ẑi ← V ∗
i Xi, Ŝi ← U∗

i Yi

9: else � R,W generators; c1, c2: children of i
10: Bc1 = C|̃Ic1×J̃c2

, Bc2 = C|̃Ic2×J̃c1
� Via (1.7); Ĩ, J̃: from line 18

11: if i = root (T ) then
12: return
13: end if

14: Φi ←
(

Φc1 |Ic1 −Bc1Ẑc2

Φc2 |Ic2 −Bc2Ẑc1

)
,

[(
Rc1

Rc2

)
,Φi |̂Ii

]
← SPRR(Φi)

15: Θi ←
(

Θc1 |Ic1 −B∗
c2 Ŝc1

Θc2 |Ic2 −B∗
c1 Ŝc2

)
,

[(
Wc1

Wc2

)
,Θi|Ĵi

]
← SPRR(Θi)

16: Ẑi ←
(
W ∗

c1 W ∗
c2

)( Ẑc1

Ẑc2

)
, Ŝi ←

(
R∗

c1 R∗
c2

)( Ŝc1

Ŝc2

)
17: end if
18: Ĩi ← li+ Îi−1, J̃i ← si+Ĵi−1 � (More details can be found in [38])

� Shifting Îi, Ĵi to global index sets with entrywise additions
19: end for
20: end procedure

We point out that the generators U, V,R,W have special structures as in [38].
That is, Ui, Vi for a leaf i have the following forms:

(2.8) Ui = Πi

(
I
Ei

)
, Vi = Υi

(
I
Fi

)
,

where Πi, Ei,Υi, Fi can be understood following (2.4). If i is a nonleaf node, then

(2.9)

(
Rc1

Rc2

)
= Πi

(
I
Ei

)
,

(
Wc1

Wc2

)
= Υi

(
I
Fi

)
.

Remark 2.1. Once we choose a proper γ (such as 10) in Algorithm 1, the overall
probability of the HSS construction to a desired accuracy is still very satisfactory in
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practice. A conservative probability estimate works as follows. If γ = 10 and the
HSS blocks are compressed to a given accuracy with a probability of failure 6×10−10,
then a pessimistic probability estimate for constructing an HSS approximation to the
given accuracy (with the error amplification as estimated in Theorem 4.2) is at least

(1− 6× 10−10)
2n
n1

−1, where n1 is the leaf level diagonal block column size and 2n
n1
− 1

is the total number of nodes in the HSS tree. When r is, say, 125 as in our tests,
this conservative probability is still larger than 1

2 for n as large as 7.2× 1010. In fact,
the numerical tests for the randomized HSS constructions in [22, 24, 38] show that
high probabilities are achieved in practice. In later sections, to be precise and avoid
confusion, we assume that the off-diagonal compression with the given accuracy has
probability 1 when we state the theorems on the approximation errors.

2.3. Rectangular URV HSS factorization with size reduction. In this
section, we discuss the factorization of the HSS approximation to C. We use A to
represent the HSS approximation to C. The traditional ULV-type HSS factorizations
[6, 39] are designed for square HSS matrices, and are generally not efficient for rect-
angular HSS matrices when m  n (see Remark 2.2 below). (ULV represents the
factorization where U and V are given by the products of sequences of orthogonal
matrices and L is given by the product of a sequence of lower triangular matrices
[6, 39].) Here, we present a URV-type factorization together with a size reduction
strategy. (The meaning of URV can be similarly understood, except that R rep-
resents the product of a sequence of upper triangular matrices, and V may not be
unitary, but still has a bounded norm and an explicit representation for its inverse.)
The size reduction strategy helps reduces the row size of A. The URV scheme simu-
lates QR least squares solutions at multiple levels, and hierarchically reduces the HSS
form into smaller ones.

For simplicity, assume the sizes mi × ni of the Di generators associated with all
leaves i of the HSS tree T are the same. That is, mi ≡ m1 and ni ≡ n1 for all the
leaves i. Similarly, assume the Ui, Vi generators have column sizes r, and m1 ≥ r.

2.3.1. Size reduction strategy. If m  n or m1  n1, we first use a size
reduction strategy to reduce the row size of A to be as close to n as possible. This
can be done by modifying some HSS generators. The idea is to introduce zero rows
into the D and U generators and thus A.

For a leaf i of T , compute a block QR factorization for the matrix ( Ui Di ):

(2.10)
(
Ui Di

)
= Ωi

⎛⎝
r n1

Ũi D̃i,1

D̃i,2

0

⎞⎠ r
n1

m1 − r − n1

.

Then multiply Ω∗
i with Di and Ui on the left. See Figure 2.2. The zero rows on the

right-hand side of (2.10) correspond to the zero rows introduced into A. In our least
squares solution for (1.8), we can ignore such zero rows. That is, we can replace the

generators Di and Ui for the leaf i by D̃i ≡
( D̃i,1

D̃i,2

)
and

(
Ũi
0

)
, respectively.

Assume this reduction is applied to all leaves i, and the resulting new HSS form
(with all the zero rows ignored) is Ã. That is, we can write

(2.11) A = diag(Ωi)i: leafP
(

Ã
0

)
,
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1

2

4

5

(i) Introducing zeros with one level of size reduction (ii) After size reduction

Fig. 2.2. Size reduction for the rectangular HSS approximation to A as in Figure 2.1.

where P is an appropriate permutation matrix. If necessary, such a reduction can also
be applied before the elimination of the nonleaf nodes in the factorization process in
the next subsection. The reason is as follows. After the elimination of the lower
level nodes in the factorization, an intermediate reduced HSS matrix is obtained, as
explained after (2.18). The ratio of the row dimension to the column dimension of
such reduced matrices increases along the URV factorization. We can thus apply the
row size reduction to control this growth and to save the computational cost.

2.3.2. URV factorization. Then we present our URV factorization scheme for
Ã, which introduces zeros into the HSS block columns of Ã (instead of HSS block
rows as in ULV factorizations). We traverse the tree T bottom-up. Noticing (2.8),
for convenience, let

(2.12) Pi = Υi

(
−F ∗

i I
I 0

)
.

If a node i is a leaf of T , according to (2.8) and similar to [38], we have

(2.13) V ∗
i Pi =

(
0 I

)
.

Then multiply Pi with Ã
|
i and D̃i on the right. Equation (2.13) indicates that some

zero columns are introduced into Ã
|
i. See Figures 2.3(i)–(ii). Let

(2.14) D̂i = D̃iPi.

Note that the special structure of Pi helps in saving the multiplication cost. Partition
D̂i as

(2.15) D̂i =

(
D̂i;1,1 D̂i;1,2

D̂i;2,1 D̂i;2,2

)
,

so that D̂i;1,1 is r × r, and compute a QR factorization

(2.16)

(
D̂i;1,1

D̂i;2,1

)
= Qi

(
D̄i;1,1

0

)
.
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P1 P2 P4 P5

Q1

Q2

Q4

Q5

(i) HSS form after (ii) Introducing zeros into (iii) QR factorization
size reduction off-diagonal columns of diagonal blocks

(iv) Blocks remaining (v) Blocks for upper (vi) Upper level HSS
at current level level factorization form after merging blocks

Fig. 2.3. Illustration of the URV HSS factorization scheme.

Then multiply Q∗
i with D̂i and

(
Ũi
0

)
on the left:

(2.17) D̄i = Q∗
i D̂i =

(
D̄i;1,1 D̄i;1,2

0 D̄i;2,2

)
, Ūi = Q∗

i

(
Ũi

0

)
≡

(
Ūi;1

Ūi;2

)
,

where D̄i and Ūi are partitioned conformably. See Figure 2.3(iii).
If i is a nonleaf node, we merge appropriate blocks and let

D̃i =

(
D̄c1;2,2 Ūc1;2Bc1

Ūc2;2Bc2 D̄c2;2,2

)
,(2.18)

Ṽi =

(
Wc1

Wc2

)
≡ Υi

(
I
Fi

)
, Ũi =

(
Ūc1;2Rc1

Ūc2;2Rc2

)
≡

(
Ūc1;2

Ūc2;2

)
Πi

(
I
Ei

)
.

Then we can remove the children c1 and c2 of i from T . By recursion, i becomes a leaf
with the associated generators D̃i, Ũi, Ṽi, Ri,Wi. The generators D̃i, Ũi, Ṽi, Ri,Wi, Bi

define a new HSS form called a reduced (HSS) matrix [35]. For convenience, we also
define an extended reduced matrix which is the original HSS matrix with the blocks(
D̄i;1,1 D̄i;1,2

)
and Ūi;1RiBi (Figure 2.3(iv)) replaced by zeros (Figure 2.3(v)).

That is, the extended one includes some extra zero blocks.
At this point, the HSS matrix is reduced to a special form, where the block rows

are either in the extended reduced matrix, or are given by
(
D̄i;1,1 D̄i;1,2

)
and

Ūi;1RiBi. The latter blocks remain at the current level and will be used for the
solutions (in the solution stage, these blocks will be visited in a top-down order).

The reduced HSS matrix continues to be factorized, and the above process repeats
on i. See Figures 2.3(v)–(vi). When i = root(T ) is reached, we have the final reduced
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matrix D̃i, and then replace the QR factorization (2.16) by

(2.19) D̃i = Qi

(
D̄i;1,1

0

)
.

The algorithm is summarized in Algorithm 2, which computes a sequence of factors.

Algorithm 2. URV factorization for a rectangular HSS matrix.
Input: HSS generators Di, Bi and Ui, Vi, Ri,Wi (as in (2.8) and (2.9))
Output: Factors D̂i;1,1, D̂i;1,2, Ûi;1, Qi, Pi (for later URV solutions)

1: procedure URV

2: for node i from 1 to root(T )− 1 do
3: if i is a leaf of T then
4: if mi  ni then � E.g., mi ≥ 2ni (mi × ni: size of Di)
5: Compute a QR factorization (2.10) � Row size reduction

6: D̃i ←
(
D̃i,1

D̃i,2

)
7: end if
8: else � Merge child information

9: D̃i ←
(

D̄c1;2,2 Ūc1;2Bc1

Ūc2;2Bc2 D̄c2;2,2

)
10: Ṽi ← Υi

(
I
Fi

)
, Ũi ←

(
Ûc1;2

Ûc2;2

)
Πi

(
I
Ei

)
11: end if

12: D̂i ← D̃iΥi

(
−F ∗

i I
I 0

)
≡

(
D̂i;1,1 D̂i;1,2

D̂i;2,1 D̂i;2,2

)
13: Compute a QR factorization (2.16)

14:

(
D̄i;1,2

D̄i;2,2

)
← Q∗

i

(
D̂i;1,2

D̂i;2,2

)
, Ūi ← Q∗

i

(
Ũi

0

)
≡

(
Ûi;1

Ûi;2

)
15: end for
16: Compute a QR factorization (2.19)
17: end procedure

Remark 2.2. It is possible to use the ULV factorization scheme in [6, 39] to
factorize the HSS form, without using the size reduction strategy. However, it can be
shown that the URV factorization with the size reduction is faster than the existing
ULV factorization by a complexity of O(2rm1m) when m is much larger than n.

2.4. URV least squares solution. According to (2.11), the least squares prob-
lem (1.8) becomes

(2.20) min
x̃

∥∥∥∥( Ã
0

)
x̃− P∗ diag(Ω∗

i )i: leafb̃

∥∥∥∥
2

= min
x
||Ãx− b||2 + c̃1,

where we write x̃ as x for notational convenience, b results from appropriate transfor-
mations of (selected entries of) b̃ in (1.8), and c̃1 is a constant. ((2.20) approximately
solves (1.8) since the HSS form approximates C.) The solution of (2.20) is that of

(2.21) min
x
||Ãx− b||2.

This involves a top-down traversal of T . For convenience, partition b into bi pieces

corresponding to D̄i, and further partition bi as bi =
( bi,1

bi,2

)
following (2.17).
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For the node i = root(T ), solve a triangular system

D̄i;1,1xi = Q∗
ibi,1.

For the children c1 and c2 of i, partition xi following (2.18) as

(2.22) xi =

(
x̂c1

x̂c2

)
.

Also let zc1 = Bc1 x̂c2 , zc2 = Bc2 x̂c1 .
For the nodes i = root(T )− 1, root(T )− 2, . . . , 1, we solve the triangular systems

(2.23) D̄i;1,1x̄i = bi,1 − D̄i;1,2x̂i − Ûi;1zj ,

where j = sib (i) and the results in (2.17) are used. Also let

xi = Pi

(
x̄i

x̂i

)
= Υi

(
−F ∗

i I
I 0

)(
x̄i

x̂i

)
.

If i is also a nonleaf node, partition xi as in (2.22), and compute

zc1 = Bc1 x̂c2 +Rc1zi, zc2 = Bc2 x̂c1 +Rc2zi.

After the traversal, merge xi associated with all the leaves i following the indices
of D̄i;1,1 in (2.17) and form the solution x. The summary of the algorithm is skipped.

2.5. Complexity. The complexity analysis for rectangular HSS methods is a
direct extension of that for square HSS methods in [35, 38, 39]. We demonstrate
the flop counts for the rectangular (m × n) HSS construction, and those for the
factorization and solution can be similarly obtained. For simplicity, assume the size
(mi × ni) of Di for each leaf i satisfies mi ≡ m1 = O(r), ni ≡ n1 = O(r) and all
the HSS blocks have numerical ranks r = O(log(m + n)). Also use r̃ to denote the
sampling size r + γ.

In the HSS construction algorithm, computing the products CX and C∗Y costs
about 40r̃(m + n) log(m + n) flops. Other costs associated with each node of the
HSS tree are summarized in Table 2.2. A direct summation of all the costs gives the
total HSS construction complexity O((m + n) log2(m+ n)). Similarly, the HSS URV
factorization and solution costs are O((m+n) log2(m+n)) and O((m+n) log(m+n)),
respectively. As in [35, 38], when the actual rank patterns at the individual hierar-
chical levels are considered, we can further give a tighter complexity bound O(m+n)
for the URV factorization and solution.

Table 2.2

Operations and costs in randomized rectangular HSS construction in Algorithm 1.

Node Operation Flops (leading terms) # of nodes
Leaf Computing Φi and Θi 4m1n1r̃ ×(m/m1)

node i Computing Ẑi 2r(n1 − r)r̃ (or n/n1)

Computing Ŝi 2r(m1 − r)r̃
SPRR factorization 4(m1+n1)r̃r−r2(m1+n1+4r̃)+ 2

3
r3

Non-leaf Computing Φi and Θi 8r2r̃ ×(m/m1 − 1)

node i Computing Ẑi and Ŝi 4r2r̃ (or n/n1 − 1)
SPRR factorization 16r̃r2 − 4r2(r + r̃) + 2

3
r3
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3. Structured normal equation methods. Classical least squares solution
schemes also include normal equation methods. We can similarly propose structured
methods for the normal equation corresponding to (1.8):

(3.1) C∗Cx̃ = C∗b̃.

A simple multiplication can show that the HSS rank of C∗C is at most twice that of
C, and is thus still O(log(m+ n)).

There are some benefits in using the normal equation. One is that we can apply
iterative refinement together with a modest-accuracy HSS solution, especially since
the solution costs about O(n) and is much faster than the HSS construction and
factorization. For example, in Figures 5.1 and 5.3 below, iterative refinement helps
the methods achieve nearly machine precision. Another advantage is that, when
m  n, C∗C is only n × n and is a much smaller problem to solve. For example, in
Figures 5.3(i) and 5.5(i), when m

n is larger than 7 and grows, the normal equation
methods gets faster and faster than the URV method in the timing, even with iterative
refinement. In addition, normal equations are also useful in regularization methods.
Based on different strategies for the HSS construction for C∗C, we have two methods.

3.1. HSS multiplication and recompression for C∗C. The first method is
to use the HSS approximation to C to construct one for C∗C via HSS multiplications.
Assume the HSS generators for C∗C are D̃i, Ũi, etc. Since C∗C is Hermitian, we have
Ũi = Ṽi, R̃i = W̃i, B̃i = B̃∗

j , where j = sib(i) [39]. The HSS multiplication algorithm
in [6, 23] can be used with simplification due to the symmetry.

After the HSS multiplication, the sizes of the generators increase additively, al-
though the actual HSS rank of C∗C may be smaller. Then we can modify a recom-
pression scheme in [35] for general matrices and derive a simplified version for the
Hermitian matrix C∗C. This helps make the HSS representations more compact.

Both algorithms involve bottom-up and top-down traversals of the HSS tree. To
save space, we skip the details which can be extracted from [6, 23, 35].

3.2. Direct HSS construction for C∗C. Our second normal equation method
avoids using the recompression step. That is, we modify the HSS construction method
in section 2.2 so that it can be applied to the Hermitian matrix C∗C. Clearly, the multi-
plication of C∗C with a random vector can be quickly done. Then the HSS construction
is similar to the one in section 2.2, except that the entries of C∗C are not explicitly
available. A straightforward way to obtain these entries is HSS multiplication with
the HSS approximation to C. This needs to traverse T , and some multiplications can
be reused for those entries in the same rows or columns, as discussed in [36].

It is also possible to modify the HSS multiplication scheme in the previous sub-
section into a selected HSS multiplication method.

3.3. ULV factorization and solution for the normal equations. Then we
solve the Hermitian linear system (3.1) with the HSS approximation to C∗C. The ULV
factorization and solution methods in [38, 39] can work with minor modifications.

Moreover, the HSS approximation obtained with the method in section 3.2 has
additional structures just like in (2.8)–(2.9). Thus, the technique as in (2.13) can be
used. Due to the symmetry, we can modify the method in [38] to further save costs.

For both methods, we can also use iterative refinement to improve the solutions,
as mentioned at the beginning of this section. Thus, we can use modest accuracies
when computing the HSS approximations to C∗C.
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3.4. Complexity. The complexities of the square HSS algorithms used in the
normal equation methods have been systematically studied in [35, 38]. For example,
the rectangular HSS matrix multiplication cost can be obtained via the summation of
the cost of O(r3) for each of the O((m+n)/r) nodes. Similarly, we can obtain the total
cost ofO((m+n) log2(m+n)) for the HSS construction for C∗C. The ULV factorization
and solution with the HSS approximation to C∗C cost O((m + n) log2(m + n)) and
O((m + n) log(m + n)), respectively, also with the feasibility of further reduction to
O(m+ n) via the consideration of the hierarchical rank patterns [38].

4. HSS error and stability analysis. Here, we discuss the HSS approximation
error and the stability of the URV factorization. For convenience, we can assume
m = n in analyzing the approximation error, since the rectangular HSS construction is
the same as the square one, except that the diagonal blocks are rectangular. Similarly,
in the URV factorization, the same operations are performed regardless of the shape
of the HSS matrix, except that the final reduced matrix D̃i in (2.19) is rectangular
when m and n are different. (2.19) is small and is the same as in the regular QR least
squares method. The standard least squares stability analysis applies to (2.19) and
indicates it is stable. Thus, it is critical to analyze the stability of the hierarchical
row and column reductions in the URV factorization process that yield D̃i. Such
reductions are the same whether m and n are equal or not. Therefore, we can also
assume m = n for convenience. (The optional row reduction in section 2.3.1 is also
stable since it uses orthogonal operations to introduce zero rows into the HSS matrix.)
Some comments on the case of m �= n will be given in Remark 4.2.

The stability results for the URV factorization with m = n can be directly ex-
tended to the ULV factorization of the HSS normal matrix in section 3, since the latter
is closely related to the application of the former to the Hermitian of the matrix. We
also give the stability results for the standard HSS ULV factorization in [6, 39] when
the off-diagonal bases Ui and Vi have unitary columns.

For convenience, let L ≡ O(log n
r ) be the number of levels in T with the leaves

at level L. In this case, all the HSS generators are of orders O(r) (as often used
[35], we assume that Di has order 2r and Ui, Vi have sizes 2r × r for a leaf i, and
Ri,Wi, Bi have orders r for all nodes i). Also assume that T is traversed levelwise
in the algorithms, and in the HSS construction, all the HSS block rows at level l are
compressed first, followed by the compression of all the HSS block columns at level l.

4.1. Approximation error for HSS construction. We first consider the ap-
proximation error introduced by the HSS construction in section 2.2.2. For conve-
nience, assume we know the relative tolerance τ for truncating the singular values of
the HSS blocks (corresponding to the numerical rank r). That is, for (2.5), we have

(4.1) σr+1 ≤ τσ1.

According to (2.1), we can see that the HSS matrix A has the following form:

A =

(
Dc1

Dc2

)
+

(
Uc1

Uc2

)(
Bc1

Bc2

)(
V ∗
c1

V ∗
c2

)
,

where c1 and c2 are the children of i = root(T ). A recursive expansion of the gener-
ators with (2.1)–(2.2) yields a telescoping representation [24]:
(4.2)
A = D(L) + U (L)(U (L−1)(· · · (U (2)B(2)(V (2))∗ +B(3)) · · · )(V (L−1))∗ +B(L))(V (L))∗,
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where D(l), U (l), V (l), and B(l) are block diagonal matrices defined as follows:

D(L) = diag(Di)i: leaf,

U (l) =

⎧⎨⎩
diag(Ui)i: leaf if l = L,

diag

((
Rc1

Rc2

))
c1,c2: children of i

otherwise,

V (L) =

⎧⎪⎨⎪⎩
diag(Vi)i: leaf if l = L,

diag

((
Wc1

Wc2

))
c1,c2: children of i

otherwise,

B(l) = diag

((
0 Bi

Bsib(i) 0

))
i: left nodes at level l.

We point out that ||U (l)||2 and ||V (l)||2 are bounded. In fact, the strong rank-
revealing factorization [14] bounds all the entries of E in (2.4) by a small constant c0
(larger than 1). Since each diagonal block of U (l) or V (l) has size O(r×r), its Frobenius
norm is bounded by O(r), and so is its 2-norm. Thus, we have the following lemma.

Lemma 4.1. The generators in the randomized HSS construction satisfy

1 ≤ ||U (l)||2 = O(r), 1 ≤ ||V (l)||2 = O(r), 2 ≤ l ≤ L.

Specifically, if Ei and Fi in (2.8) and (2.9) are r × r, and the magnitudes of their
entries are bounded by a constant c0, then ||U (l)||2 ≤ 1 + c0r, ||V (l)||2 ≤ 1 + c0r.

The following theorem provides the approximation error for the HSS construction
Algorithm 1. (As mentioned in Remark 2.1, in our theorems, we assume that the off-
diagonal blocks are compressed to the accuracy τ with probability 1.)

Theorem 4.2. Let A in (4.2) be the HSS approximation to C after the randomized
HSS construction, and τ be the relative tolerance in truncating the singular values of
the HSS blocks. Then

(4.3) C = A+ E ,

where

(4.4) ‖E‖F = O(τ ·max(r2L−3/2, n)) ‖C‖F = O(τ ·max(rO(log n
r ), n)) ‖C‖F .

Proof. The proof follows the construction process. At the leaf level L, all Di’s
are the diagonal blocks of C, so D(L) is exact.

When we compute Ui in (2.8), an approximation error as in (2.5) is introduced.
Since C−i has its row size 2r, we have

||C−i − UiC−i |̂Ii ||F ≤
√
2r||C−i − UiC−i |̂Ii ||2(4.5)

≤
√
2r(1 + 11

√
2r ·min(2r, n− 2r))σr+1

≤
√
2r(1 + 22r)τ ||C−i ||2 = O(τr

√
r)||C−i ||F .

When Ui for all the leaves i are computed, we get

(4.6) C −D(L) = U (L)C(L)
1 + E(L)

1 ,
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where C(L)
1 is the submatrix of C with row index set ∪i: leafÎi and with the diagonal

blocks set to be zeros, and E(L)
1 satisfies

(4.7) ||E(L)
1 ||F = O(τr

√
r) ‖C‖F .

Similarly, when we compute V (L), we introduce an error E(L)
2 satisfying the same

relationship as in (4.7). For convenience, we write E(L) ≡ E(L)
1 + E(L)

2 . Then

C −D(L) = U (L)C(L)
2 (V (L))∗ + E(L),

where C(L)
2 is a submatrix of matrix C with appropriate zero blocks, and E(L) also

satisfies the same relationship as in (4.7). C(L)
2 is used to extract the Bi generator for

all leaves i and also for the upper level compression.
The derivation can be generalized to any level l for the computation of U (l) and

V (l), and we obtain a matrix E(l) satisfying the same bound in (4.7). The reason is
that the blocks compressed are submatrices of C due to the SPRR factorizations. The
overall HSS construction then yields

C −D(L) = U (L)(U (L−1)(· · · (U (2)B(2)(V (2))∗ + E(2)) · · · ) +B(L))(V (L))∗ + E(L).

According to (4.2), this equation can be reorganized as (4.3), where

(4.8) E = (U (L) · · ·U (3))E(2)(V (L) · · ·V (3))∗ + · · ·+ U (L)E(L−1)(V (L))∗ + E(L).

Notice that the matrices (U (L) · · ·U (l+1)) and (V (L) · · ·V (l+1) have sizes n × 2lr for
l = 2, 3, . . . , L− 1. Thus, Lemma 4.1 yields

||U (L) · · ·U (l+1)||F ≤
√
2lr||U (L) · · ·U (l+1)||2 = O(2l/2rL−l+1/2).

The same bound holds for ||V (L) · · ·V (l+1)||F .
Therefore, based on these bounds and Lemma 4.1, we have

‖E‖F ≤
L−1∑
l=2

||(U (L) · · ·U (l+1))E(l)(V (L) · · ·V (l+1))∗||F + ||E(L)||F(4.9)

=

L−1∑
l=2

O(2lr2L−2l+1)||E(l)||F + ||E(L)||F

=

L∑
l=2

O

(
r2L+1

(
2

r2

)l
)
O(τr

√
r) ‖C‖F

= O(τ ·max(r2L−3/2, n)) ‖C‖F = O(τ ·max(r2L−3/2, n)) ‖C‖F .

The approximate error from a standard HSS construction method as in [39] can
be similarly derived as follows.

Corollary 4.3. If a truncated SVD with (4.1) is used for the compression, then
(4.4) becomes

‖E‖F = O(τL
√
r) ‖C‖F = O(τ

√
r logn) ‖C‖F .

Proof. The proof is similar to that in Theorem 4.2. Here we only emphasize the
differences between these two proofs.
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With a truncated SVD C−i ≈ Ui(ΣiV̂
∗
i ) ≡ UiKi, (4.5) is replaced by

||C−i − UiKi||F ≤
√
r||C−i − UiKi||2 ≤ τ

√
r||C−i ||2 ≤ τ

√
r||C−i ||F .

Then (4.6) is replaced by

C −D(L) = U (L)K(L) + E(L)
1 ,

where K(L) is formed by stacking the Ki matrices for all leaves i, with appropriate
zero blocks inserted, and

(4.10) ||E(L)
1 ||F = O(τ

√
r) ‖C‖F .

Then consider the compression of C|i, which yields an error E(L)
2 satisfying the

same relationship as in (4.10). We can get

C −D(L) = U (L)C(L)
2 (V (L))∗ + E(L),

where E(L) ≡ E(L)
1 +E(L)

2 satisfies the same relationship as in (4.10). Similarly, we can
get E(l) as in (4.8) satisfying the same relationship as in (4.10), due to the column
orthonormality of U (l) and V (l). Thus, (4.9) becomes

||E||F ≤
L∑

l=2

||E(l)||F = O(τL
√
r) ‖C‖F = O(τ

√
r logn) ‖C‖F .

4.2. Stability for HSS URV factorization. Then we study the stability of
the HSS URV factorization. (In this paper, to save space, we focus on the rounding
errors in the HSS factorization and skip those from the HSS construction, which we
will perform in future work. In practice, when modest accuracies such as six to ten
digits are used in HSS constructions, the approximation errors often dominate the
rounding errors.) According to (4.2) and similarly to [37], we can describe the URV
factorization in the following nested representation. Let

• A(l) be the extended reduced matrix resulting from A(l+1) after the elimina-
tions of the nodes at level l + 1, with A(L) ≡ A,
• Ψ(l) be a permutation matrix during the factorizations at level l + 1 which
performs all the merging steps on A(l) to form the reduced matrix, and
• G(l) be the blocks eliminated from A(l+1) together with appropriate zero
blocks and permutations (Ψ(l)) (Figure 2.3(iv)).

Assume the nodes at a level l of T are i1, i2, . . . . Define

Q(l) = diag(I,Qi1 , Qi2 , . . .)Ψ
(l), l = L,L− 1, . . . , 2,

P(l) = diag(I, Pi1 , Pi2 , . . .)Ψ
(l), l = L,L− 1, . . . , 2,

where the identity matrices in diag() correspond to G(l+1) and do not exist if l = L.
Then the URV factorization process can be recursively represented by

A(l) +G(l) = (Q(l+1))∗A(l+1)P(l+1), l = L− 1, L− 2, . . . , 1, or(4.11)

A = Q(L)(Q(L−1)(· · ·Q(2)(A(1) +G(1))(P(2))−1(4.12)

+ · · ·+G(L−1))(P(L−1))−1 +G(L))(P(L))−1.
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First, we can show a result similar to the growth factor in LU factorizations [11].
It is easy to verify that, if the standard ULV factorization in [6] is computed, then
Q(l) and P(l) are unitary and ||A(l)||2 ≤ ||A||2. Here in the URV factorizations, Q(l)

is unitary. P(l) is not, but has a bounded norm, as shown below.
Lemma 4.4. For a node i = 1, 2, . . . , root(T )− 1 of T ,

||Pi||F = O(r), ||P−1
i ||F = O(r).

Proof. ||Pi||F = O(r) follows from the strong rank-revealing QR factorization
in [14], where the magnitudes of the entries of Fi are bounded by a small constant.
||P−1

i ||F = O(r) is obvious with

(4.13) P−1
i =

(
0 I
I F ∗

i

)
Υ∗

i .

Moreover, we have the following result. A similar one is first mentioned in [15]
without proof.

Theorem 4.5. The URV factorization (in exact arithmetic) produces factors that
satisfy

Q(l) is unitary, ||P(l)||2 ≤ β, ||A(l)||2 ≤ ρ||A||2, l = L,L− 1, . . . , 2,

where

(4.14) β ≡ max
i=1:root(T )−1

||Pi||2 = O(r), ρ = O(rL−l) = O(rO(log n
r )).

Proof. Clearly, for l = L,L− 1, . . . , 2,

||P(l)||2 ≤ β ≡ max
i=1:root(T )−1

||Pi||2 ≤ max
i=1:root(T )−1

||Pi||F = O(r).

Since the nonzero entries of A(l) form a submatrix of (Q(l+1))∗A(l+1)P(l+1) as in
(4.11), we have

||A(l)||2 ≤ ||(Q(l+1))∗A(l+1)P(l+1)||2 ≤ β||A(l+1)||2 = O(r)||A(l+1) ||2.

Thus, ρ is the 2-norm growth factor, which performs a role similar to the element
growth factor ρ0 in LU factorizations with partial pivoting. However, ρ here is much
smaller than the classical worst case bound 2n for ρ0 [11].

Next, we perform the stability analysis. We use wide-hatted notation to mean
the computed results. For example, P̂(l) ≡ fl(P(l)) denotes the actually computed
matrix for P(l). Also let u be the unit roundoff or machine epsilon in IEEE double
precision arithmetic. We study the numerical stability step by step.

The following lemma is a direct extension of the results from section 19.3 of [19],
as similarly given in [1].

Lemma 4.6. Consider a numerical transformation Q∗D, where Q and D are
2r × 2r matrices and Q is a product of r Householder matrices. Let

γ̃r =
2cru

1− 2cru
<

1

r
,

where c is a small positive constant. Then there exists a unitary matrix Q̃, so that

fl(Q∗D) = Q̃∗D + Z, ||Z||F ≤ 2rγ̃r||D||F .

For general matrix multiplications, another result is given in section 3.5 of [19].
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Lemma 4.7. Consider the numerical multiplication of two 2r × 2r matrices D
and P . We have

fl(DP ) = DP +H, ||H||F ≤ γr||D||F ||P ||F with

γr =
2ru

1− 2ru
.

The combined rounding error in the multiplication steps (2.14) and (2.17) is given
as follows.

Lemma 4.8. The numerical multiplications in Q∗
i D̃iPi in the URV factorization

satisfy

(4.15) fl(Q∗
i D̃iPi) = Q̃∗

i D̃iPi + Gi, ||Gi||F = O(rγ̂r)||D̃i||F ,

where Q̃i is a unitary matrix, and

γ̂r = γr + rγ̃r .

Proof. According to Lemmas 4.6 and 4.7,

fl((Q∗
i D̃i)Pi) = (Q̃∗

i D̃i + Zi)Pi +Hi = Q̃∗
i D̃iPi + ZiPi +Hi,

where Q̃i is a unitary matrix, and

||Zi||F ≤ 2rγ̃r||D̃i||F , ||Hi||F ≤ γr||Q̃∗
i D̃i + Zi||F ||Pi||F .

Then

||Gi||F ≡ ||ZiPi +Hi||F ≤ 2rγ̃r||D̃i||F ||Pi||F + γr(||D̃i||F + ||Zi||F )||Pi||F
= O(r2γ̃r)||D̃i||F +O(rγr)||D̃i||F +O(u2) = O(rγ̂r)||D̃i||F ,

where Lemma 4.4 is used.
Theorem 4.9. For l = 1, 2, . . . , L− 1,

fl((Q̂(l+1))∗Â(l+1)P̂(l+1)) = (Q̃(l+1))∗Â(l+1)P̂(l+1) + G(l),

where Q̃(l+1) is a unitary matrix, and

||P̂(l+1)||F ≤ β
√
n = O(r

√
n),(4.16)

||G(l)||F = O(rγ̂r)||Â(l+1)||F ,(4.17)

||Â(l+1)||F = (β
√
n)L−l−1||A||F = O((r

√
n)L−l−1)||A||F .(4.18)

Thus,

(4.19) ||G(l)||F = O((r
√
n)L−l−1rγ̂r)||A||F .

Proof. (4.16) holds due to the way P̂(l+1) is computed with strong rank-revealing
QR factorizations, as mentioned in Lemma 4.4. That is,

||P̂(l+1)||F ≤
√
n||P̂(l+1)||2 ≤ β

√
n.

(4.17) follows from Lemma 4.8. We then prove (4.18) by induction for l = L −
1, L− 2, . . . , 1. For l = L− 1,

||Â(l+1)||F ≡ ||A||F .
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Assume the result holds for l < L − 1. Since the nonzero entries of Â(l) form a
submatrix of fl((Q̃(l+1))∗Â(l+1)P̂(l+1)), we have

||Â(l)||F ≤ ||(Q̃(l+1))∗Â(l+1)P̂(l+1) + G(l)||F ≤ ||Â(l+1)P̂(l+1)||F + ||G(l)||F
≤ (β

√
n)L−l−1||A||F · β

√
n+ rγ̂r||A||F = O((β

√
n)L−l)||A||F .

We need an additional lemma for the stability analysis.
Lemma 4.10.

||P(L)P(L−1) · · ·P(l)||F ≤ O(
√
2Lr) = O(

√
nr),(4.20)

||(P(L)P(L−1) · · ·P(l))−1||F ≤ O(
√
2Lr) = O(

√
nr).(4.21)

Proof. Noticing (2.12) for Pi and (4.13) for P−1
i , we only need to prove (4.20).

Consider the multiplication involving Pi and diag(Pc1 , Pc2) for a node i at level l
and its children c1, c2 at level l+ 1, respectively. According to the HSS construction,
the computation of Vc1 , Vc2 only uses the columns that correspond to the identity
matrix in the representation of Vi in (2.8). Thus, Pi is only multiplied by the identity
matrices in the presentations of Pc1 , Pc2 as in (2.12). More specifically, without loss
of generality, assume Υi,Υc1 ,Υc1 are identity matrices, and then the multiplication
looks like⎛⎜⎜⎝
(
−F ∗

c1 I
I 0

)
(
−F ∗

c2 I
I 0

)
⎞⎟⎟⎠

⎛⎜⎜⎝
I
−F ∗

i I
I

I 0

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
I

I
I

I

⎞⎟⎟⎠
︸ ︷︷ ︸

Π1

+diag(−F ∗
c1 , 0,−F

∗
c2 , 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
I

I
I

I

⎞⎟⎟⎠
︸ ︷︷ ︸

Π2

+diag(0,−F ∗
i , 0, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Π1Π2 +Π1 diag(0,−F ∗

i , 0, 0) + diag(−F ∗
c1 , 0,−F

∗
c2, 0)Π2

=

⎛⎜⎜⎝
−F ∗

c1 −F ∗
i I

I
I −F ∗

c2
I

⎞⎟⎟⎠ .

Clearly, the blocks −F ∗
i , −F ∗

c1 , and −F ∗
c2 appear individually in the product, since

they always appear in different block columns of the result.
Therefore, the nonzero blocks of P(L)P(L−1) · · ·P(l) include the blocks of a per-

mutation matrix and −F ∗
i for the nodes i at levels l to L of T . Noticing (2.12), we

have

||P(L)P(L−1) · · ·P(l)||F ≤

√
root(T )−1∑

i=1

(2||Ir ||2F+||Fi||2F ) ≤

√
root(T )−1∑

i=1

||Pi||2F = O(
√
2Lr),

where Ir is the identity matrix of size r.
Remark 4.1. With similar ideas, it is possible to improve the growth factor in

Theorem 4.5 with Frobenius norms.
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We are then ready to present our main stability result.
Theorem 4.11. The URV factorization is backward stable. That is, it produces

a numerical factorization

A+ G = Q̃(L−1)(Q̃(L−2)(· · · (Q̃(2)(Â(2) + Ĝ(2))(P̂(2))−1)

+ · · ·+ Ĝ(L−2))(P̂(L−2))−1 + Ĝ(L−1))(P̂(L−1))−1,

where Q̃(l) is a unitary matrix, P̂(l) satisfies (4.16), and

||G||F = O((r
√
n)L−2√rγ̂r)||A||F = O((r

√
n)O(log n

r )√rγ̂r)||A||F .

Proof. Theorem 4.9 means, for l = L− 1, L− 2, . . . , 1,

Â(l) + Ĝ(l) = (Q̃(l+1))∗A(l+1)P̂(l+1) + G(l),

where we assume that the formation of Ĝ(l) does not introduce any error (or this
error can be absorbed by G(l)). Then,

Â(l+1) = (Q̃(l+1))∗(Â(l) + Ĝ(l) − G(l))(P̂(l+1))−1.

Thus, according to (4.12) and similar to the procedure in [1], we have

A ≡ Â(L) = Q̃(L)(Q̃(L−1)(· · · (Q̃(2)(Â(1) + Ĝ(1) − G(1))(P̂(2))−1)

+ · · · )(P̂(L−1))−1 + Ĝ(L−1) − G(L−1))(P̂(L))−1

= Q̃(L)(Q̃(L−1)(· · · (Q̃(2)(Â(1) + Ĝ(1))(P̂(2))−1)

+ · · ·+ Ĝ(L−2))(P̂(L−1))−1 + Ĝ(L−1))(P̂(L))−1 − G,

where

G = (Q̃(L)Q̃(L−1) · · · Q̃(2))G(1)(P̂(L) · · · P̂(2))−1

+ · · ·+ (Q̃(L)Q̃(L−1))G(L−2)(P̂(L)P̂(L−1))−1 + Q̃(L)G(L−1)(P̂(L))−1.

Due to the construction of P̂(l), Lemma 4.10 means

||(P̂(L)P̂(L−1) · · · P̂(l))−1||F = O(
√
2Lr) = O(

√
nr).

Then with (4.19), we have

||G||F ≤
L∑

l=2

||(Q̃(L) · · · Q̃(l))G(l−1)(P̂(L) · · · P̂(l))−1||F

(4.22)

≤
L∑

l=2

||(P̂(L) · · · P̂(l))−1||F ||G(l−1)||F = O(
√
nr)

L∑
l=2

||G(l−1)||F

= O(
√
nr)

L∑
l=2

O((r
√
n)L−l−1rγ̂r)||A||F = O((r

√
n)L−2√rγ̂r)||A||F .

Clearly, the error grows following a factor ρ̂ = O((r
√
n)O(log n

r )), which is in a
higher order than ρ in (4.14), but is still in a much smaller order than the worst case
element growth factor 2n in Gaussian elimination with partial pivoting.
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Remark 4.2. For the case where the row size m of A is different from the column
size n, the above derivation of the backward stability of the URV factorization remains
nearly identical, with certain n replaced by m. For example, if m ≥ n, then n on the
right-hand sides of (4.18), (4.19), etc. is replaced by m, which can be seen from the
proof of (4.18). Similarly, the proof in (4.22) still holds due to the orthogonality of

the m×m matrices Q̃(l), except that n in the final result is replaced by m.
A similar method can be used to prove the stability of the standard HSS ULV

factorization in [6, 39].
Corollary 4.12. The standard HSS ULV factorization is backward stable. That

is, it produces a numerical factorization

A+ G = Q̃(L−1)(Q̃(L−2)(· · · (Q̃(2)(Â(2) + Ĝ(2))(P̃(2))∗)

+ · · ·+ Ĝ(L−2))(P̃(L−2))∗ + Ĝ(L−1))(P̃(L−1))∗,

where Q̃(l) and P̃(l) are unitary matrices, and

||G||F ≤ O(rLγ̃r) ‖A‖F = O(r(log n)γ̃r) ‖A‖F .

Proof. The proof is similar to that in Theorem 4.11, except that P̃(l) is now
unitary. Based on Lemma 4.6, (4.15) becomes

fl(Q∗
i D̃iPi) = Q̃∗

i D̃iP̃i + Gi, ||Gi||F = O(rγ̃r)||D̃i||F ,

where Q̃i and P̃i are unitary. This means that the results in Theorem 4.9 are replaced
by

fl((Q̂(l+1))∗Â(l+1)P̂(l+1)) = (Q̃(l+1))∗Â(l+1)P̃(l+1) + G(l),
||G(l)||F = O(rγ̃r)||Â(l+1)||F = O(rγ̃r)||A||F .

Then (4.22) becomes

||G||F ≤
L∑

l=2

||(Q̃(L)· · · Q̃(l))G(l−1)(P̃(L)· · ·P̃(l))∗||F

≤
L∑

l=2

||G(l−1)||F = O(rLγ̃r)||A||F .

We can similarly show that the URV solution is stable. The details are skipped.
Interested readers are referred to the stability analysis of QR least squares solutions
and of triangular solutions in [11], as well as some results in [1].

Remark 4.3. According to our analysis, the standard HSS construction and
factorization methods in [6, 39] (where the basis matrices Ui, Vi have orthonormal
columns) have better error and stability bounds, respectively, than the randomized
HSS methods here (where the basis matrices have special structures as in (2.8)–(2.9)).
However, in practice, there is no significant difference in the accuracy and stability.
Furthermore, the structures in (2.8)–(2.9) enable fast computations as in (2.13). We
also avoid the extra work to orthonormalize the columns of the basis matrices.
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5. Numerical experiments. We test the following methods, including our
three new methods and three older ones for comparison:

• URV: our new superfast method based on the URV factorization of the HSS
approximations to C as in section 2;
• NE1: our new superfast method based on the normal equation method in
section 3.1;
• NE2: our new superfast method based on the normal equation method in
section 3.2;
• QR: the standard least squares QR algorithm based on the economic QR
factorization (provided in MATLAB) followed by a triangular solution with
the R and Q factors;
• TLLS: the fast algorithm in [31] based on pseudoinverses;
• Super: the superfast algorithm in [34] based on augmented matrices.

All the methods are implemented in MATLAB, including the codes for TLLS and
Super from their original authors. Our code is available at http://www.math.purdue.
edu/˜xiaj/work/toepls code.zip. The numerical results are computed in double pre-
cision. The costs and accuracies are compared. The code includes lines to count
the flops (number of floating point operations) for all the steps and subroutines. As
usual, one addition, multiplication, or division is counted as one flop. For commonly
used basic or internal routines, the standard theoretical counts are used, with the
low-order terms dropped. For example, for the QR factorization of a tall and skinny
m× r matrix, we use the count 2r2(m− r

3 ).
The following notation is used in the tests:
• m1 (n1): leaf level HSS block row (column) size;
• r̃: sampling size for URV;
• r̂: sampling size for NE1 and NE2;

• r =
‖TT (T x̃−b)‖

2

‖TT b‖2
and r̃ =

‖TT (T x̃−b)‖
2

‖|TT |(|T ||x̃|+|b|)‖2
: measurement of the orthogonality

of T x̃− b (with respect to T T ), or relative residuals of the normal equation,
where x̃ is the numerical solution.

We test some Toeplitz systems Tx = b which are inconsistent, with b randomly
generated from the uniform distribution on (0, 1) as in [13].

Example 1. A random Toeplitz matrix T defined by the vector which is generated
with the MATLAB function randn:

t−(n−1):(m−1) = randn(m+ n− 1, 1).

T is generally well conditioned.
With this example, we show that our methods are superfast, more generally ap-

plicable, and faster than the other three methods, while giving comparable accuracies.
First, we fix m = 2n. For n ranging from 500 to 32,000, we report the costs and ac-
curacies of the methods. Here (and also in the other examples), we choose m1 = 250,
n1 = 125, r̃ = 50, and r̂ = 70. The total computation time, flops, storage (number of
entries in all the HSS generators and factors), and accuracies are shown in Figure 5.1.
(For our methods, the total cost includes the individual costs in all the steps.) A dot-
ted reference line for ĉn with an appropriate constant ĉ is also plotted and marked as
“O(n) reference line.” Clearly, the four superfast methods (URV, NE1, NE2, and Super)
have roughly O(n) costs. Our three methods are all faster than Super. When n is
sufficiently large, they are much faster than both QR and the fast method TLLS. URV
and NE2 have the fewer flops in Figure 5.1(ii). (When m is closer to n, URV becomes
the fastest.)
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Fig. 5.1. Example 1, random matrix: Numerical results with m = 2n for n ranging from 500
to 32,000, where the flops for Super is not available, and NE 1(7) denotes NE 1 followed by 7 steps of
iterative refinement.

The storage of the four superfast methods are comparable (nearly O(n)) and
are much better than that of QR. TLLS has a storage scheme mainly based on the
displacement equation and is the most memory efficient.

The accuracies of the four superfast methods are also comparable. The mea-
surement of the orthogonality r is shown in Figure 5.1(iv). QR is the most accurate.
However, with a few steps of iterative refinements, NE1 and NE2 can reach similar
accuracies. The cost of the iterative refinement is very low since the number of steps
is small and each HSS solution step costs about O(n) and is much faster than the
HSS construction and factorization.

We would like to mention that the accuracy of the methods may decrease when n
increases. This is partly because we chose a fixed sampling size, and is also consistent
with the approximation error in Theorem 4.2 and the backward error in Theorem 4.11,
which grow with n. In fact, in [13] for Toeplitz least squares, the author explicitly
includes the square root of the matrix size in the denominator of the error report.
Thus, for larger n, a larger sampling size and/or more iterative refinement steps in
NE1 and NE2 (much smaller than n) may be needed.

For our three methods, we also show the actual costs of the HSS construction and
factorization steps in Figure 5.2, which are the major computations. Each step costs
about O(n) flops or slightly higher.

Remark 5.1. The slopes of the curves for URV in Figure 5.2(ii) are higher than
that of the O(n) reference line, because the ratio of the row and column dimensions of
the reduced matrices gets larger and larger at higher elimination levels. The current
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Fig. 5.2. Example 1, random matrix: Flops of the individual steps of URV, NE 1, and NE 2, with
m = 2n for n ranging from 500 to 32,000.
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Fig. 5.3. Example 1, random matrix: Numerical results with n = 2000 and m = αn for α
ranging from 2 to 10, where NE 1(7) denotes NE 1 followed by 7 steps of iterative refinement.

code only includes the row size reduction (section 2.3.1) for the leaf level. With
additional size reductions at more levels, the costs of URV can be further reduced.

Next, we set n = 2000, m = αn, and m1 = αn1 with α ranging from 2 to 10.
Here, Super only works for certain special α and is not included in the test. See
Figure 5.3. The comparison of our methods with the others is similar. Since n is
fixed, the costs of NE1 and NE2 remain almost constant. The flops of URV increase
very slowly.
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Fig. 5.4. Example 2, KMS matrix: Numerical results with ρ = 0.99999.

Example 2. The KMS matrix T [33] defined by

ti−j = ρ|i−j|, i = 1, . . . ,m, j = 1, . . . , n.

We choose ρ = 0.99999, and T is ill conditioned.
Since the problem is ill conditioned and the condition of T TT is even worse, we

use both r and r̃ to measure the orthogonality of T x̃ − b. Our superfast methods
can achieve accuracies comparable to those of QR, and are much faster. On the other
hand, TLLS and Super cost more and have much lower accuracies. See Figure 5.4.

When n is reasonably large, our methods are significantly faster. For example,
when n = 32, 000, NE1 is about 133, 38, and 5 times faster than QR, TLLS, and Super,
respectively. The difference in the flops is even more dramatic.
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Fig. 5.5. Example 3, prolate matrix: Numerical results with ω = 0.44, n = 2000, m = αn, and
α ranging from 2 to 10.

Example 3. The prolate Toeplitz matrix T [10, 12] defined by

t0 = 2ω, tk =
sin(2ωkπ)

kπ
for k �= 0, ω ∈ [0, 1/2].

T is very ill conditioned. Here, we use ω = 0.44, and the 2-norm condition number of
T is O(1012).

Our new methods still give reasonable accuracies close to those of QR, though
both Super (if it applies) and TLLS fail to provide solutions with any accuracies. We
set n = 2000, m = αn, and m1 = αn1 with α ranging from 2 to 10. Our methods are
also much faster. See Figure 5.5. The complexity of the new methods for varying n
is similar to that in the previous examples, and is omitted.
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6. Conclusions. In this work, we extend rank structured direct solutions with
randomization to Toeplitz least squares problems, and generalize HSS representa-
tions to rectangular ones. We propose three superfast solvers, a URV one and two
structured normal equation ones. The URV factorization generalizes the regular QR
factorization. (Thus, it can be applied to C∗ when m < n so that zero columns are
introduced into C.) The detailed error and stability analysis for both randomized and
classical HSS methods are given. The stability results are generally much better than
existing results for standard LU factorizations with partial pivoting. Numerical ex-
periments on some classical test examples show that the complexity and storage of the
methods are roughly O(m+ n). The methods are compared with some recently pro-
posed fast and superfast methods, and are generally much faster and more accurate,
especially for ill-conditioned problems. We will further optimize the implementation
in our future developments.
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