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We present a structured parallel geometry-based multifrontal sparse solver using hierarchically semisepa-
rable (HSS) representations and exploiting the inherent low-rank structures. Parallel strategies for nested
dissection ordering (taking low-rankness into account), symbolic factorization, and structured numerical fac-

torization are shown. In particular, we demonstrate how to manage two layers of tree parallelism to integrate
parallel HSS operations within the parallel multifrontal sparse factorization. Such a structured multifrontal

factorization algorithm can be shown to have asymptotically lower complexities in both operation counts
and memory than the conventional factorization algorithms for certain partial differential equations. We
present numerical results from the solution of the anisotropic Helmholtz equations for seismic imaging, and
demonstrate that our new solver was able to solve 3D problems up to 6003 mesh size, with 216M degrees of
freedom in the linear system. For this specific model problem, our solver is both faster and more memory
efficient than a geometry-based multifrontal solver (which is further faster than general-purpose algebraic
solvers such as MUMPS and SuperLU DIST). For the 6003 mesh size, the structured factors from our solver
need about 5.9 times less memory.
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1. INTRODUCTION

In many computational and engineering problems it is critical to solve large sparse linear
systems of equations. Direct methods are attractive due to their reliability and general-
ity, and are especially suitable for systems with different right-hand sides. However, it is
prohibitively expensive to use direct methods for large-scale 3D problems, due to their su-
perlinear complexity of memory requirement and operation count. A potential avenue to
develop fast and memory-efficient direct solvers is to exploit certain structures in the prob-
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lems. Different structures come from different natures of the underlying problems or different
discretization and computation techniques. In recent years, rank structured matrices have
been investigated extensively due to their potential in accelerating the solutions of various
partial differential equations and integral equations. Several useful rank structured matrix
representations have been developed, such as H-matrices [Hackbusch 1999] [Hackbusch and
Khoromskij 2000] [Hackbusch et al. 2002], H2-matrices [Börm et al. 2003] [Börm and Hack-
busch 2001] [Hackbusch et al. 2000], quasiseparable matrices [Bella et al. 2008] [Eidelman
and Gohberg 1999], semiseparable matrices [Chandrasekaran et al. 2005] [Vandebril et al.
2005], and multilevel low-rank structures [Li and Saad 2012].
In this paper, we develop a new class of parallel structured sparse factorization method

exploiting numerically low-rank structures using hierarchically semi-separable (HSS) matri-
ces [Chandrasekaran et al. 2006] [Xia et al. 2010]. The novelty of the HSS-structured solver
is to apply the parallel HSS techniques in [Wang et al. 2013] to the intermediate dense sub-
matrices that appear in the parallel sparse factorization methods. Specifically, we consider
the multifrontal factorization method [Duff and Reid 1983] in this paper. We investigate
several important aspects, such as parallel nested dissection that preserves the geometry and
benefits the low-rankness, the symbolic factorization, the integration of the HSS tree par-
allelism within the outer multifrontal tree parallelism, and how the rank properties behave
and benefit the complexities.
The resulting HSS-structured factorization can be used as a direct solver or precondi-

tioner depending on the application’s accuracy requirement and the characteristics of the
PDEs. The implementation that we present in the experimental section is restricted to the
solution of problems on regular grids. For some 3D model problems and broader classes
of PDEs, it was shown that the HSS-structured multifrontal method costs O(n4/3 log n)
flops [Xia 2013]. This complexity is much lower than the O(n2) cost of the traditional exact
multifrontal method. The theoretical memory count is O(n log n). Numerical tests indicate
that our structured parallel solver is faster and needs less memory than a standard geomet-
ric multifrontal solver (which is further faster than general-purpose algebraic solvers such as
MUMPS and SuperLU DIST). This new class of HSS-structured factorizations can be ap-
plied to much broader classes of discretized PDEs (including non-self-adjoint and indefinite
ones) aiming towards optimal complexity preconditioners.
The rest of the paper is organized as follows. In Section 2 we review the multifrontal

factorization algorithm and the HSS structure. Section 4 presents our new parallel HSS-
structured multifrontal algorithm in detail. Analysis of the rank properties and the com-
plexities are presented in Section 3. In Section 5, we demonstrate the parallel performance
of our geometric, sparse multifrontal solver. Section 6 is devoted to the conclusions.

2. REVIEW OF THE MULTIFRONTAL AND HSS-STRUCTURED MULTIFRONTAL

METHODS

In this section, we briefly review the multifrontal method, HSS representations, and HSS-
structured multifrontal methods.

2.1. Multifrontal method with nested dissection ordering

The central idea of the multifrontal method is to reorganize the factorization of a large sparse
matrix into the factorizations of many smaller dense matrices and partial updates to the
Schur complements [Duff and Reid 1983; Liu 1992]. We now briefly recall the main ideas. We
are to compute a factorization of a given matrix A, A = LU if the matrix is unsymmetric, or
A = LDLT if the matrix is symmetric. Without loss of generality, we assume that A is non-
reducible. For a matrix A with an unsymmetric pattern, we assume that the factorization
takes place with the nonzero structure of A + AT , where the summation is structural. In
this case, the multifrontal method relies on a structure called the elimination tree. A few
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equivalent definitions are possible (we recommend the survey by Liu [Liu 1990]), and we
use the following.

Definition 2.1. Assume A = LU , where A is a sparse, structurally symmetric, and N×N
matrix. Then, the elimination tree of A is a tree of N nodes, with the ith node corresponding
to the ith column of L and with the parent relations defined by:

parent(j) = min{i : i > j and ℓij 6= 0}, for j = 1, . . . , N − 1.

In practice, nodes are amalgamated : nodes that represent columns and rows of the fac-
tors with similar structures are grouped together in a single node. In the end, each node
corresponds to a square dense matrix (referred to as a frontal matrix ) with the following
2× 2 block structure:

Fj =

[

F11 F12

F21 F22

]

. (1)

Factoring the matrix consists in a bottom-up traversal of the tree, following a topological
order (a node is processed before its parent). Processing a node consists in:

— forming (or assembling) the frontal matrix: this is achieved by summing the rows and
columns of A corresponding to the variables in the (1, 1), (2, 1) and (1, 2) blocks, with the
temporary data (update matrices) that have been produced by the child nodes; that is,

Fj = Aj +
∑

k: child of j

Uk; (2)

— eliminating the fully-summed variables in the (1, 1) block F11: this is done through a partial
factorization of the frontal matrix which produces the corresponding rows and columns
of the factors stored in F11, F21 and F12. At this step, the so-called Schur complement
or contribution block is computed as Uj = F22 − F21F

−1
11 F12 and stored in a temporary

memory; it will be used to form the frontal matrix associated with the parent node.
Therefore, when a node is activated, it “consumes” the contribution blocks of its children.

In this process, the elimination step involves straightforward dense matrix operations, but
the assembling step involves index manipulation and indirect addressing while summing up

Uk. For example, if two children’s update matrices Uci =

(

ai bi
ci di

)

, i = 1, 2 have subscript

sets {1, 2} and {1, 3}, respectively, then

∑

i=1,2

Uci =

(

a1 b1 0
c1 d1 0
0 0 0

)

+

(

a2 0 b2
0 0 0
c2 0 d2

)

=

(

a1 + a2 b1 b2
c1 d1 0
c2 0 d2

)

. (3)

This summation operation is called extend-add, denoted by l↔, which aligns the subscript
sets of two matrices by padding zero entries, and then adds matrices. The relationship
between frontal matrices and update matrices can be revealed by Fj = Aj l↔Uc1 l↔Uc2 l↔
· · · l↔ Ucq , where nodes c1, c2, . . . , cq are the children of j.
In the multifrontal factorization, the active memory (at a given step in the factorization)

consists of the frontal matrix being processed and a set of contribution blocks that are tem-
porarily stored and will be consumed at a later step. The multifrontal method lends itself
very naturally to parallelism since multiple processes can be employed to treat one, large
enough, frontal matrix or to process concurrently frontal matrices belonging to separate
subtrees. These two sources of parallelism are commonly referred to as node and tree paral-
lelism, respectively, and their correct exploitation is the key to achieving high performance
on parallel supercomputers.
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In the following section, we exploit additional rank structures in the frontal matrices to
achieve better cost and memory efficiency.

2.2. Low-rank property and HSS structures

We briefly summarize the key concepts of HSS structures following the definitions and
notation in [Xia 2012; Xia et al. 2010]. Let F be a general n × n real or complex matrix
and I = {1, 2, . . . , N} be the set of all row and column indices. Suppose T is a full binary
tree with 2k− 1 nodes labeled as i = 1, 2, . . . , 2k− 1, such that the root node is 2k− 1 and
the number of leaf nodes is k. Let T also be a postordered tree. That is, for each non-leaf
node i of T , its left child c1 and right child c2 satisfy c1 < c2 < i. Let ti ⊂ I be an index
subset associated with each node i of T . We use F |ti×tj to denote the submatrix of F with
row index subset ti and column index subset tj .
HSS matrices are designed to take advantage of the low-rank property. In particular, when

the off-diagonal blocks of a matrix (with hierarchical partitioning) have small (numerical)
ranks, they are represented or approximated hierarchically by compact forms. These com-
pact forms at different hierarchical levels are also related through nested basis forms. This
can be seen from the definition of an HSS form:

Definition 2.2. We say that F is in a postordered HSS form and T is the corresponding
HSS tree if the following conditions are satisfied:

— tc1 ∩ tc2 = ∅, tc1 ∪ tc2 = ti for each non-leaf node i of T , where i has child nodes c1 and
c2 and t2k−1 = I.

—There exist matrices Di, Ui, Ri, Bi,Wi, Vi (or HSS generators) associated with each node
i, such that, if i is a non-leaf node,

D2k−1 = F,

Di = F |ti×ti =

(

Dc1 Uc1Bc1V
H
c2

Uc2Bc2V
H
c1 Dc2

)

, (4)

Ui =

(

Uc1Rc1
Uc2Rc2

)

, Vi =

(

Vc1Wc1
Vc2Wc2

)

,

where the superscript H means the Hermitian transpose.

The HSS generators define the HSS form of F . The use of a postordered HSS tree enables
us to use a single subscript (corresponding to the label of a node of T ) for each HSS
generator [Xia et al. 2010] instead of up to three subscripts as in [Chandrasekaran et al.
2006]. Figure 1 illustrates a block 8 × 8 HSS representation F . As a special example, its
leading block 4× 4 part looks like:

F |t7×t7 =









(

D1 U1B1V
H
2

U2B2V
H
1 D2

) (

U1R1

U2R2

)

B3

(

WH
4 V H

4 WH
5 V H

5

)

(

U4R4

U5R5

)

B6

(

WH
1 V H

1 WH
2 V H

2

)

(

D4 U4B4V
H
5

U5B5V
H
4 D5

)









.

For each diagonal block Di = F |ti×ti associated with each node i of T , we define F−
i =

F |ti×(I\ti) to be the HSS block row, and F
|
i = F |(I\ti)×ti to be the HSS block column. They

are both called HSS blocks. The maximum rank r (or numerical rank r for a given tolerance)
of all the HSS blocks is called the HSS rank of F . If r is small as compared with the matrix
size, we say that F has a low-rank property.
Once the matrix is put into the HSS format, the transformed linear system can be ef-

ficiently solved with the ULV-type factorization and solution algorithms [Chandrasekaran
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where the layer-by-layer ordering is applied to both A11 and A22. The Schur complement
of the two leading blocks is

S = A33 −A31A
−1
11 A13 −A32A

−1
22 A23. (6)

Since −A31A
−1
11 A13 and −A32A

−1
22 A23 are the contributions to the Schur complement due

to the elimination of A11 and A22, respectively, they satisfy the same off-diagonal rank
properties as in [Engquist and Ying 2011]. Thus, the off-diagonal numerical rank bound of
S is at most twice that with the layer-by-layer ordering for the entire A in [Chandrasekaran
et al. 2010] and [Engquist and Ying 2011]. Note that this holds regardless of the ordering
of A11 and A22. Since our goal is to factorize the entire matrix for direct solutions, a
nested dissection ordering is better at preserving the sparsity and more suitable for parallel
computing.
When there are multiple levels in nested dissection, the above claim similarly holds for

some problems. For example, for elliptic problems with a Dirichlet boundary condition, the
procedure in (5)–(6) applies to any node with two children in the assembly tree. For our
numerical tests below, we fix the frequency in the Helmholtz equation, which makes the
rank behaviors similar to the elliptic case for large matrix sizes.
Therefore, with nested-dissection ordering, we make some trade-off between low-rankness

with better sparsity. In practice, we observed that, with our partially structured algorithm,
the ranks grow as O(k) in 3D (see Tables III), which corroborate Engquist’s theory very
well.
In [Xia 2013], Xia further considers certain rank patterns of the off-diagonal blocks on

top of the rank bounds. That is, when the numerical ranks of the off-diagonal blocks at
the hierarchical levels of the frontal matrices satisfy certain patterns, some more optimistic
complexity estimates can be obtained. See Table I. As can be seen, in all these cases, the
HSS-structured multifrontal factorization is provably faster and uses less memory than the
classical algorithm.

Table I. Theoretical off-diagonal rank bounds based on [Chandrasekaran et al. 2010; Engquist and Ying 2011]
and the complexities of the standard multifrontal method (MF) based on [Duff and Reid 1983; George 1973]
and the HSS-structured multifrontal method (HSSMF) based on [Xia 2013], where k is the mesh size in one
dimension, and n = k2 in 2D and n = k3 in 3D.

Problem r
MF HSSMF

Factorization flops Memory Factorization flops Memory

2D Elliptic O(1)
O(n3/2) O(n logn) O(n logn) O(n log logn)

(k × k) Helmholtz O(log k)

3D Elliptic O(k)
O(n2) O(n4/3) O(n4/3 logn) O(n logn)

(k × k × k) Helmholtz O(k)

Notice that all the above complexity analysis is based on the off-diagonal rank analysis
of the Schur complements which are assumed to be computed exactly. In practice, this is
usually not the case, since all the intermediate Schur complements are approximate. Thus,
the actual costs of the HSS-structured factorization may be higher than the results in Table
I. When appropriate accuracy is enforced in the HSS construction, we expect the off-diagonal
numerical ranks of the approximate Schur complements to be close to those of the exact
ones.

4. PARALLEL ALGORITHMS: NESTED DISSECTION, SYMBOLIC FACTORIZATION, AND

HSS-STRUCTURED MULTIFRONTAL METHOD

In this work, we target our parallel algorithms to the discretized PDEs from the regular 2D
and 3D mesh. This is mainly motivated from the need of a fast and memory-efficient solver
in one of the applications we are working with—seismic imaging problems involving the
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geometric-based nested dissection fill-reducing ordering and we disable MC64. This way,
all the solvers factor the same matrix. As shown in the table, the size of the LU factors
and the number of operations are very close for the three solvers; the slight variations are
due to different ways of amalgamating the elimination tree (i.e., setting the size of the
frontal matrices or the supernodes). In MUMPS, we disable delayed pivoting; pivoting is
done only within fronts, as in our MF code. These settings enable us to have a fair compar-
ison between the three codes. The problem that we use for benchmarking corresponds to a
100× 100× 100 3D grid. From the table, we observe that MF is faster than both MUMPS
and SuperLU DIST. This is because this code is tailored for this particular problem, while
MUMPS and SuperLU DIST are algebraic codes that can solve problems with very differ-
ent sparsity pattern and numerical properties. MF also shows better strong scaling than
MUMPS and similar scaling to SuperLU DIST. These results demonstrate that our MF
code has good performance, and can serve as a nice framework to include HSS-structured
techniques, as well as a fair candidate to be compared with our HSS-structured version (so
as to demonstrate the benefit of including HSS structures). In the following, we assess the
performance of HSS-structured MF as compared with the non-structured MF code.

Table II. Comparison of the parallel performance of the geometric multifrontal code to MUMPS and Su-
perLU DIST for a 100×100×100 grid with different number of MPI processes. “Peak Mem” is the maximum
local memory highmark among all the processes.

# procs Solver Factor size Flop count Peak Mem. Analysis Facto. Solve
(GB) (×1012) (GB) (s) (s) (s)

32
MUMPS 16.9 54.0 0.96 2.9 69.9 0.5
SuperLU DIST 16.5 53.3 1.00 5.4 57.4 0.3
MF 16.6 53.1 1.00 0.2 53.5 0.4

64
MUMPS 16.9 54.0 0.52 3.1 40.5 0.4
SuperLU DIST 16.5 53.3 0.67 5.8 35.0 0.3
MF 16.6 53.1 0.50 0.2 31.6 0.2

128
MUMPS 16.9 58.1 0.36 3.2 28.7 0.4
SuperLU DIST 16.5 53.3 0.50 6.3 19.4 0.2
MF 16.6 53.1 0.26 0.2 18.9 0.2

256
MUMPS 16.9 58.1 0.23 3.4 23.2 0.6
SuperLU DIST 16.5 53.3 0.41 6.2 14.0 0.2
MF 16.6 53.1 0.13 0.1 10.7 0.1

4.3. Parallel HSS algorithms

Parallelizing the HSS algorithms is a challenging task in its own right. In previous work,
we have developed efficient parallel algorithms for HSS matrix operations, including con-
struction, ULV factorization and solution; see [Wang et al. 2013] for details. Recall that the
HSS computations can also be modeled by a binary tree — HSS tree (see Figure 1(b)). Our
parallel HSS algorithms were designed around this tree structure. In particular, we used
the same node-to-process mapping principle as is used for the multifrontal separator tree
in Figure 7(b). For a dense structured submatrix of size 250,000 from a 3D problem, our
parallel HSS solver is over 2x faster than the LU factorization in ScaLAPACK. The factor
of the compressed matrix is 70x smaller than that of the standard, full-rank LU factoriza-
tion. The asymptotic communication complexity (volume and number of messages) is also
reduced [Wang et al. 2013].

4.4. Parallel HSS-structured multifrontal method

Now, employing the HSS technique to each separator amounts to applying the parallel HSS
algorithms to the frontal matrix that is residing in the process context associated with
that separator. Thus, we can organize the parallel algorithm following an outer-inner tree
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The outer tree multifrontal parallelism is the same as depicted in Algorithm 3. With
HSS embedding, a major new design of the parallel algorithm is the computation of the
contribution block U| for the inner HSS tree (Algorithm 1, step (c)) and its interaction with
the outer tree parallelism. Recall that in our partially structured multifrontal method, we
apply the HSS compression technique only to the blocks with fully summed variables in the
frontal matrix, i.e., F11, F12 and F21, see Figure 9(b). After HSS compression, the frontal
matrix is approximated as:

Fj ≈

[

H U1B1V
T
2

U2B2V
T
1 F22

]

, (7)

where H is an HSS representation for F11, and U1, B1, V2, U2, B2 and V1 are the HSS
generators at the root of the HSS tree associated with H. Next, we perform parallel ULV
factorization to H, yielding a reduced matrix for the HSS form of Fj :

[

D̃k Ũ1B1V
T
2

U2B2Ṽ
T
1 F22

]

, (8)

where, the D̃k, Ũ1 and Ṽ1 are all of order r, the HSS rank. Here, we employ our parallel
HSS construction and partial ULV factorization algorithms developed in [Wang et al. 2013],
using four processes in this example, which accomplishes steps (a) and (b) in Algorithm 1.

The next step is decompression to form the dense update matrix Uj in parallel (Algo-
rithm 1, step (c)): Uj = F22 − (U2B2V

T
1 )H−1(U1B1V

T
2 ). As was shown in [Xia 2013], this

can be computed cheaply by a low-rank update as follows:

Uj = F22 − (U2B2Ṽ
T
1 U−1

k )(L−1
k Ũ1B1V

T
2 ) , (9)

with the help of a (small) LU factorization of D̃k = LkUk. In our implementation, we use
ScaLAPACK and PBLAS routines to perform parallel LU factorization, parallel triangular solve
(i.e., L−1

k Ũ1) and parallel matrix-matrix multiplication.

The last step is to assemble the contribution block Ũj into the parent frontal matrix as
part of extend-add. This is the same as what is needed in the pure parallel multifrontal
algorithm described in Section 4.2, that is, we can use BLACS routine PxGEMR2D to first
redistribute Ũj from four processes {12,13,14,15} onto eight processes {8, . . . , 15}, before
the addition operation.

Our code includes pivoting within the dense frontal matrices. No pivoting is needed to
factorize the HSS frontal matrices due to the ULV factorization procedure which computes a
sequence of orthogonal local factorizations. The current code does not use delayed pivoting
across the children/parent fronts. In our applications, factorizations without delayed pivot-
ing preserve the practical background of the problems and are enough to observe stability
in practice [Wang et al. 2010; Wang et al. 2011; Wang et al. 2012]. In our future parallel
algebraic structured solver for more general sparse matrices, we plan to include static piv-
oting as in SuperLU DIST [Li and Demmel 2003] or randomized pivoting as in [Xin et al.
2013].

5. RESULTS

In this section, we present the performance results of our parallel geometric HSS-structured
multifrontal solver when it is used to solve the Helmholtz equation of the following form:

(

−∆−
ω2

v(x)2

)

u(x, ω) = s(x, ω), (10)

where ∆ is the Laplacian, ω is the angular frequency, v(x) is the seismic velocity field, and
u(x, ω) is called the time-harmonic wavefield solution to the forcing term s(x, ω). Helmholtz
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equations arise frequently in real applications such as seismic imaging, where the simplest
case of the acoustic wave equation is of the form (10). Here, we focus on the 3D geome-
try and a 27-point discretization of the Helmholtz operator on 3D regular domains. This
discretization often leads to very large sparse matrices A which are highly indefinite and
ill-conditioned. We use a fixed frequency f = 10Hz (ω = 2πf), a sampling rate of about 15
points per wavelength, wavelength L = 150 meters, step size h = 10 meters, and the PML
(Perfectly Matched Layer) boundary condition. In order to study the scaling of the parallel
algorithm, we increase the the number of discretization point k in each dimension, so that
the domain size in each dimension is k × h meters.
It has been observed that, in the direct factorization of A, the dense intermediate matrices

may be compressible [Engquist and Ying 2011; Wang et al. 2010]. In this application,
the discretized matrix has complex values, but we need to work only in single precision
arithmetic as it is what is used most of the time in the full wave inversion.
We carry out the experiments on the Cray XC30 (edison.nersc.gov) at the National

Energy Research Scientific Computing Center (NERSC). Each node has two sockets, each
of which is populated with a 12-core Intel “Ivy Bridge” processor at 2.4GHz. There are 24
cores per node. Each node has 64GB memory. The peak performance of each core is 19.2
Gflops/core.
We report the detailed parallel performance results in Table III. We also show in Figure 10

how the size of the factors and the number of operations of the HSS-structured factorization
grow as a function of the problem size. The grid sizes range from 100 × 100 × 100 to
600× 600× 600 (i.e, n = 216 millions). The number of cores ranges from 16 to 16,384. For
each problem, we compare the runs of the same code using a regular multifrontal mode (by
setting the switching level to 0) and the HSS-structured mode (where the switching level
is chosen according to the rules in [Xia 2013]). In each case, we perform one factorization
and one solution step with a single right-hand side, followed by at most 5 steps of iterative
refinement to the solution. The convergence criterion is that the componentwise backward

error maxi
|Ax−b|i

(|A||x|+|b|)i
[Oettli and Prager 1964] is less than or equal to 5× 10−7. In case the

error does not go down to the desired accuracy, we keep the best residual.
We report and compare the following performance metrics:

—Time: the runtime and the flop rate of the factorization, the solution, and the iterative
refinement phases. For the HSS-structured factorization, we also report the time spent in
the rank-revealing QR, which is expected to be a dominant operation.

—Memory: the total size of the factors and the total peak of memory including the factors
and the active memory. The latter is the dominant part of the memory footprint of the
solver.

—Communication characteristics: the volume, the number of messages, and the time spent in
communication. These are collected using the IPM performance profiling tool [Fuerlinger
et al. 2010]. We did not collect data for the biggest problem as the log files become too
large for very long runs with many cores.

—Accuracy: we measure the normwise relative residual ||Ax−b||
||b|| and the componentwise

backward error maxi
|Ax−b|i

(|A||x|+|b|)i
before and after iterative refinement.

One can notice that, except for the smallest 3D problem, the HSS-structured factorization
is always faster than the regular, uncompressed multifrontal factorization. The new code
is up to 2x faster than the pure multifrontal code (e.g., with the mesh size 3003). The
structured factor size is always smaller than that of the multifrontal code and is up to about
almost 6x smaller (e.g. the mesh size 6003). The flop rates of the HSS-structured code are
lower because the HSS kernels operate on the smaller blocks, while the multifrontal kernels
mostly perform large BLAS-3 operations. The size of the factors is significantly reduced but
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Table III. Experimental results on 3D regular domains. We compare a regular (full-rank) multifrontal solution
process (“MF” rows in the table) with our HSS-structured solver (“HSSMF”). Communication statistics are
collected with IPM except for the last problem (too large).

k (mesh: k × k × k;n = k3) 100 200 300 400 600

Number of processors P 64 256 1,024 4,096 16,384

Levels of Nested Dissection 15 18 20 21 23

Switching level 5 8 10 11 14

MF

Factorization (s) 53.2 842.0 2436.9 4217.6 6564.3

Gflops/s 998.7 4138.0 16454.8 53587.2 393694.1

Solution (s) 0.1 0.6 1.0 1.6 6.7

Gflops/s 17.8 300.6 1556.9 4977.7 25541.1

Iterative refinement (s) 0.2 0.6 1.1 2.5 44.8

Steps 1 1 1 1 2

Factors size (GB) 16.6 280.0 1450.1 4636.1 23788.9

Total peak (GB) 262.0 434.7 2234.9 7119.5 36373.4

Communication volume (GB) 68.0 2149.3 22790.5 135888.0 -

Number of messages (millions) 4.1 71.9 576.2 2883.5 -

Communication time(s) 5.1 42.1 136.0 518.8 -

After
||Ax−b||

||b||
1.0× 10−4 3.6× 10−4 1.2× 10−2 1.7× 10−3 2.8× 10−2

solution maxi
|Ax−b|i

(|A||x|+|b|)i
2.9× 10−3 2.1× 10−3 3.5× 10−3 1.5× 10−3 6.5× 10−3

After
||Ax−b||

||b||
8.3× 10−6 1.2× 10−5 1.5× 10−5 1.8× 10−5 2.2× 10−5

refinement maxi
|Ax−b|i

(|A||x|+|b|)i
1.5× 10−7 1.5× 10−7 3.6× 10−7 1.8× 10−7 1.6× 10−7

HSSMF

Compression and factorization (s) 56.9 598.6 1214.2 2477.1 5136.8

Gflops/s 467.2 1408.5 5116.9 11084.0 43399.2

Min RRQR time(s) 21.7 227.0 469.1 742.8 1603.3

Max RRQR time(s) 32.6 415.8 860.3 1375.7 3430.7

Solution (s) 0.2 0.7 2.8 10.9 63.2

Gflops/s 58.0 178.0 166.4 115.7 68.3

Iterative refinement(s) 1.4 13.2 13.2 68.6 350.0

Steps 5 5 5 5 5

Factors size (GB) 10.8 115.8 433.4 1189.0 4053.5

Total peak (GB) 250.3 366.7 1738.4 5352.5 25287.2

Communication volume (GB) 81.8 1794.9 14129.2 71261.2 -

Number of messages (millions) 13.2 160.6 1175.0 6147.7 -

Communication time(s) 7.8 49.1 157.8 583.8 -

Largest rank found in compression 518 1036 1822 2502 5214

After solution
||Ax−b||

||b||
1.5× 10−2 3.0× 10−2 6.3× 10−2 6.5× 10−2 1.6× 10−1

maxi
|Ax−b|i

(|A||x|+|b|)i
8.4× 10−1 8.9× 10−1 9.2× 10−1 8.3× 10−1 8.9× 10−1

After refinement
||Ax−b||

||b||
8.3× 10−6 1.2× 10−5 1.5× 10−5 1.8× 10−5 2.2× 10−5

maxi
|Ax−b|i

(|A||x|+|b|)i
3.8× 10−5 8.5× 10−5 6.0× 10−4 1.3× 10−3 1.3× 10−3

the gains on the maximum peak of memory are not as large because the current code is
not fully structured yet: we do not apply the HSS compression on the contribution blocks,
as mentioned in Section 2.3. Studying and implementing a parallel fully-structured solver
is work in progress.
We observe that the flop rates are disappointing for the largest problem, with both the

multifrontal and the HSS-structured modes. We are currently investigating this issue with
Cray. On an older system (Cray XE6) the HSS-structured code using 16,384 processes we
achieved 23.2 TFlops/s, instead of 6.7 TFlops/s here.
The communication volume is also reduced when the HSS kernels are used, almost 2x

reduction in the case of 4003. The number of messages is larger for the HSS-structured
factorization; this is because the HSS kernels perform many redistributions of the inter-
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