Yang, Zhiguo

Yang, Zhiguo

Golomb Visiting Assistant Professor, Department of Mathematics, Purdue University

Email: yang1508@purdue.edu

Office: MATH 646




Research Interest


Publications

  1. Z.G. Yang and L.L. Wang. Accurate Simulation of Circular and Elliptic Cylindrical Invisibility Cloaks, Commun. Comput. Phys., 17(03): 822-849, 2015.
  2. Z.G. Yang, L.L. Wang, Z.J. Rong, B. Wang and B.L. Zhang. Seamless Integration of Global Dirichlet-to-Neumann Boundary Condition and Spectral Elements for Transformation Electromagnetics, Comput. Methods Appl. Mech. Engrg., 301: 137-163, 2016.
  3. L.N. Ma, J. Shen, L.L. Wang and Z.G. Yang. Wavenumber Explicit Analysis of Spectral-Galerkin Methods for Time-Harmonic Maxwell Equations in Exterior Domains, IMA J. Numer. Anal. 38 (2), 810-851, 2018.
  4. L.L. Wang and Z.G. Yang. A Perfect Absorbing Layer for High-order Simulation of Wave Scattering Problems , Lect. Notes Comput. Sci. Eng., 119, 81101 . Springer, Cham, 2017.
  5. Z.G. Yang and S.C. Dong. Multiphase flows of N immiscible incompressible fluids: An outflow/open boundary condition and algorithm, J. Comp. Phys., 366, 33-70, 2018.
  6. Z.G. Yang, L.L. Lin and S.C. Dong. A Family of Second-Order Energy-Stable Schemes for Cahn-Hilliard Type Equations, J. Comp. Phys., 383, 24-54, 2019.
  7. N.X. Ni, Z.G. Yang and S.C. Dong. Energy-Stable Boundary Conditions Based on a Quadratic Form: Applications to Outflow/Open-Boundary Problems in Incompressible Flows, J. Comp. Phys., 391, 179-215, 2019.
  8. L.L. Lin, Z.G. Yang and S.C. Dong. Numerical Approximation of Incompressible Navier-Stokes Equations Based on An Auxiliary Energy Variable, J. Comp. Phys., 388, 1-22, 2019.
  9. Z.G. Yang and S.C. Dong. An Unconditionaly Energy-Stable Scheme Based on An Implicit Energy Variable for Incompressible Two-Phase Flows of Different Densities Involving only Precomputable Coefficient Matrices, J. Comp. Phys., accepted, 2019.
  10. Z.G. Yang and S.C. Dong. A Roadmap for Discretely Energy-Stable Schemes for Dissipative Systems Based on a Generalized Auxiliary Variable with Guaranteed Positivity, submitted to J. Comp. Phys. 2019.
  11. Z.G. Yang, Y. Gao and L.L. Wang. A Truly Exact Perfect Absorbing Layer for Time-harmonic Acoustic Wave Scattering Problems. To be submitted.

Education


Experiences


Teaching