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Abstract We study three problems related to towers of coverings of Hermitian sym-
metric spaces of non-compact type. The first one is on the possibility that the the
index of the canonical line bundle gets arbitrarily large on such a tower of coverings.
The second one is on some vanishing and non-vanishing results on bundle valued
forms on a Kähler hyperbolic manifolds. The third one is to explain that on any
tower of coverings of locally Hermitian symmetric spaces of Lie algebra type DIII,
some fractional power of the canonical line bundle aK with rational 0 < a < 1 are
very ample as one goes high enough in the tower.

1. Introduction

1.1 By a tower of coverings {Mi} of M, we mean a sequence of finite coverings
Mi+1 → Mi with M1 = M, such that π1(Mi+1) < π1(Mi) is a normal subgroup
of π1(M1) with finite index and ∩∞i=1π1(Mi) = {1}. For a locally symmetric space
Γ\G/K, a tower of coverings corresponds to a sequence of nested normal subgroups
{Γi} of the lattice Γ. In the case of an arithmetic lattice Γ of G, a tower of coverings
can be obtained by a sequence of nested congruence subgroups Γi of Γ. The goal of
this paper is to study a few properties related to a tower of coverings.

1.2 Let M be a locally complex manifold. Define the index α(M) of the canonical
line bundle KM on M to be the largest positive integer ` such that KM can be
written as `H for some line bundle H. Suppose that M supports a tower of covering
{Mi}. The index of KMi is clearly non-decreasing with respect to i. A natural
question is whether the index of Mj can go arbitrarily large as i→∞. Here is our
first result.

Theorem 1. Let M be a tower of compact locally Hermitian symmetric spaces of
non-compact type with real rank at least 3. Then the followings are true.
(a) There exists a tower {Mj} with M1 = M in which α(Mj) > α(M∨) for all j,
where M∨ is the symmetric space of compact type dual to M
(b) Given any tower {Mj} with M1 = M , the index α(Mj) of KMi is uniformly
bounded on the tower.
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1.3 The second direction that we explore is a vanishing and non-vanishing theorem
in the flavor of results of Gromov to the setting of bundle valued forms (Theorem 1.4
of [G]). We say that a Kähler metric g with Kähler form ω on a complex manifold is
Kähler hyperbolic if on the universal covering we may write ω = dσ with bounded
|σ|g measured with respect to g. Here we may write σ = σ1 + σ1, where σ1 is a
(1, 0)-form.

Theorem 2. Let M̃ be a simply connected non-compact complex manifold. Let g be a

complete Kähler hyperbolic metric on M̃ satisfying ω = d(σ1+σ1) with |σ1|2g 6 c1. Let

(L, h) be a hermitian line bundle on M̃ with curvature bound c2g > Θh > 0 for some

constant c2 > 0. Then for a < 1
4c1c2

, if aL is a holomorphic line bundle on M̃, the

space of L2 harmonic aL-valued (0, j) forms, Hj
(2)(M̃, aL) = 0 for j < n = dimC(M̃).

Remark
(a). We remark that simply-connectedness of M̃ is not needed in the proof.
(b). The value of a cannot be arbitrarily large for the conclusion to be true, as one
can see from the examples in the corollary below and from Serre Duality. Gromov’s
result in [G] corresponds to a = 0 in Theorem 2.

Corollary 1. (a). Let M̃ be a Hermitian symmetric space of non-compact type.

There exists 1 > bo > 0 such that H0
(2)(M̃, (1 − b)K

M̃
) is infinite dimensional for

any rational number b satisfying 0 < b < bo. The constant bo depends on the growth
rate of the Bergman kernel near the boundary of the bounded symmetric domains
involved.
(b). Suppose that M̃ is a Hermitian symmetric space of non-compact type of the form

SU(p, q)/S(U(p) × U(q)), where 1 6 p 6 q. Then for 0 6 a < 1
p+q , H

j
(2)(M̃, (1 −

a)K
M̃

) = 0 for all 0 < j 6 p+ q, and H0
(2)(M̃, (1− a)K

M̃
) is infinite dimensional.

(c). Let M̃ = SO∗(2n)/U(n) be the classical domain of Lie algebra type DIII. Then

for a < 1
n , Hj

(2)(M̃, (1− a)K
M̃

) = 0 for all 0 < j 6 p + q and H0
(2)(M̃, (1− a)K

M̃
)

is infinite dimensional.

We remark that since M̃ is simply connected, a fractional power of K
M̃

exist as

a holomorphic line bundle on M̃ .

1.4 The third direction that we consider is actually the original motivation of the
article. Let L be an ample line bundle on a projective algebraic manifold M. A nat-
ural problem is to seek for the smallest number a such that aL becomes very ample,
such as the Fujita Conjecture. The usual methods to construct global holomorphic
sections of a line bundle are through either Poincaré Series or Kodaira Embedding,
Kodaira Vanishing Theorem and Riemann-Roch Theorem, and their various gener-
alization such as Kawamata-Viehweg Theorem, multiplier ideal sheaves or through
L2-estimates. All the general methods require that L−KM is positive, where KM

is the canonical line bundle of M . In particular, in the case of manifolds with ample
canonical line bundle KM , to construct enough sections for aKM , the conventional
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methods mentioned above require a > 1. In search of alternate methods to create
global holomorphic sections, we look for interesting classes of projective algebraic
manifolds on which K is very ample for complex dimensions greater than 1. In
this direction, it is shown in [Ye1] that for a compact locally Hermitian symmetric
spaces, K is very ample once we get to a sufficiently large covering. In some sense,
the construction of sections of K correspond to the limiting case of L2 estimates or
Kodaira’s method mentioned earlier. Hence a natural and more significant question
is whether the natural barrier of multiplicity 1 in the coefficient of K can be lowered
to a number below 1. Specifically, one would like to know if it is possible to prove
very ampleness of an `-th root of K for some ` > 1 in the case that the complex
dimension of M is more than 1, where one goes up a tower of complex ball quotients.
The above question was raised by Y.-T. Siu.

The result that we obtained in this direction works only for a tower of locally
Hermitian symmetric space of Lie algebra type DIII, or type II in the notation of
classical domains given by E. Cartan.

Theorem 3. Let M = Γ\G/K be a compact locally Hermitian symmetric space of
non-compact type of the form Γ\SO∗(2n)/U(n). Then there exists a tower of cover-
ings {Mi} of M such that (1− 1

2n−2)KMi gives an embedding of Mi for i sufficiently
large.

2. Towers of manifolds and index of the canonical line bundle

2.1 Let M = Γ\G/K be a locally Hermitian symmetric space of non-compact type,
where G is a semi-simple Lie group, K a maximal compact subgroup and Γ a lattice
of G. Denote by M∨ the dual Hermitian symmetric space of M. Suppose M is
not a complex ball quotient, then the real rank of M is at least 2. In such cases,
from Margulis Arithmeticity Theorem, Γ is arithmetic. In such a case, a tower of
coverings of M can be obtained by a tower of congruence subgroups of Γ.

Suppose that M = Γ\PU(n, 1)/P (U(n)×U(1)) is a complex ball quotient. Then
Γ may or may not arithmetic. We may consider tower of congruence subgroups for
arithmetic Γ. In the case of non-arithmetic Γ, it is well-known that Γ is residually
finite and hence M supports a tower of coverings.

2.2 We begin with some preliminary discussions on Hermitian symmetric space.

Let M̃ be a Hermitian symmetric space of non-compact type. Let G be the identity

component of the isometry group of M̃ . Let Z be the center of G and G = G/Z.

Let K be a maximal compact subgroup of G. Then M̃ is the homogeneous space

G/K. The compact dual of M̃ is denoted by M̃∨. Here M̃∨ = G∨/K, where G∨

is the dual group of G. G and G∨ are the two real forms of G ⊗ C. We refer the
readers to the introduction of [Ma], or the references [Mo] and [H] for details about
the duality.

There is a natural projection p : G → G which is a finite sheeted covering with
order given by the order of the center. Similarly for the compact dual. Let K =
p(K). As a complex manifold, a locally Hermitian symmetric space is of the form
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Γ\G/K, where Γ is a lattice in G. p−1(Γ) forms a lattice Γ of G. It is known that the
Picard number, the rank of the Neron-Severi group NS(M∨)/tor := H1,1(M∨) ∩
H2(M∨,Z)/tor, of M∨ is 1. There exists an embedding of M∨ into some PNC so
that the generator HM∨ of NS(M)/tor is given by the hyperplane line bundle O(1)
in PNC , as given in Nakagawa-Tagaki [NT] and Hwang-Mok [HM]. In this case, the
canonical line bundle of −KM∨ = αM∨HM∨ , where αM∨ is the index of KM∨ . Note
that HM∨ and KM∨ are G∨-equivariant line bundle on M∨.

Example Consider the complex ball M̃ = Bn
C = {z = (z1, . . . , zn) ∈ Cn : |z| 6 1}.

In this case, G = SU(n, 1), K = S(U(n) × U(1)) and G∨ = SU(n + 1). M̃∨ = PnC
and Bn

C is identified with the set of points w = [w0, . . . , wn] ∈ PnC . In this case
−KPnC

= −(n+ 1)H. Both H and Kn
C are SU(n+ 1)-equivariant line bundle on PnC .

Hence the index of −KPnC
is n+ 1.

We also note that the canonical line bundle on M̃ is G-equivariant and descends
to the canonical line bundle KMi of Mi for each i.

2.3 In this section, we list some information about M∨ which will be useful for
later discussions. It records two information. First is the index α(M∨) for each
M∨ according to the list of classification of M∨ due to E. Cartan. The second is

about the pole order p(M̃) of the Bergman metric on M̃ near the boundary when it is
realized as a bounded domain in Cn with respect to the Harish-Chandra Embedding.

Lemma 1. Let M̃ be a Hermitian symmetric space of non-compact type and M∨

be its compact dual. Then the index α(M∨) of M∨ and the pole order p(M̃) of the

trace of the Bergman kernel on M̃ are given by the last two columns of the table
below.

Type M α(M∨) p(M̃)

AIII SU(r + s)/S(U(r)× U(s)) r + s r + s
BDI SO(n+ 2)/SO(n)× SO(2) n n
CI Sp(r)/U(r) r + 1 r + 1
DIII SO(2r)/U(r) 2r − 2 r − 1
EIII E6/Spin(10)× T 12 12
EV II E7/E6 × T 18 18

Proof The information is known and collected from the results in the literature.
The third column of the table gives index of the manifold involved and follows from
[NT], Proposition 5.2 and Table 2.

The pole order of the trace of the Bergman kernel is defined as follows. M̃ is
realized as a bounded domain in Cn with respect to the Harish Chaundra Embed-
ding. The Bergman kernel blows up near the boundary at a rate BK(z, z) ∼ δ(z)−`
for some rational number `, where δ(z) stands for the Euclidean distance to the

boundary of D as mentioned above. ` is the pole order p(M̃) mentioned above.

The last column gives the values of p(M̃). This follows from [H] for the classical
case, see also [Mo], and [Yi] for the two exceptional cases.
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2.5 Proof of Theorem 1
We begin with the proof of (a). Let M be a locally Hermitian symmetric of non-

compact type. M can be written as M = Γ\G/K. As mentioned in 2.4, any lattice
Γ of G can be lifted to Γ of G so that N = Γ\G/K is a finite cover of M of index
bounded by the order βG of the center of G, which is finite and depends on the
type of G. In this way, we get a finite unramified cover M1 = N of M . Note that
the fundamental group Γ of M1 is now a lattice in G. By considering a tower of
congruence subgroups of M1, we get a tower of manifolds {Mi}, i = 1, 2, 3, . . . . Recall
that O(1) gives rise to an G equivariant line bundle and descends to each Mi. Since

K
M̃

= α(M∨)O(1) as a G-equivariant line bundle on M̃ , they are Γ-equivariant and
descends to Mi. Hence the index of KMi is at least α(M∨). This concludes the
proof of (a).

For the proof of (b), we note that by the same reason, given any tower of coverings
{Mi}, we can find another tower of coverings {Ni} in which Ni is a cover of Mi of
index bounded by αG. Let fi : Ni → Mi be the covering map. Since f∗i KMi = KNi

and the pull back of a generator of the Neron-Severi group NS(Mi)/tor on Mi gives
rise to an element NS(Ni)/tor, we know that the index αMi 6 αNi . Hence from
this point on, it suffices for us to consider a tower {Ni} with Ni = Γi\G/K in which
Γi ⊂ G. To be consistent with our earlier notations, we rename Ni as Mi.

Since we are considering a locally Hermitian symmetric space M of non-compact
type of real rank at least 3, Matsushima’s Vanishing Theorem as stated in [Ma]
implies that any harmonic 2-form on each Mi comes from G-invariant forms. Let Li
be a generator of NS(Mi)/tor. Denote by ΘLi the harmonic representative of the
curvature form of Li. Matsushima’s Theorem implies that ΘLi is a G equivariant

form. From definition, we may write ΘLi =
√
−1∂∂hi for a real valued metric on Li.

Here hi is a real valued function on each open set of Mi and the transition function
between two different coordinate charts are given by the corresponding one on any
predetermined metric of Li on M .

From Matsushima’s Vanishing Theorem, we further infer that NS(Mi) ⊗ Q =
NS(M∨) ⊗ Q and hence is of rank one. On the other hand, note that O(1) is a

G∨-line bundle on M∨. The restriction of O(1) to M̃ ⊂ M∨ given by the Harish-
Chandra Embedding gives rise to a G-equivariant line bundle, which we still denote

by O(1), on M̃ . The line bundle O(1) is hence also Γ-equivariant and descend to Mi

to give a line bundle E on Mi. O(1) and hence E is equipped with the G-equivariant

metric h = det g−1/α(M∨), where g is the Bergman metric on M̃ and det g gives rise
to a metric of −K

M̃
.

Since the rank of NS(Mi)/tor is 1, we conclude that up to a torsion bundle we
may write Li = aiE for some proper fraction ai. Note that we have chosen Li as
a generator of the Neron-Severi group modulo torsion. Tensoring Li by a torsion
bundle, we may assume that Li = aiE. Hence on aiE, we have two metrics given by
hi and hai respectively. The corresponding curvature forms are given by Θ(Li, hi)
and Θ(Li, h

ai) respectively. Since both of the curvatures forms are G invariant
and hence parallel, Θ(Li, hi) = cΘ(Li, h

ai), where c is a constant on Mi. Since
the integrals Θ(Li, hi)∧ (Θ(Li, hi))

n−1 and Θ(Li, h
ai)∧ (Θ(Li, hi))

n−1 are the same
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as they represent the same characteristic number, we conclude that c = 1 hence
Θ(Li, hi) = Θ(Li, h

ai) pointwise everywhere on Mi.
The above implies that log(hi/h

ai) satisfies ∂∂ log(hi/h
ai) = 0 and hence gives

rise to a real harmonic function on Mj . As Mj is compact, Maximum Principle
implies that log(hi/h

ai) is a constant and hence hi = chai for some constant c > 0.
Absorbing c in hi, we may just assume that c = 1 and hence hi = hai .

We claim that the above implies that the rational Neron-Severi group NS(Mi)⊗Q
is actually generated by the G-equivariant line bundle aiO(1) on M̃ . Consider M to
be covered by local holomorphic coordinates charts {Uα}. Let (E, h) be a Hermitian
line bundle on M . Let eα be a local basis of a line bundle E on Uα. The line bundle
E is determined by the transition functions, which for Ua ∩ Ub 6= ∅ is given by gαβ
satisfying gαβ eα = eb. On the other hand, a Hermitian metric h is represented by a

smooth positive function hα on Uα satisfying hα|eα|2 = hβ|eβ|2. Hence hα|gαβ |2 = hβ.

Apply the above observation to our line bundles E1 = Li and E2 = aiO(1). It follows
that the respective transition functions gi of Ei, i = 1, 2, satisfy (g1)αβ = (g2)αβs

α
β

for some complex number sαβ of norm 1. Consider coordinate charts of M in terms
of the coordinates on the universal covering so that the different charts are related
by the deck transformation group given by π1(M). Then these factors sαβ for all

α and β give rise to a homomorphism ρ : π1(M) → S1, which in turn gives rise
to a homomorphism ρ1 : π1(M) → Z. Since rankR(M) > 3 as a locally symmetric
space, we know that H1(M,R) = 0 from Matsushima Vanishing Theorem (cf. [Ma]).
Hence ρ1 and ρ are trivial. This implies that we may assume that sαβ is a constant

independent of α and β. Hence we may assume that (g1)αβ = (g2)αβ for all a and b.

Hence Li = aiO(1) and the claim is proved.
To conclude the proof of (b), we observe that as aiO(1) is G-equivariant, it is

actually Γ-equivariant and hence descends to M1. On the other hand, we know that
NS(M1)/tor is generated by some line bundle, which is of the form a1O(1) for some
rational number a1. It follows that ai > a1 and is an integral multiple of a1 for all
i. Hence the index of KMi is 3/ai 6 3/a1 and is uniformly bounded independent of
i, since a1 is a rational number depending only on a1.

�

3. L2-cohomology and vanishing theorem

3.1 Let us recall some standard terminologies involving L2-cohomology. Let M be a
complete Kähler manifold. Let (L, h) be a Hermitian line bundle on M. Denote by
H i

(2)(M,L) the space of L2 �∂-harmonic L-valued (0, i)-forms on M with respect to

the Hermitian metric h of the line bundle L and the volume form on M. This corre-
sponds to the reduced L2 cohomology on M̃ . We refer the reader to [D] for general
facts about Hodge theory on non-compact Kähler manifolds. Let ϕ ∈ H i

(2)(M,L).
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The L2-norm of ϕ is defined by

‖ϕ‖2 =

∫
M
ϕ ∧ ∗ϕ.

=

∫
M
|ϕ|2hωn,

where ω is the Kähler form on M and ∗ϕ is the Hodge dual of ϕ with respect to h
and ω. In the setting of Hermitian symmetric space of non-compact type M , L is a
fractional power of KM , the metric h is induced from the Bergman metric, and ωn

is the volume form of the metric ω on M. We would also omit h in the subscript
when there is no danger of confusion.

Let {fk} be an orthonormal basis of H i
(2)(M,L). The Bergman kernel is defined

to be
B0,i
M,L(x, y) :=

∑
k

fk(x) ∧ ∗fk(y).

As such we are regarding Bp,0
M as a section of p∗1(Ω0,i

M ⊗ L)⊗ p∗2(Ωn,n−i
M ⊗ L∗), where

pa is the projection of M ×M into the a-th factor, a = 1, 2. Note that the definition
here is essentially the same as the one given in [B]. We refer the readers to §5 of [B]
for some general facts about the Bergman kernel of harmonic (0, i)-forms, which is
directly applicable to bundle valued (0, i)-forms as well. For simplicity of notation,

we also denote B
(0,0)
M,L by BM,L, which for the case of L = KM gives the usual

Bergman kernel in complex analysis.

We are mainly interested in the trace of the kernel, B0,i
M,L(x, x). We define the

von-Neumann dimension of L-valued i-form to be

h0,i
v,(2) =

∫
D
B0,i
M,L(x, x),

where D is a fundamental domain of M.
As the Bergman kernel is independent of the choice of a basis, for each fixed point

x ∈M, the trace of the Bergman kernel

B0,i
M,L(x, x) = sup

f∈H0,i
(2)

(M,L),‖f‖=1

|f(x)|2h = ( sup
f∈H0,i

(2)
(M,L),‖f‖=1

|fU (x)|2)hωn,

where ‖ · ‖ stands for the L2-norm, and we have written f = fU (dzj1 ∧ · · · ∧ dzji)⊗ e
in terms of local coordinates (z1, . . . , zn) and local basis e of L.

The von-Neumann arithmetic genus on the universal covering M̃ of M is defined
by

χv,(2)(M) =

n∑
i=0

(−1)ih0,i
v,(2)(M) =

n∑
i=0

(−1)ihi,0v,(2)(M),

from the Hodge identities on a complete Kähler manifold. In general, for L a holo-

morphic line bundle on M̃ invariant under deck-transformation, define

χv,(2)(M,L) =

n∑
i=0

(−1)ih0,i
v,(2)(M,L).
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3.3 We now consider the general case of Theorem 3, which is a generalization of a
result of Gromov [G].

Proof of Theorem 2 Let η is a L2 harmonic L-valued (0, j) form. We define
Dη = (d+A)η = (∂+A)η, where A is the Hermitian connection form induced from
h. Note that ∂η = 0 as η is harmonic. Hence Dη is a L-valued (1, j)-form.

We need the following Lemma.

Lemma 2. Let (L, h) be a hermitian line bundle on M̃ with curvature bound c2g >
Θh > 0 Suppose η is a L2 valued harmonic L-valued (0, j)-form in Hj

(2)(M̃, aL),

where 0 < j < n. Then Dη is L2 integrable and the L2-norms satisfy the estimates
‖Dη‖2 6 ac2‖η‖2.

Proof Denote by Br(xo) a geodesic ball of radius r centered at xo. Let 0 6 ρR 6 1

be a cut-off function on M̃, supported on geodesic ball B2R, being identically 1 on
BR(xo), and has covariant derivative |∇ρR| 6 2

R .
We observe from integration by part that∫

M̃
ρR|Dη|2

=

∫
M̃

(−1)j(j+1)/2(
√
−1)jρRhDη ∧Dη ∧ ωn−j−1

=

∫
M̃

(−1)j(j+1)/2−1(
√
−1)jh∂ρR ∧ η ∧Dη ∧ ωn−j−1

+

∫
M̃

(−1)(j−2)(j−1)/2(
√
−1)jρRhη ∧ (DD)η ∧ ωn−j−1.(1)

Since ∂η = 0, the second term of the above equation is bounded from above by

|
∫
M̃
ρRhΘh ∧ η ∧ η ∧ ωn−j−1| 6 ac2‖η‖2

from the curvature assumption.
From Cauchy-Schwarz Inequality, the first term on the right hand side of (2) is

bounded from above by

(

∫
M̃
|ρR|∇ρR|2|η|2)1/2(

∫
M̃
|ρR|Dη|2)1/2.

From definition, |dρR| 6 2
R . Hence it follows from letting R → ∞ that Dη is L2

integrable and satisfies the bounded given in the Lemma.
�

Note that in case that L is trivial, the above just means that dη = 0, or that η is
closed, which of course follows from the assumption that η is a harmonic (0, j)-form
in the usual sense.

We can now conclude the proof of Theorem 3a. Assume that η ∈ Hj
(2)(M̃, aK).

Fix xo ∈ M̃. Using the fact that the Kähler form on M̃ is Kähler hyperbolic, we can
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write ω = dσ with |σ|ω 6 c. Denote by h the Hermitian metric on L induced by the
Poincaré metric on Bn

C. Then as ω = dσ = ∂σ1 + ∂σ1,∫
M̃
ρR|η|2 =

∫
M̃
ρRhη ∧ η̄ ∧ ωn−j

=

∫
M̃
ρRhη ∧ η̄ ∧ (∂σ1 + ∂σ1) ∧ ωn−j−1

= −
∫
M̃
dρR ∧ hη ∧ η̄ ∧ σ ∧ ωn−j−1 −

∫
M̃
ρRhDη ∧ η̄ ∧ σ1 ∧ ωn−j−1

−
∫
M̃
ρRhη ∧Dη ∧ σ1 ∧ ωn−j−1

6
∫
M̃
|∇ρR||η|2|σ|+ 2

√
c1‖ρ1/2

R Dη‖‖ρ1/2
R η‖

6
2
√
c1

R

∫
M̃
|∇ρR||η|2 + 2

√
c1‖ρ1/2

R Dη‖‖ρ1/2
R η‖.

Here ‖ · ‖ stands for the L2-norm. It follows by letting R→∞ that

‖η‖2 6 2
√
c1‖Dη‖‖η‖.

Applying Lemma 1, we conclude that

‖η‖2 6 2
√
c1
√
ac2‖η‖2.

Hence if 2
√
c1
√
ac2 < 1, we conclude that ‖η‖2 = 0 and hence η = 0. This concludes

the proof of the Theorem 2.
�

Remark One can easily modify the arguments in the proof of Theorem 2 to a gives
a similar result about the lower end of the spectra on bundle-valued forms.

Proof of Corollary 1
For the proof of Corollary 1(a), we observe that the volume form associated to the

Bergman metric on M̃ is a rational function on each type of the symmetric bounded
domain. The volume form, which is proportional to the trace of the Bergman ker-
nel, blows up near the boundary at a certain finite order with respect to the Eu-

clidean distance in the standard realization of the Hermitian symmetric space M̃ as
a bounded domain D ⊂ Cn. Hence we have BK(z, z) ∼ δ(z)−` for some rational
number `, see for example [H] or [Mo], where δ(z) stands for the Euclidean distance
to the boundary of D as mentioned above. Let f(z) be a bounded holomorphic
function on D. Let zi, i = 1, . . . , n be the complex coordinates on D. Let bo = 1− 1

` .

For a positive number b, s = f(dz1 · · · dzn)b defines a global holomorphic section in
Γ(D, bK). It is easy to see that s gives rise to a L2 section if b > bo. Since f is an

arbitrary bounded holomorphic function on D, we see that H0
(2)(M̃, bK

M̃
) is infinite

dimensional.
For Corollary 1(b), we would only give details for the case of p = n, q = 1

corresponding to the complex ball Bn
C of complex dimension n equipped with the

Bergman metric up to a multiple scaling constant. The proof for the dual of the
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Grassmanians are exactly the same. On Bn
C, we observe that the Bergman metric is

Kähler-Einstein, and we normalize the scaling constant such that the Ricci curvature
satisfying Ricg = −g. Hence we may apply Theorem 2a with c2 = 1. We know
the explicit formula for the Bergman kernel, cf. [H], [Mo] and [Ye], from which
we can give explicit bound of constant c1. As an illustration, we compute the
constants for the case of complex ball PU(n, 1). The symmetric space involved
is Bn

C = {z = (z1, . . . , zn) ∈ Cn : |z|2 < 1}. The Bergman kernel is given by

B(z, z) = 1
(1−|z|2)n+1 . Hence bo = 1

n+1 = p(Bn
C)−1. In this case, we may choose the

Kähler form to be given by ω =
√
−1∂∂ log[(1 − |z|2)n+1]. Let σ = σ1 + σ1, where

σ1 = 1
2

√
−1∂ log[(1− |z|2)n+1]. It follows from direct computations that

Ric(ω) = −ω, |σ1|2g 6
1

4
(n+ 1).

This corresponds to c1 = 1
2(n + 1) and c2 = 1 in Theorem 2, from which Corollary

1b follows.
Consider now Corollary 1(c). In this case, M̃ is a classical domain of Type DIII

in the table in Lemma 1, and can be described as

M̃ = {Z ∈M(n, n;C) : Zt = −Z, In − Z
t
Z > 0}.

Here M(n, n;C) ∼= Cn2
is the space of matrices of dimension n × n in C. The

Bergman kernel is given by

B(Z,Z) = cdet(I − ZZt)−(n−1),

where c is a scaling constant, cf. [H], page 85, or [Mo], page 81. Hence the pole

order of the trace of the Bergman kernel is p(M̃) = n− 1. The rest of the argument
is then the same as in (b).

�

4. Fractional powers of the canonical line bundle on some towers

4.1 In this section, we will assume that M is a locally Hermitian symmetric spaces
of Type II. According to the discussions in §2, as observed in [NT], aKM exists as
a holomorphic line bundle if a = 1

2n−2 and Γ ⊂ SO∗(2n). From this point onward,
we will assume that a is the value above.

We will consider a tower of coverings {Mi} above M . As discussed earlier, we let

Di be a fundamental domain of Γi, where Mi = M̃/Γi. We may and will assume
that the fundamental domains Di of Γi are nested in the sense that Di ⊂ Di+1. As

∩iΓi = 1, M̃ = ∪iDi.

4.2 We recall the following result in [Ye1], which follows from an argument of Kazh-
dan in [Ka].

Lemma 3. limi→∞
h0,j(Mi,aKMi )

[Γ:Γi]
6 h0,j

(2),v(M̃, aK
M̃

) for each 0 6 j 6 n.
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Proof This follows the argument of Kazhdan [Ka] in terms of convergence of the
trace of the Bergman kernels. In terms of Bergman kernels, we know that from the
fact that BMj ,aKMj

is invariant under the deck transformation group Γi/Γ1 that

h0,j(Mi, aKMi) =

∫
Mi

B0,j(Mi, aKMi)(x, x) = [Γ : Γi]

∫
D
B0,j
Mi,aKMi

(x, x).

Note also that B0,j
Mi,aKMi

(x, x) = supf∈H0,j(Mi,aKMi ),‖f‖Mi=1 |f(x)|2 in terms of ex-

tremal sections. Hence
h0,j(Mi,aKMi )

[Γ:Γi]
=

∫
D(supf∈H0,j(Mi,aKMi ),‖f‖Mi=1 |f(x)|2). Sim-

ilarly, from definition, h0,j
(2)(Mi, aKMi) =

∫
D(sup

f∈H0,j
(2)

(M̃,aK
M̃

),‖f‖Mi=1
|f(x)|2). The

lemma follows from a normal family argument. We refer the readers to [Ye1] for
details.

�

4.3

Lemma 4. Let a be a rational number satisfying 0 < a < min( 1
4c1c2

, bo) discussed

in Theorem 3. Then limi→∞
h0,j(Mk,aKMi )

[Γ:Γi]
= h0,j

(2)(Mi, aKMi) for each 0 6 j 6 n.

Proof Consider first j < n. From Theorem 3, we know that h0,j
(2)(Mi, aL) = 0.

Lemma 3 implies that limi→∞
h0,j(Mi,aKMi )

[Γ:Γi]
= 0, and hence is equal to h0,j

(2)(Mi, aKMi).

From Atiyah’s Covering Index Theorem, we know that

χv,(2)(M,aKMi) = χ(M,aKMi) =
χ(Mi, aKMi)

[Γ,Γi]
,

where χ(M) is the usual arithmetic genus of M and is multiplicative with respect
to the index of a covering. Hence

n∑
j=0

(−1)j
h0,j(Mi, aKMi)

[Γ,Γi]
=

n∑
j=0

(−1)jh0,j
v,(2)(M,aKMi),

By taking the limit as i → ∞ and using the vanishing of limi→∞
h0,j(Mi,aKMi )

[Γ,Γi]
for

i < n, we conclude that limk→∞
h0,n(Mk,aKMi )

[Γ:Γi]
= h0,n

(2) (Mk, aKMi) as well.

�

4.4

Lemma 5. Let D ⊂ Di be a fundamental domains of M and Mi respectively. Let
B
M̃,L

and K
M̃,L

be the Bergman and heat kernels associated to a holomorphic line

bundle L respectively. We use the same notation for the pull-back of the Bergman
and heat kernels to D. Let x ∈ D and y ∈ Di. By taking a subsequence of i if
necessary, we conclude the convergence on compacta in C∞ of the following limits

on a fundamental domain of M in M̃ ,
(a). BMi,aKMi

(x, y)→ B
M̃,aK

M̃

(x, y), and
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(b). KMi,aKMi
(t, x, y)→ K

M̃,aK
M̃

(t, x, y),

where x, y ∈ Di ⊂ M̃ and t > 0.

Proof Since the deck transformation acts biholomorphically, it suffices to consider

the argument on a fundamental domain of M in M̃. The argument is exactly the
same as given in [Ye1] once Lemma 4 is available.

�

4.5

Lemma 6. Sections in H0
(2)(M̃, aK

M̃
), where 1 − bo < a < 1, separate any two

points on M̃ and provide an immersion of M̃ into an infinite dimensional vector
space.

Proof This follows by considering ϕf = f(dz1∧· · ·∧dzn)a, where 1−bo < a < 1 and
f is an arbitrary bounded holomorphic function on Bn

C. Note that as in the proof of
Proposition 1, such ϕ is L2-integrable.

4.6 Proof of Theorem 3
Let a = 1/(2n− 2). To prove very ampleness of L = aKMi on Mi for i sufficiently

large, we need to prove the following three conclusions,
(i) base point freeness,
(ii) immersion of the linear series associated to aKMi , and
(iii) separation of two distinct points by sections in Γ(Mi, aKMi).

For (i), this follows from the uniform convergence of Bergman kernelBMi,aKMi
(x, x)

on Mi to the Bergman kernel B
M̃,aKM

(x, x) for each point x in the fundamental do-

main D1 of M1 as explained in Lemma 3, the latter kernel is pointwise positive
definite according to Lemma 5. The implies that for i sufficiently large, there exists
a holomorphic section non-trivial at x.

(ii) follows from similar reason. In fact, suppose {fα} is an orthonormal basis of
H0(Mi, aKMi), it suffices for us to show that {dfα(x)} has maximal rank for each
point x ∈ Mi. This follows from the fact that the convergence of BMi,aKMi

(x, x) to

B
M̃,aK

M̃

(x, x) is C1 in x.

For (iii), we elaborate on the argument in [Ye1] and [Ye2]. We would list the main
steps of the argument and refer the details for each step to [Ye1] and [Ye2]. Suppose
that {fi} is an orthonormal basis of section of aKMi . Since we are considering
homogeneous manifold, we know and will denote KMi = K

M̃
by K in this section.

For simplicity of notation, we denote by the same notation the coefficients of the
sections in terms of the standard basis of holomorphic differential forms when one

realizes M̃ as B2
C in C2. It suffices for us to show that there exists io > 0 such that

for all i > io and all x, y ∈Mi,

(2)
∑
i

|fi(x)− fi(y)|2 > 0.

Clearly, we may assume that x ∈ D1. Suppose that y ∈ D1 as well. Estimates (3)
then clearly follows from the convergence of Bergman kernels as above. For a general
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y, as studied in [Ye1], p. 220, it suffices for us to show that the following is true.
Given any ε > 0, there exists io > 0 such that for all i > io and x, y ∈ Di,

(3) |BMi,aK(x, y)−B
M̃,aK

(x, y)| 6 ε.

We know that

|BMi,aK(x, y)−B
M̃,aK

(x, y)| 6 |k
M̃,aK

(t, x, y)−B
M̃,aK

(x, y)|(4)

+|kMi,aK(t, x, y)− k
M̃,aK

(t, x, y)|+ |kMi,aK(t, x, y)−BMi,aK(x, y)|.

Here kM,aK(t, x, y) is the heat kernel for the usual Laplacian operator associated to
the Hermitian metric of the line bundle aK and the Kähler metric on M.

The first term of the right hand side of the inequality in (5) is bounded by

|k
M̃,aK

(t, x, y)−B
M̃,aK

(x, y)| 6 ε

3

according to Lemma 2 of [Ye2] and Cauchy-Schwarz Lemma.
The second term of the right hand side of inequality (5) is estimated by Lemma

1 of [Ye2]

|kMi,aK(t, x, y)− k
M̃,aK

(t, x, y)| =
∑

γ∈Γ−{1}

k
M̃,aK

(t, x, γy)

6 ce−
d2(x,γy)

4t

6 (
ε

3
)2

The third term of inequality (5) is estimated by

|kMi,aK(t, x, y)−BMi,aK(x, y)|2

6 |kMi,aK(t, x, x)−BMi,aK(x, x)||kMi,aK(t, y, y)−BMi,aK(y, y)|

and the observation that

|kMi,aK(t, x, x)−BMi,aK(x, x)|
6 |k

M̃,aK
(t, x, x)−B

M̃,aK
(x, x)|+ |kMi,aK(t, x, x)− k

M̃,aK
(t, x, x)|

+|kMi,aK(t, x, x)−BMi,aK(x, x)|

6
ε

3

where the last inequality follows from convergence of the Bergman kernel as in
Lemma 5 of [Ye1], by applying the arguments in Lemma 1, Lemma 3 of [Ye2].
Hence the third term of (5) is bounded by ε

3 . It follows that (4) is proved, from
which separation of points on Mi for i > io is proved.

�
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