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Abstract. The purpose of the article is to explain a new method to study ex-
istence of a sequence of exceptional collection of length three for fake projective
planes M with large automorphism group. This provides more examples to a
question in [GKMS].

1. Introduction

1.1 A fake projective plane is a compact complex surface with the same Betti num-
bers as P 2

C. This is a notion introduced by Mumford who also constructed the first
example. All fake projective planes have recently been classified into twenty-eight
non-empty classes by the work of Prasad-Yeung in [PY], which finally leads to 100
fake projective planes along those 28 classes in the work of Cartwright-Steger [CT].
It is known that a fake projective plane is a smooth complex two ball quotient, and
has the smallest Euler number among smooth surfaces of general type.

Most of the fake projective planes have the property that the canonical line bundle
KM can be written as KM = 3L, where L is a generator of the Neron-Severi group,
see Lemma 1 for the complete list. One motivation of the present article comes from
a question of Dolgachev and Prasad, who asked whether H0(M, 2L) contains enough
sections for geometric purposes, such as embedding of M . It is also questioned in
[GKMS] whether H0(M, 2L) is non-trivial.

The other motivation comes from the recent research activities surrounding the
search of exceptional collections from the point of view of derived category, such as
[AO], [BvBS], [F], [GS], [GKMS] and [GO].

1.2 Denote by Db(M) the bounded derived category of coherent sheaves on M .
A sequence of objects E1, E2, ..., Er of Db(M) is called an exceptional collection if
Hom(Ej , Ei[k]) is non-zero for j ≥ i and k ∈ Z only when i = j and k = 0, in
which case it is one dimensional. In [GKMS], the authors consider the problem
of the existence of a special type exceptional collection on an n-dimensional fake
projective space.

Conjecture 1([GKMS]). Assume that M is an n-dimensional fake projective space
with the canonical class divisible by (n + 1). Then for some choice of OM (1) such
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that ωM = OM (n+ 1), the sequence

OM ,OM (−1), . . . ,OM (−n)

is an exceptional collection on M .

In the cases of fake projective planes (n = 2), it is easy to see that a necessary
and sufficient condition for the above conjecture is to show that H0(M, 2L) = 0.
This is proved in [GKMS] if Aut(M) has order 21. This is also proved for 2-adically
uniformised fake projective planes in [F]. The main result in this note aims to pro-
vide more examples to the conjecture of [GKMS]. Since our method depends mostly
on the numerical property, we propose the following slightly more general problem
which seems to be more accessible and still serves the purpose of providing excep-
tional objects.

Conjecture 2. Assume that M is an n-dimensional fake projective space with the
canonical class numerically divisible by (n + 1). Then for some choice of L such
that KM ≡ (n + 1)L and a suitable choices of line bundles Ei’s with Ei ≡ −iL,
1 ≤ i ≤ n, the sequence

OM , E1, E2, . . . , En
is an exceptional collection on M .

1.3 The problem is rather subtle, since the conventional Riemann-Roch formula is
not useful in this case without an appropriate vanishing theorem. The approach
that we take exploits the small intersection numbers involved as well as existence of
a finite group action.

We illustrate our approach by proving the above conjecture for fake projective
planes with Aut(X) = C3 × C3 and C7 : C3, the latter case was proved in [GKMS].
The approach is geometric and is different from [GKMS] and [F]. We choose L to
be an Aut(X)-invariant numerical cubic root of KM . The problem is reduced to a
study of the geometry of invariant sections of H0(M, 2L) if it exists.

Main Theorem. For M a fake projective plane as listed in the Table below, there
is a unique line bundle L with KM = 3L. Moreover, the sequence OM ,−L,−2L
forms an exceptional collection of M .

class M Aut(M) H1(M,Z)

(a = 7, p = 2, ∅) (a = 7, p = 2, ∅, D3, 27) C7 : C3 C4
2

(a = 7, p = 2, {7}) (a = 7, p = 2, {7}, D3, 27) C7 : C3 C3
2

(C2, p = 2, ∅) (C2, p = 2, ∅, d3, D3) C3 × C3 C2 × C7

(C2, p = 2, {3}) (C2, p = 2, {3}, d3, D3) C3 × C3 C7

(C18, p = 3, ∅) (C18, p = 3, ∅, d3, D3) C3 × C3 C2
2 × C13

(C20, {v2}, ∅) (C20, {v2}, ∅, D3, 27) C7 : C3 C6
2

We remark that the above table covers 12 different fake projective planes up to
biholomorphism. As mentioned earlier, the results for Aut(M) = C7 : C3 have been
obtained earlier in [GKMS] by a different method.

Related to Conjecture 2, our method of proof implies immediately the follow-
ing slightly stronger result, since only numerical properties of the line bundles are
involved in the proof.
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Main Theorem’. Let M be a fake projective planes described in the Main Theorem.
Let E1 and E2 be any Aut(M)-invariant torsion line bundles on M . Let Li = L+Ei,
i = 1, 2. Then OM ,−L1,−2L2 forms an exceptional collection of M .

After the completion of the first draft of the paper, the main results of this paper
were presented at the 4th South Kyushu workshop on algebra, complex ball quotients
and related topics, July 22-25, 2014, Kumamoto, Japan. The second author thanks
Fumiharu Kato for his kind invitation. During the conference, J. Keum mentioned
that he had obtained similar results as well.

2. Line bundles on fake projective planes

2.1 We work over C. Throughout this paper, we denote by Cm the cyclic group
of order m, ∼ the linear equivalence, and ≡ the numerical equivalence. Also, we
denote by C7 : C3 the unique (up to isomorphism) nonabelian finite group of order
21,

C7 : C3 = 〈x, y|x3 = y3 = 1, xyx−1 = y2〉.

2.2. Let M be a fake projective plane. It follows from definition of M and Poincaré
Duality that KM is equal to 3L modulo torsion for some line bundle L which can
be taken to be a generator of the torsion-free part of the Neron-Severi group. First
of all, we would like to list all fake projective planes with KM = 3L.

Lemma 1. Among the 100 fake projective planes, 92 of which satisfies the property
that KM = 3L.

Proof. Recall that a fake projective plane is a complex two ball quotient B2
C/Π for

an arithmetic group Π classified in [PY] and [CS]. From the argument of §10.2 of
[PY], it is known that KM = 3L if and only if Γ can be lifted to become a lattice in
SU(2, 1), and KM = 3L if the second cohomology class of M has no three torsion.
The latter fact is an immediate consequence of the Universal Coefficient Theorem,
see 2.3 below or Lemma 3.4 of [GKMS]. The section §10.2 of [PY] also shows that
Γ can be lifted to SU(2, 1) if the number fields involved is not one of the types C2 or
C18. There are 12 candidates for Π lying in C2 or C18. Out of these 12 examples, 3 of
them do not have 3-torsion elements in H2(M,Z) and hence the corresponding Π can
be lifted to SU(2, 1). Finally, it is listed in the file registerofgps.txt of the weblink
of [CS], that the lattices can be lifted to SU(2, 1) except for four cases in C18, cor-
responding to (C18, p = 3, {2}, D3), (C18, p = 3, {2}, (dD)3), (C18, p = 3, {2}, (d2D)3)
and (C18, p = 3, {2I}) in the notation of the file, see also Table 2 in [Y2]. Since there
are two non-biholomorphic conjugate complex structures on such surfaces, it leads
to the result that 92 of the fake projective planes can be regarded as quotient of B2

C
by a lattice in SU(2, 1).

�

2.3 For a smooth projective surface S, any holomorphic line bundle represents an
element in the Neron-Severi group i∗H

2(S,Z) ∩ H1,1(S), where i : Z → C is the
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inclusion map. Let us consider the torsion part H2(S,Z), which gives rise to torsion
line bundles. From the Universal Coefficient Theorem, we have

0→ Ext1
Z(H1(S,Z),Z)→ H2(S,Z)→ HomZ(H2(S,Z),Z)→ 0.

Since HomZ(H2(S,Z),Z)) is torsion free, for the sake of computation of torsion
part of i∗H

2(S,Z) ∩ H1,1(M), it suffices for us to investigate Ext1
Z(H1(S,Z),Z). On

the other hand, for any abelian group A, we know that Ext1
Z(Z/mZ, A) ∼= A/mA.

Hence p-torsions of H2(S,Z) corresponds to p-torsions of H1(S,Z).

Lemma 2. For a fake projective plane M with no 3 torsion in H1(M,Z), we may
assume that KM = 3L for an Aut(M)-invariant line bundle L. In particular, the
space of sections H0(M,kL), if non-zero, is an Aut(M)-module.

Proof. This follows essentially from the discussions above. The first statement was
observed in Lemma 3.4 of [GKMS], see also §10.3 and §10.4 of [PY]. From the above
discussions, as there is no 3 torsion in H1(M,Z) and hence in H2(M,Z), we may
write E = 3E1 for a torsion line bundle E1. We may simply let L = L1 +E1. Again,
L is unique since there is no 3-torsion. Hence L is Aut(M)-invariant. �

3. Holomorphic sections and group actions

3.1 From this point on, we assume that the automorphism group Aut(M) of M
is non-trivial. We start with a simple statement, which has also been observed in
[GKMS].

Lemma 3. Let M be a fake projective space. Then h0(M, 2L) 6 2.

Proof. Consider the homomorphism

H0(M, 2L)×H0(M, 2L)
α→ H0(M, 4L),

given by α(x, y) = x× y. This induces a mapping

P(H0(M, 2L))× P(H0(M, 2L))
β→ P(H0(M, 4L))

The restriction of β to the first factor with a fixed value in the second factor is
clearly injective. Similarly when we reverse the roles of the first and the second
factor. Apply now a classical result of Remmert-Ven der Van [RV], p.155, it follows
that the image of β has dimension the same as dimension of the domain. It follows
that h0(M, 4L) > 2(h0(M, 2L)− 1). Since h0(M, 4L) = 3 by Riemann-Roch formula
and Kodaira vanishing theorem, it follows that h0(M, 2L) 6 2.

�

3.2. We study the action of Aut(M) on the section space |2L| if it is nonempty.

Lemma 4. Let M be a fake projective plane with KM = 3L, where L is invariant
under Aut(M). Suppose that h0(M, 2L) 6= 0, then for any non-trivial subgroup
H < Aut(M), there exists a section σ ∈ H0(M, 2L) such that the divisor Σ associated
to σ is invariant under H. Here H acts non-trivially on Σ.

Moreover, if Σ is not an irreducible and reduced curve, then one of the following
holds:
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(1) Σ = Σ1 + Σ2, where Σi’s are irreducible and reduced curves, and Σ1 and Σ2

intersects transversally at a smooth point.
(2) Σ = 2C, where C is an irreducible and reduced curve.

Proof. If h0(M, 2L) = 1, then there exists an effective divisor Σ ∼ 2L and is unique.
Since h∗L = L, we conclude that h∗Σ = Σ, as asserted by the lemma.

Assume now that h0(M, 2L) = 2. Let C1, C2 be two linearly independent sections
of H0(M, 2L). It follows that for all a, b ∈ C, aC1 + bC2 is a global section of
H0(M, 2L) as well. Hence we get a complete linear system aC1 + bC2, with [a : b] ∈
P 1
C. Under the action of h ∈ H, h∗Ci becomes a section of the form aC1 + bC2.

Hence there is an induced action of H on P 1
C. From Riemann-Hurwitz Formula, we

know that P 1
C does not have non-trivial torsion free quotient. Hence there is at least

one fixed point for the action of H. This corresponds to an effective divisor Σ ∼ 2L
invariant under H.

We claim that H cannot act trivially on Σ. Assume on the contrary that it acts
trivially on Σ. It follows that Σ is fixed pointwise by H. Since H is finite and Σ
is complex dimension 1, we observe that Σ must be totally geodesic. To see this,
consider a real geodesic curve c(t), |t| < ε on M with initial point p ∈ Σ and initial
tangent τp = c′(0) ∈ TpΣ. As both p and c′(0) are fixed by H, the whole geodesic
curve c(t), |t| < ε is fixed by H since the differential equation governing c(t) is a
second order ordinary equation and is determined by the initial conditions specified
above. It follows that c(t) actually lies on Σ. Since this is true for all smooth points
p ∈ Σ and τp ∈ TpΣ, we conclude that Σ is totally geodesic. On the other hand,
from the result of [PY], we know that the arithmetic lattice Π associated to M is
arithmetic of second type. It follows that there is no totally geodesic curve on M ,
cf. Lemma 8 of [Y2]. The claim is proved.

Suppose that Σ is not integral. If Σ =
∑

imiΣi, where Σi’s are irreducible and
reduced, then Σi ≡ niL for some ni ∈ Z>0 as ρ(X) = 1 and L is a generator of
the Neron-Severi group. Since Σ ≡ 2L,

∑
imini = 2. Hence either Σ = Σ1 + Σ2,

or Σ = 2C. Moreover, if Σ = Σ1 + Σ2, then Σ1.Σ2 = 1 and they must intersect
transversally exactly at one smooth point.

�

3.3 Now we apply Lefschetz Fixed Point Theorem to analyze the geometry of an
H-invariant curve Σ guaranteed in Lemma 4. As we will see in Lemma 7, this action
always has fixed points. We will use the following lemma, cf. [P].

Lemma 5. Let C be a compact Riemann surface. Let 1 6= g ∈ Aut(C) be an
element of prime order l acting non-trivially on C with n fixed points. Denote ( )inv

the eigenspace of g of eigenvalue 1. Then for ∆ = g(C)− dimCH1(OC)inv, we have

(1) n = 2− 2g(C) +
2l

l − 1
∆.

Proof. We consider the holomorphic Lefschetz fixed point theorem,∑
gp=p

1

det(1− Jp(gk))
= tr((gk)∗|H0(C,OC))− tr((gk)∗|H1(C,OC)),
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where Jp(gk) is the holomorphic Jacobian with respect to the action of gk at a fixed
point p.

Consider summing up k = 1, . . . , l − 1 of the above formula. For the complex
〈g〉-module V = H1(C,OC) of an element 1 6= g ∈ GLC(V ) with prime order l, we
have

l−1∑
k=1

tr((gk)∗|H1(C,OC)) = (l − 1)(g(C)−∆)−∆ = (l − 1)g(C)− l∆.

For the left hand side of Lefschetz formula, since C is one-dimensional, Jp(gk) = ρk,
where ρ is an l-th root of unit. Hence each fixed point p contributes

l−1∑
k=1

1

1− ρk
=

1

2
(l − 1).

After summation we get
n

2
(l − 1) = l − 1 + l∆− (l − 1)g(C),

which simplifies to the prescribed formula. �

3.4 For a singular curve C, we denote by ν : Cν → C the normalization map and δ =
ν∗OCν/OC the torsion sheaf supported on Sing(C). Denote h0(δ) = pa(C)− g(Cν),
where pa(C) is the arithmetic genus of C.

Lemma 6. An irreducible and reduced curve C ≡ L on a fake projective plane M
is a smooth curve of genus 3. For C ≡ 2L, g(Cν) > 4 and h0(δ) ≤ 2.

Proof. We first remark that for C ⊆M , g(Cν) ≥ 2 as M is hyperbolic. The usual
Schwarz Lemma applied to the map induced by the nomalization ν : Cν → M (cf.
[CCL]) for the manifolds equipped with Poincaré metrics implies that the Kähler
forms satisfy ν∗ωM 6 ωCν , with equality if and only if it is a holomorphic isometry
leading to totally geodesic ν(C). Since there is no totally geodesic curve on a fake
projective plane as mentioned in the proof of Lemma 4, the inequality is strict.
Integrating over Cν , we get

2k =
2

3
(K · C) =

2

3
(ν∗K · Cν) = ν∗ω · Cν < ωCν · Cν ≤ 2pa(C)− 2 = k(k + 3),

where we used the fact that the Ricci curvature is 3
2 of the holomorphic sectional

curvature for the Poincaré metric on M . Hence k = 1 implies that g(Cν) = 3,
h0(δ) = 0, and hence C is smooth. The second statement is proved similarly. �

Lemma 7. Let M be a fake projective plane with KM ≡ 3L. Assume that L
is invariant under a non-trivial subgroup H = C3 or C7 of Aut(M). If Σ is an
invariant section of H0(M, 2L) as in Lemma 4, then Σ has an H-fixed point.

Moreover, either one of the following happens:

(1) Σ integral, ga(Σ) = 6, g(Σν) ≥ 4, and h0(δ) ≤ 2;
(2) Σ = 2C, and C is smooth of genus 3;
(3) Σ = C1 ∪ C2, and Ci’s are smooth of genus 3.
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Proof. By Lemma 4, we consider three cases: Σ = Σ1 + Σ2, Σ = 2C, or Σ is
irreducible and reduced.

If Σ = Σ1 + Σ2, then Σ1 ∩ Σ2 = {p} is a point. As any element of H carries an
irreducible component of Σ to another irreducible component of Σ and |H| is odd,
Σi’s are H-invariant and p ∈ Σ is an H-fixed point.

If Σ = 2C, then C ≡ L and is smooth of genus 3 by Lemma 6. If H acts without
fixed point on C, then the quotient C/H is a Riemann surface of Euler-Poincáre
number

χtop(C/H) = 2− 2g(C/|H|) =
−4

|H|
.

This is certainly impossible for |H| = 3 or 7.
Suppose now that Σ is irreducible and reduced. The arithmetic genus ga(Σ) of Σ

is given by

2(ga(Σ)− 1) = 2χ(Σ) = (K + 2L).(2L) = 10,

from which we conclude that ga(Σ) = 6. Note that g(Σν) ≥ 4 and h0(δ) ≤ 2 from
Lemma 6, where Σν is the normalization of Σ.

If H acts without fixed point on Σ, then H acts without fixed point on Σν . Hence
Σν/H is a Riemann surface of Euler-Poincáre number

χtop(Σν/H) = 2− 2g(Σν/H) =
−10 + 2h0(δ)

|H|
.

and

0 ≤ g(Σν/|H|) ≤ 1 + 5/|H|.
If |H| = 7, then g(Σν/H) ≤ 1. It follows that an entire holomorphic map from C

to Σν/H lifts to the unramified covering Σν which maps into M , contradicting the
fact that M is hyperbolic.

If |H| = 3, then there is only one possibility that g(Σν/H) = 2 and h0(δ) = 2.
In particular, there is at least one singular point P ∈ Σ. If now H acts on Σ freely,
then there are at least three singular points as the H-orbit of P and h0(δ) ≥ 3. This
is absurd. �

4. The case of Aut(M) = C7 : C3

4.1. The goal of this section is to apply our argument to the case of a fake projective
plane M with Aut(M) = C7 : C3, which gives an alternate approach to such cases
dealt with in [GKMS].

4.2 We prove the first part of our Main Theorem which is done in [GKMS] by
different method. We start with a lemma about plane curve singularities, which
should be well-known but we can not find a good reference.

Lemma 8. Let (Σ, o) be a germ of reduced curve with b irreducible branches Σ1, . . . ,Σb.
Denote by Σν

i the normalization of each irreducible branches.
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(a) For δ = ν∗OΣν/OΣ and δi = ν∗OΣνi
/OΣi supported over the singularity o ∈ Σ,

h0(δ) ≥ (b− 1) +
b∑
i=1

h0(δi).

(b) h0(δ) = b− 1 if and only if all the branches are smooth and

OΣ,o
∼=

k[[t1, . . . , tb]]

({titj : i 6= j})
.

(c) If h0(δ) = 1, then either b = 1 and o ∈ Σ is cuspidal or b = 2 and o ∈ Σ is a
normal crossing (analytically a node).

Proof. The statements (a) follows straight forward from the exact sequences

0 → OΣ,o → ⊕OΣi,o → δ̃ → 0
↓ ↓ ↓

0 → OΣ,o → ⊕OΣνi ,o
∼= ⊕k[[ti]] → δ → 0
↓
⊕δi

and the snake lemma: b − 1 ≤ h0(δ̃) = h0(δ) −
∑

i h
0(δi). Here h0(δ̃) ≥ b − 1 as it

contains the k-vector space generated by ei/(1, . . . , 1), where ei is the unit of OΣi,o

and (1, . . . , 1) is the image of the unit of OΣ,o.
For (b), h0(δ) = b − 1 if and only if h0(δi)’s are zero. It is clear from the above

discussion that this happens exactly when mΣ,o maps surjectively onto (ti) for each
i. This is the same as saying that Σ is a normal crossing.

The statement (c) is a local computation. From the assumption, we know from
(a) that b ≤ 2. If b = 1, then there is a sequence

0→ OΣ,o → k[[t]]→ δ → 0

with δ a zero dimensional sheaf of length one. As an k-algebra, it is only possible
that OΣ,o

∼= k[[t2, t3]] and we get

OΣ,o
∼=

k[[x, y]]

(x2 − y3)
.

If b = 2, then then there is a sequence

0→ OΣ,o → k[[t1]]⊕ k[[t2]]→ δ → 0.

If h0(δ) = 1, then it is only possible that after suitable change of coordinates

k[[t1]]⊕ k[[t2]] ⊇ OΣ,o = k[[t1, 0), (0, t2)]] ∼=
k[[x, y]]

(xy)
.

�

Remark 1. It is possible that h0(δ̃) > b − 1. This happens if and only if h0(δ) >∑
i h

0(δi). The difference comes from the gluing of Σi’s along o ∈ Σ.

Theorem 1. Let M be a fake projective plane with Aut(M) = C7 : C3 and KM =
3L. Then the sequence OM ,−L,−2L forms an exceptional collection.
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Proof. From the definition of exceptional collection, we have to verify hi(M,L) =
0, i = 0, 1, 2. It is enough to show that h2(M,L) = h0(M, 2L) = 0. Indeed,
h0(M,L) = 0 follows immediately and h1(M,L) = 0 by χ(M,L) = 0. Suppose now
that h0(M, 2L) 6= 0.

Consider H = C7 < Aut(X), the unique 7-Sylow subgroup, and by Lemma 2
the space of sections H0(M, 2L) is H-invariant. There is an H-invariant section
Σ ∈ H0(M, 2L) by Lemma 4 and an H-fixed point by Lemma 6. Moreover, Σ is
either irreducible and reduced, or Σ = 2C, or Σ = Σ1 + Σ2 is reducible.

Observe that Fix(Σ) = Fix(M) ∩ Σ. In particular, |Fix(Σ)| ≤ 3 by the work of
[K].

For the induced action of H on Σν , we denote by x = dimCH1(OΣν )inv the di-
mension of H-invariant 1-forms and n = |Fix(Σν)| the number of H-fixed points on
Σν .

Case 1: Σ is irreducible and reduced. Here ga(Σ) = 6 = g(Σν) + h0(δ).
Assume first that Σ = Σν , then g(Σ) = 6 and n ≤ 3. For l = 7, Lemma 5 implies

that 3n+ 7x = 12 and (n, x) = (4, 0). This contradicts to the inequality n ≤ 3.
Assume now that Σ 6= Σν . Applying Lemma 5 to the lifted action of H on Σν ,

the normalization of Σ, with l = |H| = 7, we get

3n+ 7x+ h0(δ) = 12.

Since fake projective planes are hyperbolic, g(Σν) ≥ 2 and hence 1 ≤ h0(δ) ≤ 4. We
study case by case.

If h0(δ) = 1, then 3n+ 7x = 11 and there is no nonnegative integer solution.
If h0(δ) = 2, then 3n + 7x = 10 and (n, x) = (1, 1). From the holomorphic

Lefschetz fixed point theorem, we have

1

1− η
+ ξ1 + ξ2 + ξ3 = 0,

where η, ξj ∈ (Z/7Z)×. It can be checked directly from Matlab that there is no
solution to the above equation.

If h0(δ) = 3, 3n + 7x = 9 and (n, x) = (3, 0). From the holomorphic Lefschetz
fixed point theorem, we have

1

1− η1
+

1

1− η2
+

1

1− η3
+ ξ1 + ξ2 + ξ3 = 1,

where ηi, ξj ∈ (Z/7Z)×. It can be checked directly from Matlab that there is no
solution to the above equation.

If h0(δ) = 4, then 3n+ 7x = 8 and there is no nonnegative integral solution.
Case 2: Σ = Σ1 + Σ2 is reducible with two irreducible components Σi’s. Denote

Σν = C1 t C2 the normalization of Σ. Here Ci’s are irreducible components of Σν

and are the normalization of Σi’s respectively.
For g ∈ H = C7, if gC1 = C2, then gC2 = C1. As |H| is odd, C1 = g|H|C1 = C2.

This is impossible and hence H acts on Ci’s. For gi = g(Ci),

6 = ga(Σ) = g1 + g2 + h0(δ)− 1,
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where again for ν : Σν → Σ the normalization map, δ = ν∗OΣν/OΣ is a torsion
sheaf supporting on Sing(Σ) 6= ∅. Since M is hyperbolic, g(Ci) ≥ 2 and hence
1 ≤ h0(δ) ≤ 3.

Denote ni the number of H-fixed points on Ci. For l = |H|, by Lemma 5

ni(l − 1) + 2lxi = 2(l − 1) + 2gi,

where xi = dimCH1(OCi)inv. Hence for n = n1 + n2 and x = x1 + x2,

n(l − 1) + 2lx+ 2h0(δ) = 4(l − 1) + 14.

For l = |H| = 7, we get 3n+ 7x+h0(δ) = 19. If a singular point of Σ is not fixed,
then h0(δ) ≥ 7. But we have seen that 1 ≤ h0(δ) ≤ 3. Hence all singularities of Σ
are fixed. Denote by p = Σ1∩Σ2 the unique intersection point and write δ = δp + δ′

for obvious reason, we have h0(δp) ≥ 1.
If h0(δ) = 1, then h0(δp) = 1 and p is the unique singularity of Σ = Σ1 ∪ Σ2.

By Lemma 7, p ∈ Σ is nodal and lifts to two fixed points on Σν . Hence n ≥ 2,
3n + 7x = 18, and (n, x) = (6, 0) is the only solution. But then apart from the
two fixed points above p, there should be four more fixed points on Σ. This is a
contradiction to |Fix(Σ)| ≤ 3.

If h0(δ) = 2, then either h0(δp) = h0(δ′) = 1 or h0(δp) = 2. In the former case,
either Σ has exactly two nodal singularities which lift to four fixed points on Σν ,
or Σ has one node at p and a cusp at another point. Hence we have n ≥ 3 for
3n+ 7x = 17 and there is no nonnegative integral solution.

In the later case where h0(δp) = 2, if b = 3 over p ∈ Σ, then p ∈ Σ has embedded
dimension 3 by Lemma 7 (b). This contradicts to the fact that Σ ⊆ X. Hence b = 2
and there are two fixed points over p. But now n ≥ 2 and there is no nonnegative
integral solution to 3n+ 7x = 17.

If h0(δ) = 3, then 3n+ 7x = 16 and (n, x) = (3, 1). Since x1 +x2 = 1, ni ≥ 1, and
gi ≥ 2, it is easy to see that there is no nonnegative integral solution to the system
of linear equations  3n1 − g1 + 7x1 = 6,

3n2 − g2 + 7x2 = 6,
n1 + n2 = 3.

Case 3: Σ = 2C with C an irreducible and reduced curve.
Here C ≡ L and 3 = ga(C) = g(Cν) + h0(δ). Moreover, g(Cν) ≥ 2 as M is

hyperbolic. We consider two cases: (g(Cν), h0(δ)) = (3, 0) or (2, 1).
Suppose that (g(Cν), h0(δ)) = (2, 1). For l = 7, 3n+ 7x = 8 by Lemma 5 applied

to C. There is no integer solution.
Suppose that (g(Cν), h0(δ)) = (3, 0) and hence C = Cν . Since l = 7, 3n+ 7x = 9

by Lemma 5 applied to C. It is only possible that (n, x) = (3, 0) and there are three
smooth fixed points on C. From the holomorphic Lefschetz fixed point theorem, we
have

1

1− η1
+

1

1− η2
+

1

1− η3
+ ξ1 + ξ2 + ξ3 = 1,

where ηi, ξj ∈ (Z/7Z)×. It can be checked directly from Matlab that there is no
solution to the above equation.
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We conclude that it is only possible H0(M, 2L) = 0 and hence the existence of
the required exceptional collection. �

5. The case of Aut(M) = C3 × C3

5.1 In this section, we prove the second part of the Main Theorem. From now we
assume that M is a fake projective plane with Aut(M) = C3 × C3. We refer the
readers to the list in the Main Theorem.

We have shown in Lemma 1 and Lemma 2 that there is an ample line bundle L
with KM = 3L, where L is Aut(M)-invariant and H0(M, 2L) is an Aut(M)-module.
We aim to show that h0(M, 2L) 6= 0 is impossible as in Section 4 by investigating
the geometry of an invariant curve C ≡ 2L. We first study the local geometry of
singularities.

Lemma 9. Let (C, o) be an analytical germ of a reduced singular plane curve. Let
ν : Cν → C be the normalisation and δ = OC/ν∗OCν be the zero dimensional
sheaf supported at the unique singularity o ∈ C. Let h0(δ) be the length of δ and
X1, . . . , Xr be the irreducible branches of C at o ∈ C. Then

h0(δ) =
∑
i

h0(δi) +
∑
i<j

(Xi.Xj).

In particular, h0(δ) ≥ r(r − 1)/2.
Furthermore, suppose that H = C3 acts on C2 of weight 1

3(1, 2) with (C, o) an

invariant curve such that o ∈ C descends to the unique singularity ô ∈ C2/G. If the
induced action on (C, o) is nontrivial and h0(δ) ≤ 2, then either

(a) h0(δ) = 1 and o ∈ C is a node , or

(b) h0(δ) = 2 and o ∈ C is equivalent to Spec( k[[x,y]]
(x(x−y2))

).

In both cases, r = 2 and o ∈ C lifts to two H-fixed points on the normalisation Cν .

Proof. Part (a) is given by Hironaka [Hi]. For part (b), we first observe that
h0(δ) ≤ 2 implies that r ≤ 2.

Suppose that r = 1. We consider the sequence

0→ OC,o ∼=
k[[x, y]]

(f(x, y))

φ−→ k[[t]]→ δ → 0,

where φ(x) = u(t) =
∑

m≥0 umt
m and φ(y) = v(t) =

∑
n≥0 vnt

n. Here we choose

(x, y) to be H-invariant coordinates with ω · x = ωx and ω · y = ω2y, where ω =
exp(2πi/3). Assume that ω · t = ωαt for α ∈ {1, 2}. Since φ is H-invariant, we have{

ωu(t) = φ(ωx) = φ(ω · x) = ω · u(t) =
∑

m≥0 umω
αmtm

ω2v(t) = φ(ω2y) = φ(ω · y) = ω · v(t) =
∑

n≥0 vnω
αntn

.

Since this happens for infinitely many m,n ∈ N, we have

αm ≡ 1, αn ≡ 2 mod 3.
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Assume that α = 1, then we can write

u(t) = t(
∑
k≥0

akt
3k), v(t) = t2(

∑
l≥0

blt
3l),

where ak = u3k+1 and bl = v3l+2.
Suppose that a0 6= 0, then u′(0) 6= 0 and hence C is smooth while we assume C

is singular to start with. So a0 = 0 and we write

u(t) = t4(
∑
k≥0

a′kt
3k).

If b0 6= 0, then v(t) = t2 · unit. Hence for a′0 = 0 or a change of coordinates for
a′0 6= 0, the k-algebra OC,o has to be k[[t2 · unit, t4+3k · unit]] with k ≥ 1. But then δ
contains at least t, t3, t5, which contradicts to h0(δ) ≤ 2. The case α = 2 is similar.
Hence we must have r > 1.

Suppose now that r = 2 and h0(δ) = h0(δ1) + h0(δ2) + X1.X2 ≥ X1.X2 ≥ 1. If
h0(δ) = 1, then Xi’s are smooth and intersect transversally. This is the nodal case
(a). If h0(δ) = 2, then say h0(δi) = 0 for i = 1, 2 and X1.X2 = 2. In this case,
we can assume that X1 = {x = 0} after a change of coordinates. Hence X2 can
be normalised to x − y2 = 0 and we get C = {x(x − y2) = 0}, which is case (b).
On the other hand, if h0(δ1) + h0(δ2) = 1 and we assume that X1 is smooth, then
X1.X2 ≥ 2 as X2 with h0(δ2) = 1 is singular. This is absurd.

�

Lemma 10. Let M be a fake projective plane with KM ≡ 3L where L is invariant
under a nontrivial subgroup H = C3 of the automorphism group of M . Let C ≡ kL
be an integral H-invariant curve with k = 1 or 2. For ν : Cν → C the normalisation
map, denote by n the number of H-fixed points on Σν , h0(δ) the length of ν∗OCν/OC ,
and x = dimCH1(C,O)inv. Then there is a finite list of C according to (n, h0(δ), x):

(N) (n, h0(δ), x) = (2, 0, 1): C ≡ L is smooth and has two fixed smooth fixed
points;

(I1) (n, h0(δ), x) = (2, 0, 2): C ≡ 2L is a smooth curve of g(C) = 6 and has two
smooth fixed points;

(I2) (n, h0(δ), x) = (4, 1, 1): C ≡ 2L has one fixed node, which is the unique
singularity of C, and two fixed smooth points;

(I3) (n, h0(δ), x) = (3, 2, 1): C ≡ 2L has one fixed singularity of type Spec( k[[x,y]]
(x(x−y2))

),

which is the unique singularity of C, and one fixed smooth point.

Proof. Let’s summarise a table with known information from Lemma 4, 5, 6, 7:

C ≡ Lk pa(C) g(Cν) = pa(C)− h0(δ) Identity(1)
k = 1 3 3 n+ 3x = 5
k = 2 6 6− h0(δ) n+ h0(δ) + 3x = 8

Here n ≥ 1 and h0(δ) ≤ 2. Moreover, since H acts on Sing(C) and h0(δ) ≤ 2,
|Sing(C)| ≤ 2 and all the singularities are H-fixed points of C. Also we remark
that from [CS] and [K], the number |Fix(C)| of fixed points on C, which from
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the construction is the same as the number of fixed points of M on C, is at most
|Fix(M)| = 3.

If C ≡ L, then n + 3x = 5. Since C = Cν ⊆ M and n ≤ |Fix(M)| = 3, there is
only one solution (n, x) = (2, 1). Note that there is no contradiction to holomorphic
Lefschetz fixed point theorem as

1

1− ω
+

1

1− ω2
+ ω + ω2 = 0,

where ω = exp(2πi
3 ). This is the case (N).

If C ≡ 2L, then n+ h0(δ) + 3x = 8 and we have the following possible solutions:

singularity Identity(1) (n, x)
h0(δ) = 0 n+ 3x = 8 (2, 2) as n ≤ |Fix(M)| = 3
h0(δ) = 1 n+ 3x = 7 (7, 0), (4, 1), (1, 2)
h0(δ) = 2 n+ 3x = 6 (6, 0), (3, 1)

A smooth curve C ≡ 2L with (n, x) = (2, 2) is the case (I1).
By Lemma 9, h0(δ) = 1 only occurs when it is a node and it lifts to two H-fixed

points on Cv. Hence n ≥ 2. For (n, x) = (7, 0), outside Sing(C) there must be 5
smooth fixed points on C, contradicting to |Fix(C)| ≤ 3. Hence (4, 1) is the only
solution and this is case (I2).

If now h0(δ) = 2, then |Sing(C)| = 1, or 2. If there are two singular points, then
these are two C3-fixed nodes which by Lemma 9 lifts in total to four C3-fixed points
on Cν and n ≥ 4. Hence (6, 0) is the only solution. But then there must be two
more smooth C3-fixed points on C and this contradicts to |Fix(C)| ≤ 3. If there is

only one singular point, then by Lemma 9 it is locally Spec( k[[x,y]]
(x(x−y2))

), which lifts to

two C3-fixed points on Cν and n ≥ 2. But then (6, 0) is impossible as there must
be four more smooth C3-fixed points, which contradicts to |Fix(C)| ≤ 3. Hence
(n, x) = (3, 1) and this is case (I3). Note that the holomorphic Lefschetz fixed point
theorem has a solution,

1

1− ω
+

1

1− ω
+

1

1− ω
+ ω + ω2 + ω2 = 0.

�

Theorem 2. Let M be a fake projective plane with Aut(M) = C3×C3. Let L be the
Aut(M)-invariant line bundle with KM = 3L from Lemma 2. Then OM ,−L,−2L
forms an exceptional collection.

Proof. As in Theorem 1, it is enough to show that H0(M, 2L) = 0.
Suppose that H0(M, 2L) 6= 0 and let Σ be an Aut(M)-invariant section. We recall

that from [CS] and [K], there are 4 singularities of type 1
3(1, 2) on M/Aut(M). In

fact, we note that Aut(M) has four subgroups of C3, denoted by G1, . . . , G4. There
are twelve points Pi, i = 1, . . . , 12 of M with stabilizer Gj for some j = 1, . . . , 4. The
image of Pi in the quotient N = M/Aut(M) is a singularity of type 1

3(1, 2).
Let G1 be the first C3 factor and G2 be the second C3 factor.
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Consider G1-action on Σ. From Lemma 7 and Lemma 10, there are three possi-
bilities:

(1) Σ is integral and has at most two smooth fixed points.
(2) Σ = 2C and C is smooth of genus 3 with two smooth G1-fixed points.
(3) Σ is reduced with two smooth components C1 and C2 of genus 3. Moreover,

G1 acts on each component Ci with two smooth G1-fixed points.

Since Σ is Aut(M)-invariant, the curve Σ in (1) and C in (2) are invariant under
G2. In case (3), as Σ = C1∪C2 has only two components, both Ci’s are also invariant
under G2.

Since each curve, Σ, C, or Ci, has at least one smooth fixed G1 point P and
G2-action permutes G1-fixed points, as the G2-orbit of P , there should be at least
three G1-fixed smooth points on each curve. This is a contradiction. �

5.4 The Main Theorem is the combination of Theorem 1 and Theorem 2. We finish
with the proof of the Main Theorem’.
Proof.(of Main Theorem’) For OM ,−L1,−2L2 in the Main Theorem’ to form an
exceptional collection, we need to show that

hi(M,L1) = hi(M, 2L2) = hi(M, 2L2 − L1) = 0, i = 0, 1, 2.

We consider vanishing of hi(M,L1) first. Note that h2(M,L1) = h0(M,KM−L1).
Since both L1 and KM − L1 are invariant under Aut(M),

h0(M,L1) = h0(M,KM − L1) = 0

by the same proof as in the Main Theorem. It then follows that h1(M,L1) = 0 by
the Riemann-Roch formula. The other vanishing are proved similarly. �
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