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Abstract. The goal of the paper is to explain a harmonic map approach to two geometric
problems related to the Torelli map. The first is related to the existence of totally geodesic
submanifolds in the image of the Torelli map, and the second is on rigidity of representation
of a lattice of a semi-simple Lie group in a mapping class group.

§1. Introduction

1.1 A fundamental result in geometry and topology is the result of Mostow in [Mo1], which
states that an isomorphism between the fundamental groups of two compact real hyperbolic
manifolds of real dimension at least 3 leads to an isometry of the two hyperbolic manifolds.
The result was extended to non-compact hyperbolic manifolds of finite volume by Prasad
[P]. Mostow’s strong rigidity theorem was extended to all irreducible locally symmetric
spaces of noncompact type with no factors in Riemann surfaces in [Mo2], and to Margulis’
Superrigidity for real rank at least 2, cf. [Mar]. Analytically, there is an approach to this
type of results in rigidity using harmonic maps and Bochner formula, which can be traced
to the work of Eells-Sampson [ES] and Siu [S]. This motivates many related results.

The goal of this article is to explain two aspects of the relations between geometry and
rigidity, when one of the manifolds is a Teichmüller space of hyperbolic Riemann surfaces,
using techniques of Bochner formula and harmonic maps. The first is on the possibility of
realization of a locally symmetric space as a subvariety of a moduli space of curves. This is a
simplified variant of some conjectures of Coleman and Oort, cf. [O]. The second is to explain
a uniform proof of a superrigidity result of Farb-Masur [FM] and [Ye2] on mapping class
groups, following the recent results of [DM] and [X], and removing some extra assumptions
therein.

1.2 Let Mg be the moduli space, or more precisely moduli stack, of compact Riemann
surfaces of genus g > 2. Let Ag = Sg/Sp(2g,Z) be the moduli space of principally po-
larized Abelian varieties of complex dimension g. Associating a smooth Riemann surface
represented by a point in Mg to its Jacobian, we obtain the Torelli map jg :Mg → Ag. It
is well-known that the Torelli map jg is injective onMg, but as a stack, jg is an immersion
only outside of the locus representing hyperelliptic Riemann surfaces in Mg.

Theorem 1. Let g > 2. Let M be a subvariety in Mg which is immersed as a subvariety
N in Sg. Then N cannot be a totally geodesic subvariety in Sg with respect to the Bergman
metric on Sg unless N is a real or complex hyperbolic space form.
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In the above, by a subvariety we mean a complex analytic subvariety or a real differen-
tiable submanifold apart from some quotient singularities. The corresponding result for M
being a locally Hermitian symmetric subvariety totally geodesically and holomorphically
embedded in Sg was proved in [H]. If we restrict to the case that M is a complex ball
quotient of dimension at least 2, the non-existence of M as a totally geodesic holomorphic
subvariety of Sg satisfying the conditions of Theorem 1 is also known and is proved in [Ye4].
Theorem 1 in the Hermitian cases follows from a simple application of a Bochner formula
in [MSY] and estimates of energy as explained in Proposition 2. The general situation is a
consequence of Theorem 2 below.

1.3 A superrigidity theorem for homomorphism of a lattice Γ in a semi-simple Lie group of
real rank at least 2 to a mapping class group Γg,p for a hyperbolic punctured Riemann surface
of genus g and p punctures was proved in [FM]. The corresponding result for quaternionic
and Cayley rank one cases was proved in [Ye2]. The combined statement is as follows.

Theorem 2. ([FM], [Ye2]) Let Γ be a lattice in a semisimple Lie group G of non-compact
type which is not SO(m, 1),m ≥ 2, nor SU(p, 1), p ≥ 1. Assume that 3g − 3 + p > 0. Let
g > 2. Then any homomorphism ρ : Γ→ Γg,p has finite image.

The methods of proofs in [FM] and [Ye2] are very different and depend on several so-
phisticated results from different areas. Since Tg,p and its appropriate compactification is
negatively curved to be explained later in this article, a uniform approach is expected to be
available from harmonic map methods, cf. [DW] and [Ya]. A main difficulty is the apparent
lack of regularity of a harmonic map involved, which is needed for integration by parts in
Bochner type formulae. The difficulty was overcome recently in [DM] for compact lattices
with some extra conditions, which was generalized to cofinite lattices by [X], again under
some conditions. The second goal of this article is to give a complete proof of Theorem 2
following this more geometrically direct approach, depending on the results of [DM] and
[X] while removing all unnecessary extra assumptions. For the purpose of removing extra
constraints in the cofinite cases, we need to explain the Bochner type formula to be used
more carefully as given in Proposition 1. The full statement of Theorem 1 follows from the
result of Theorem 2.

An immediate corollary of Theorem 2 is a corresponding statement on superrigidity of
braid groups. This is stated as Corollary 1 in §4, as observed already in [FM].

1.4 Theorem 1 is related to a classical conjecture of Coleman and Oort in [C], [O], which
states that for g sufficiently large, the intersection of the open Torelli locus jg(Mg) with any
Shimura variety M ⊂ Ag of strictly positive dimension is not Zariski dense in M . Shimura
subvarieties are holomorphic totally geodesic subvarieties of Ag possessing a CM point. As
explained in the introduction of [Mö] and [Ye4], Theorem 1 for locally Hermitian symmetric
spaces is not strong enough for the conjectures of Coleman and Oort, since M may intersect
points on Sg representing reducible Abelian varieties and the Torelli map at inverse image
of M in the moduli stack may not be immersive along the hyperelliptic locus.

The relation of Theorem 2 to Theorem 1 was pointed out in [H], where some alternate
approach to Theorem 1 for locally Hermitian symmetric spaces was also presented. Another
alternate approach to such results is also presented in [Ye4].
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§2. A Bochner type formula revisited

2.1 We recall the Bochner formula of [MSY]. The presentation here is a slight variant of
the form in [MSY] in part (b) below to include all locally reducible symmetric spaces. Note
that for locally reducible but globally reducible symmetric spaces, the argument in [MSY]
used a separate Bochner formula which is completely different and is interesting on its own.
We refer the reader to Remark 1 in 2.2 for more details. The reformulation here allows us
immediately to generalize the result of [X] on rigidity of representation of cofiinite lattice
in a mapping class groups to locally reducible symmetric spaces as mentioned.

Proposition 1. ([MSY]) Let f : (M, g) → (N,h) be a harmonic map between two Rie-
mannian manifolds (M, g) and (N,h) which is L2 and is either C2 or more generally has
singularity mild enough so that integration by parts make sense on M .
(a). Let Q be a covariant 4-tensor on M satisfying
(i) Q ∈ C∞(S2(Λ2(T ∗M))),
(ii) ∇Q = 0, and
(iii) QijksRMijkt +QijktRMijks = 0 as a two tensor.
Then

(1)

∫
M
Qijk`∇ifα` ∇jf

β
k hαβdVg =

1

2

∫
M
〈Q, f∗RN 〉dVg.

(b). Suppose M is a locally symmetric space other than a real or complex ball quotient, and
the curvature of N is non-positive if rankRM > 2 or non-positive in the complexified sense
if rankRM = 1. Then there is a choice of Q satisfying the conditions of (a) with right hand
side (1) non-positive and the left hand side (1) non-negative. In particular, ∇df = 0, or
equivalently, f is totally geodesic.

Proof The proof of (a) is given completely in [MSY]. The condition (aii) above means that
we should look for Q as a parallel tensor and hence invariant under the holonomy group

of M̃ , the universal covering of M . Hence it suffices for us to choose the tensor at a point
o ∈M and note that the definition as above is invariant under K, which is the same as the
holonomy group.

We give explanations here for the choice of Q in part (b). Assume first that the real

rank of M̃ is at least 2. We are going to choose two linearly independent tangent vectors X

and Y on M̃ giving rise to R(X ∧ Y ) = 0, where R is the Riemannian curvature of g. Let

ΣX∧Y ⊂ ToM̃ denote the plane spanned by X and Y , which is a subspace of the tangent
space of M at o ∈ M . Let Ko be the curvature tensor of Sn. In terms of orthonormal
coordinates, Ko has component given by

(Ko)ijkl = δikδjl − δilδjk.
Denote by pΣX∧Y

: ToM → Σ. Define

(2) Q :=

∫
k∈K

p∗Σk(X∧Y )
Ko

so that

Q(A,B,C,D) =

∫
k∈K

Ko((pΣk(X∧Y )
)∗(A), (pΣk(X∧Y )

)∗(B), (pΣk(X∧Y )
)∗(C), (pΣk(X∧Y )

)∗(D)).
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It satisfies

(3) 〈Q,T 〉 =

∫
k∈K

T (kX, kY, kX, kY )dVg

for all T ∈ C∞(S2(Λ2T ∗M )).
With such choice of Q, the properties in (a)(i)-(iii) are satisfied. The right hand side of

(1) is non-positive because of (3). Hence once we checked that the left hand side is positive
definite for f with ∆f = Trg∇df = 0, (1) implies the vanishing of ∇df .

For the situation of G being a simple Lie group of non-compact type or coming from
complex Lie group, we may choose X,Y to be vectors spanning flats as defined in [MSY].
In such case, as a result of various computation of eigenvalues of the curvature tensor of
M as given in [MSY], the left hand side is positive for harmonic f . Hence (3) implies the
vanishing of the whole tensor ∇df .

Consider now the case of G being a product of simple factors G = G1 × · · · × Gk,

M̃ =
∏`
i=1 M̃i with Mi = Gi/Ki, where Gi is simple of non-compact type, and Ki is a

maximal compact of Gi, and M̃/Γ is irreducible. For this case, a different Bochner formula
is used in [MSY]. Here we observe that with Q defined as in (2) the above argument applies
to this case as well by some appropriate choice of Q. We need this for a direct generalization
of the argument of [X] to the case of G being reducible. It suffices for us to consider the

tensors involved at a point xo ∈ M̃ and move by parallel transport to give a parallel tensor.
Assume that dimRMi = ni. As ∇df = (∇df)αst is a symmetric in the two arguments s and
t as a 2-tensor on Mi, we may choose local coordinates so that for fixed local coordinate
α in N , fαst = (∇df)αst is symmetric in indices s and t and is diagonal. Hence in terms
of such local coordinates, ∆Mif(xo) =

∑ni
s=1 fss(xo), where the subscripts correspond to

eis = ∂
∂xis

, s = 1, . . . , ni, which are orthonormal tangent vectors of TMi at xo. Denote also

by {Xa} the set of all eis as chosen. It follows that for i 6= j,

(4) p∗Σ
(eis∧e

j
t )
Ko(X

a, Xb, Xc, Xd)fadfbc = 2(f
eise

j
t
)2 − 2feiseisfejte

j
t
,

where Einstein’s convention of summing over repeated indices is used. Let vi =
∫
k∈Ki

1 be

the volume of Ki. Consider the set of two vectors vivje
i
s ∧ e

j
t for {s, t, i, j} ∈ I := {1 6 s 6

ni, 1 6 t 6 nj , 1 6 i 6= j 6 `}. Denote also by I ′ the index set above but not requiring
i 6= j. It follows that from straight forward checking that

(5) Pk :=
∑

{s,t,i,j}∈I

p∗Σ
k(eis∧e

j
t )

)Ko

is independent of k ∈ K = K1 × · · · ×K`, and we may define

(6) Q :=

∫
k∈K

Pk.

It clearly satisfies properties (ai-aiii). With this choice of Q, 〈Q, f∗RN 〉 is pointwise non-
positive if RN is non-positive. Hence the right hand side of (1) is non-positive. The left
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hand side of (1) is

(7) 2(
∏̀
i=1

vi)
∑

{s,t,i,j}∈I

((f
eise

j
t
)2 − 2feiseisfejte

j
t
),

Hence there is a positive constant c such that

Qijk`∇ifα` ∇jf
β
k hαβ = c

∑
{s,t,i,j}∈I

((f
eise

j
t
)2 − feiseisfejtejt )

= c
∑

{s,t,i,j}∈I′
((f

eise
j
t
)2 − feiseisfejtejt )

= c(
∑

{s,t,i,j}∈I′
(f
eise

j
t
)2)− c(∆f)2,

It follows that the right hand side of (1) is positive definite in ∇df if ∆f = 0. Hence the

case of locally reducible M̃ is proved as well.
The choice of Q for the quaternionic and Cayley rank one cases are the same as the one

given in [MSY], for which we consider complexified curvature in the sense of

(8) 〈Q,T 〉 =

∫
k∈K

T (kX, kY, kX, kY )dv

for all T ∈ C∞(M,S2(Λ2(T ∗M×C))), where X,Y are chosen to be any complexified vectors
in TM ⊗C satisfying R(X.Y,X, Y ) = 0. Such vectors exist for the quaternionic and Cayley
rank one cases. �

2.2 Remarks
1.The choice of Q in the proof of superrigidity presented above is a simplification of the

presentation in [MSY]. In the case the M̃ is irreducible, it is essentially the same as the one
in [MSY] for all cases for some appropriate flat X ∧ Y (or complexified flat as explained

above for the rank one cases). For the case that M̃ = M̃1 × · · · × M̃k is reducible and

M = M̃/Γ is irreducible, [MSY] used a different Bochner formula argument as stated in
Section 11 of [MSY] to complete the proof. Our choice of Q here works for both cases in
a more uniform way, which allows us to apply the argument of [X] to all cofinite lattices
mutatis mutandis.

2. From Proposition 4, the possibility of Bochner type formula depends on the availability of
Q satisfying (a)(i) and (ii), which corresponds to tensors in C∞(M,S2(Λ2(T ∗M))) invariant
under the holonomy group, or [S2(Λ2T ∗oM)]K , and is classified. For real hyperbolic space,
there is only one given by Ko, the negative of the curvature tensors of the real space form of
the same dimension as M . Hence there is no available Bochner formula for superrigidity type
of statement. For complex hyperbolic space, there are two linearly independent ones given
by Ko and KC , the negative of the curvature tensor of the complex hyperbolic space forms of
the same dimension as M . Hence the only usable one is an appropriate linear combination
of Ko and KC , giving only strong rigidity results of Siu [Si1] instead of superrigidity as
explained at the end of §2 of [MSY]. Further choices of Q and Bochner formula for vanishing
theorems of Hermitian symmetric spaces can be found in [Ye1].
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3. The same result applies to harmonic maps f : M → N into a NPC space N in the
sense of [GS] or [KS] for which the singularity set has Hausdorff codimension sufficiently
large so that integration by parts makes sense by the following standard argument using
cut-off functions, namely, replacing f by ρrf and letting r → 0, where ρr is a smooth cut-off
functions supported in shells Br(x)−Br/2(x) centered at singular sets. Details are already
given in [DM] and [X].

§3. In the theme of Oort conjecture

3.1 Here we give a holomorphic version of Theorem 1, which can also be considered as a
simplified variant of a conjecture of Oort.

Proposition 2. Let g > 2. Let M be a suborbifold inMg which is immersed as a suborbifold
N in Sg by the Torelli map. Then M cannot be a totally geodesic complex subvariety in Sg
with respect to the Bergman metric on Sg unless N is a complex hyperbolic space form.

Proof Assume on the contrary that N is a totally geodesic complex subvariety of Sg so
that the Torrelli map jg :Mg → N is an immersion. In such case, N is a locally symmetric
space itself and the singularities are known to be orbifold singularities. The pull-back of the
Bergman metric from N gives rise to symmetric structure on M and hence we may regard
M as a locally symmetric space. Hence the inclusion of M to Mg is a holomorphic map
f : M →Mg from M to Mg.

Suppose that M is compact. Since a holomorphic map is automatically harmonic, f :
(M, g) → (Mg, gWP ) is a harmonic map. Proposition 1 implies that f is totally geodesic.
This contradicts the fact that the geometry of gWP is far from being symmetric as given by
the Bergman metric on a locally symmetric space, cf. [Ye2] or [W].

Suppose now that (M, g) is cofinite, that is, a non-compact locally Hermitian symmetric
space of finite volume. We claim that f : (M, g) → (Mg, gWP ) has finite energy. It
is known that (Mg, gWP ) has holomorphic sectional curvature bounded from above by a

negative constant. Hence the local energy of f , that is |df |2g,gWP
= gijfαi f

β
j (gWP )αβ in local

coordinates, satisfies |df |2 6 c for some constant c > 0 by Ahlfor’s Schwarz Lemma, cf.
[CCL]. Since M has finite volume, this implies that the energy of f , given by∫

M
|df |2g,gWP

dvg

is finite. Now the Bochner formula in Proposition 1 still implies that f is totally geodesic
and we reach a contradiction as before, in view of Remark 3 in 2.2.

�

3.2 We remark that Proposition 2 is true for M being a complex ball quotient of dimension
at least 2 as well. A proof of such results is given in the proof of Theorem 1 in [Ye4].
Note that the argument applies in [Ye4] is applicable in the case that M has non-empty
intersection with the hyperelliptic locus Hg if jg|M is an immersion along M ∩Hg.

The holomorphic version of Theorem 1 as stated in Proposition 2 is quite far away from
the conjecture of Oort, which allows jg(M) to be non-immersive at the hyperelliptic locus
and may have non-empty intersection with the locus of reducible Abelian varieties on Sg.
The difficulty is the same as explained in [Mö].
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On the other hand, Theorem 1 includes totally geodesic suborbifolds which may not be
embedded holomorphically in Sg, which is more general than the setting of the original
Oort Conjecture in [O]. Theorem 1 in full generality follows naturally from Theorem 2 in
the next section.

§4. Harmonic map and compactification of Teichmüller space

4.1 Theorem 1 as stated for locally symmetric spaces which are non-Hermitian will follow
from Theorem 2, the results of [FM] and [Ye2]. Our goal is to give a new proof of Theorem
2 using harmonic map techniques, building on the regularity result in [DM], and [X] in the
cofinite case. This is then used to deduce Theorem 1.

4.2 A new proof of Theorem 2
It suffices to describe the proofs of [DM] and [X] and remove the extra assumptions im-

posted in the proofs there. We refer the reader to their papers or other original sources
quoted for the details, but just indicate the main argument and explain fully the modifica-
tions needed.

The main reason that the harmonic map method may work is that (Tg, gWP ) has non-
positive Riemannian sectional curvature, so that the harmonic map approach of [ES] and
Bochner type formula may be applied, where gWP is the Weil-Petersson metric on Tg.
Even though gWP is well-known to be incomplete, it is also known that the Weil-Petersson
completion of Tg or in general Tg,p is a NPC space, cf. [Ya] and [DW], which is the foundation
for the approach described here.

Consider first the case that Γ is cocompact. Let T g be the metric completion of Tg as

given in [Ya]. The metric completion T g is known to be a NPC space as explained in [DW]
and [Ya]. The non-positivity in curvature of the image allows one to apply the machinery of
harmonic maps into singular spaces developed in [GS] and [KS]. For our purpose, from the
work of [DW], under an extra assumption that ρ is big, there exists a ρ-equivariant harmonic

map f : M̃ → T g. Hence in principle Bochner techniques such as those developed in [MSY]
can be applied, provided that the singularities can be controlled, which is main technical
hurdle to the approach in the past. This is finally resolved in [DM]. which implies that the
singular set of f has Hausdorff codimension at least 2 and one can perform integration by
parts by using standard cut-off functions to round up the singular set in a neighborhood
of small radius r and letting r → 0, as explained in Remark 3 in 2.2. Once integration
by part makes sense, and Bochner formula as in Proposition 1 implies immediately that f
is totally geodesic. This leads immediately to a contradiction as explained in the proof of
Proposition 2.

Let us first show that the extra assumption that ρ is large in [DM] is automatically
satisfied for our purpose. From the results of McCarthy-Papadopoulos [MP], we know
that for a homomorphism ρ which is not sufficiently large as recalled in 3.1, the image
of ρ is either finite or virtually cyclic. If ρ is virtually finite, after passing to a finite
unramified covering, there is a holomorphic map f : M → Tg. We claim that this leads to
a contradiction.

It is known that a smooth bounded strictly plurisubharmonic exhaustion function χ
exists on Tg as given in [Ye3]. Hence χ|M is strictly plurisubharnonic. This immediately
contradicts the Maximum Principle if M is compact, by considering χ at the point of
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maximal value on M . If M is non-compact, it is known that M is quasi-projective and
its Baily-Borel compactification M has boundary M −M of complex dimension at least 2,
cf. [BB]. It follows that χ extends to M by standard extension results in several complex
variables. By considering a resolution of singularity M1 of M and pulling back χ to M1,
it follows from the sub-mean-value property that χ is constant on M . This contradicts the
fact that χ is strictly plurisubharmonic on M . Hence the claim is proved.

If ρ(π1(M1)) contains an infinite cyclic group, this implies that b1(M1) > 0, contradicting
the fact that the first Betti number of a locally symmetric space which has real rank at
least 2 is trivial from Matsushima Vanishing Theorem [Mat]. The analogous vanishing
result for the quaternionic and Cayley hyperbolic cases is proved by Kazhdan [K]. Hence ρ
is automatically big once its image has infinite cardinality. Now the result for cocompact Γ
followed from the work of [DM] and the argument of Proposition 2 as explained above.

Consider now the case that M has finite volume, that is, Γ is cofinite (non-cocompact).
The approach of [X] is as follows. We consider a retraction r of M to a relatively compact
set Mo homotopic to M . From the work of Saper [Sa], the retraction has finite energy

except for six symmetric spaces M̃ = G/K listed in [Sa], namely

G ∈ {SL(2,R), SL(2,C),Q-split form of SL(2,R)× SL(2,R),

SL(3,R), SU(2, 1), or a Q-split form of SO(3, 2)}.

If M̃ is irreducible, apart for the six exceptional cases, composition of ρ with r and the work

of [DW] leads to a harmonic map of finite energy from M̃ to T g. Again Bochner technique
as in Proposition 2 and Remark 3 in 2.2 leads to a contradiction. For the six cases above

and M̃ is irreducible, Xu [X] proved using the Bochner formula of [MSY], which is the same
as Proposition 1, that actually a mapping associated to ρ◦r still has finite energy and hence

earlier argument applies. In the case of M̃ being reducible, [MSY] used a different Bochner
formula which is not immediately applicable for the argument. This is the case for cofinite
locally symmetric spaces that [X] left open. However, the formulation of Proposition 1 in
this paper explains that the formulation actually applies to all cases including the case that

M̃ is reducible. Hence the argument of Xu in [X] can be applied to all cofinite lattices
stated in Theorem 2, which concludes the proof of Theorem 2 for cofinite cases.

�

4.3 Here is an immediately corollary of Theorem 2, as observed in [FM] in the cases of
rankRG > 2.

Corollary 1. Let Bp be the braid group of p > 3 strands. Let Γ be an irreducible lattice
in a semi-simple Lie group G which is neither SO(m, 1) nor SU(n, 1) for some m,n > 0.
Then any homomorphism ρ : Γ→ Bp has finite image.

The corollary is an immediate consequence of Theorem 2 and the fact that there exists
a short exact sequence

(9) 1→ Z→ Bp → Γ0,p+1 → 1.

Note again from Matsushima’s Vanishing Theorem and Kazhdan’s Property T for quater-
nionic and Cayley hyperbolic cases that homomorphism from a finite indexed torsion free
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subgroup Γ′ < Γ to Z is finite. Existence of Γ′ followed from a well-known resuit of Selberg.
The corollary now follows from (9).

To be consistent with the approach taken in this article, we note in passing that the
vanishing results of Matsushima [Mat] and Kazhdan [K] are consequences of Proposition 1
when it is applied to harmonic forms instead of harmonic maps, as observed in §2 of [MSY].

4.4 Proof of Theorem 1
The proof of Proposition 2 applies in fact to the cocompact lattices mutatis mutandis,

since the energy is always finite. For cofinite lattices, it is no longer clear that the resulting
mapping has finite energy. This is the place where modification is needed.

Hence as in the proof of Proposition 2, we assume on the contrary that there is a sub-
variety M in Mg such that the Torelli map jg : M → Sg is an immersion into N , which a
totally geodesic subvariety in Sg. As in the proof of Proposition 2, we may simply assume
that M is a locally symmetric space which is neither a real nor a complex space form. Write

M = M̃/Γ, where Γ is a lattice in the automorphism group of M . We may assume that Γ is
torsion free, after replacing Γ by a subgroup of finite index in Γ if necessary. The inclusion
i : M → Mg leads to ρ := i∗ : π1(M) = Γ → Γg. Note that Mg = Tg/Γg, where Tg is the

Teichml̈ler space of Riemann surfaces of genus g and Γg is the corresponding mapping class
group.

From the proof of Theorem 2 in 4.2, we know that the image of ρ cannot be virtually finite
and hence has infinite cardinality. We may now apply Theorem 2 to reach a contradiction.

�
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