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Abstract

We present some uniqueness (non-fattening) results for the motion by mean curvature perturbed by stochastic n
well known that for special initial data, the deterministic motion has multiple solutions, i.e., it develops interior. Our re
a particular evolution of curves inR2 illustrates that stochastic perturbations can select a unique solution in a natural wa
noise we use is white in time and constant in space. The results are formulated both almost surely and in probability l
 2003 Elsevier SAS. All rights reserved.

Résumé

Nous présentons des résultats d’unicité pour le mouvement par courbure moyenne, perturbé par un bruit stoch
est bien connu que pour certaines conditions initiales, le mouvement a plusieurs solutions, i.e. il acquiert un intérie
résultat pour l’évolution de courbes spécifiques dansR

2 illustre le fait que les perturbations stochastiques peuvent sélectio
une unique solution de manière naturelle. Le bruit utilisé ici est blanc dans le temps et constant dans l’espace. Nous
nos résultats en termes presque sũrs ainsi qu’en loi de probabilité.
 2003 Elsevier SAS. All rights reserved.

1. Introduction

The study of the motion by mean curvature (MMC) of curves and surfaces before and after the deve
of singularities has a long history. It involves interesting mathematical theories coming from nonlinear
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differential equations, geometric measure theory, singular perturbations and asymptotic analysis. It also h
applications in materials science and image processing. We refer to [1,25–27] for surveys on the math
studies and physical interpretation of MMC.

This paper investigates the issue of the non-uniqueness of, or, equivalently, the development of inte
solutions of MMC. It is well known that multiple solutions can arise from some initial data. When this happe
notion of solutions used so far cannot uniquely predict the evolution of the surfaces. Some additional inform
needed to select a unique solution. This further manifests itself in the fact that different approximation sche
produce different solutions. As we also have in mind the physical applications of MMC in the study of ma
interfacial motions, the phenomena of non-uniqueness would mean that some underlying physical proces
not be captured by the present model.

In this work we explore the use of noise to select a unique solution. The incorporation of stochastic pertu
has been widely considered in the physics community. The noise can come from thermal fluctuations, im
or the atomistic processes describing the surface motions. The mathematical theory for the study of noise
involves nonlinear stochastic partial differential equations. Compared to its deterministic counterpart, this is
an open area, which only recently has begun to be investigated in the work of P.-L. Lions and one of the
(see [20–23]). The results presented here are among the first which describe quantitatively the effects of
terms of the statistics of the solutions.

A time dependent hypersurfaceΓ (t) in R
N is said to evolve by MMC fort � 0, if the outward normal velocity

vn at every point of the surface equals the mean curvatureκ

vn = −κ, (1.1)

with the sign convention forκ chosen so that a sphere shrinks.
There are several, basically equivalent, methods to construct sets moving by mean curvature. Classic

differential equation and differential geometry techniques have been used for the study of smooth flows.
approach requires special treatment to continue the solution when singularities and topological chang
surfaces occur. We refer to [2] for a survey of this approach and related questions.

The first global in time (weak) solution for MMC was constructed in [9] using the theory of varifolds.
method, which also works for higher co-dimensional curves and surfaces, is so far only applicable in the i
case. In addition, there is a high degree of non-uniqueness in the solutions.

Another approach, which has been used widely to study a large number of applications – see [25] for a
survey – is the level-set formulation. This method makes use of a continuous functionu such that its zero
(or anyc-) level set defined as

Γ (t) = {
x ∈ R

N : u(x, t) = 0
}

evolves by MMC. This function would then be a solution of the following degenerate parabolic equation

ut = |Du|div

(
Du

|Du|
)

in R
N × R+. (1.2)

Equations like (1.2) admit unique globally defined uniformly continuous solutions in the viscosity sense (s
12,15,17]). Furthermore the invariance properties of (1.2) yield thatΓ (t) is uniquely defined as a function of th
initial setΓ0 = {x: u(x,0) = 0}. The afortiomentioned non-uniqueness phenomena are, however, reflected
fact thatΓ (t) can develop non-empty interior, a fact referred to as fattening. In this case,Γ (t) may not represen
geometrically a hypersurface.

We say thatu is has no-interior at timet and level-0 if

∂
{
x: u(x, t) > 0

}= {
x: u(x, t) = 0

}
. (1.3)

If the above fails, we say thatu fattens or it develops interior. When this occurs, there are at least two solutio
MMC (see Theorem 2.1 of [5]), namely

∂Γ ∗(t) = {
x: u(x, t) � 0

}
and ∂Γ∗(t) = {

x: u(x, t) > 0
}
,
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which by definition differ from each other at timet . In fact Γ ∗(t) andΓ∗(t) are respectively the maximum an
minimum solutions. Although any other solution is trapped in between them, its location is not easily pres
Such a non-uniqueness phenomenon also corresponds to the fact that the solutions of MMC do no
continuously on the initial data (in theL1 topology). Different approximations of the initial curve or surfac
can lead to solutions which do not stay close to each other. Explicit examples of fattening are given in [3–
18,24], etc. General sufficient conditions foru not to develop fattening are given in [5].

The non-uniqueness issue described above also appears in the study of the convergence of a n
macroscopic and microscopic models in phase transitions (see [25] for a general overview). A canonical
is the study of the convergence of the phase field equation for MMC. In this approach, a phase-ordering p
ϕ evolves according to the Allen–Cahn equation

ϕt − �ϕ + ε−2ϕ
(
ϕ2 − 1

)= 0, (1.4)

whereε > 0 is a small parameter. Given reasonable initial data, asε → 0, ϕ approximates a sharp interface a
the zero level set ofϕ converges to a solution of MMC. This convergence was established past singularities
viscosity sense in [13] and later by [16] using varifolds. The result of [13] have been extended to more
anisotropic motions (see [25] and [6]). However, when the solution to MMC is not unique, it is not clear
solutionϕ will converge to.

Given the above approaches to solve MMC, we observe the following hierarchy of solutions:(
smooth

flows

)
⊆
(

limits of

Allen–Cahn (1.4)

)
⊆
(

Brakke

flows [9]

)
⊆
(

zero level-

set of (1.2)

)
.

It would be interesting to understand this hierarchy more quantitatively. This motivates us to search for a s
principle for the solutions of MMC.

In this work, we incorporate noise to MMC through the level set formulation. There are so far relative
mathematical results which can handle in a general setting the stochastic perturbations for geometric moti
of the main difficulties is how to combine the nonlinear, usually smoothing, effect of the surface evolutio
the roughening effect of the noise. In [28,29], variational minimization and stochastic calculus are comb
the framework of geometric measure theory to construct global solutions for stochastic MMC and dendritic
growth with Gibbs–Thomson condition. Funaki [14] considers a stochastic perturbation of (1.4) and shows
ε → 0,ϕ converges to a front moving with normal velocity equal to mean curvature plus white noise, as long
flow remains smooth and convex. This result is proven in [21] to hold for the generalized stochastic flow g
in time, i.e. past singularities.

A new theory for “stochastic” viscosity solutions for fully nonlinear second-order PDEs, which includ
geometric PDEs such as (1.2) arising in the level set method, has recently been put forward in [20–23] b
and one of the authors. This theory applies to equations of the form

du + F
(
D2u,Du,x, t

)
dt =

m∑
i=1

Hi(Du) ◦ dWi
t , (1.5)

where {Wi(t): i = 1, . . . ,m} is a collection of independent Wiener processes and◦ denotes the Stratonovic
stochastic differential, and yields the existence, uniqueness and stability properties of the solutions. We
briefly in Section 7 the results on stochastic PDEs, which are relevant to our analysis.

We apply the machinery developed for (1.5) to study stochastic MMC and to show that for a particular
of an initial surface, for which there is non-uniqueness for the MMC, the stochastic motion converges to a
deterministic MMC. Our results are formulated both almost surely and in probability. Similar results wer
obtained independently in [11].

This paper is organized as follows. In Section 2 we summarize most of the notation used in the paper. T
results are stated in Section 3. The definitions of generalized flows and some technical lemmas are pre
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Section 4. The proofs of the theorems are presented in Sections 5 and 6. Section 7 summarizes the fa
stochastic viscosity solutions, which are used in the paper.

2. Notation

We summarize here most of the notation which are used often in the paper.
Let O be the collection of open subsets ofR

N . For any elementU of O, 1U(x) is the characteristic functio
of U which equals one forx ∈ U and zero otherwise.∂U , IntU , U andUc refer to the topological boundar
interior, closure and complement ofU . For a given topological spaceX, UC(X) andBUC(X) refer to the space
of uniformly continuous and bounded uniformly continuous real valued functions respectively. A sequence{fn}n�1
defined on a locally compact topological spaceX is said to converge tof in C(X), if it converges uniformly on
compact subsets ofX. Given a family of function{fε}ε�0, the symbolsf ∗ andf∗ denote to the upper- and low
semi-continuous limits of the family, i.e.,

f ∗(x) = lim sup
z→x, ε→0

fε(z) and f∗(x) = lim inf
z→x, ε→0

fε(z).

For any continuous functionf , we write

f +(t) = sup
0�s�t

f (s) and f −(t) = − inf
0�s�t

f (s).

We also denote byBr(p) andBr the open balls of radiusr centered atp and the origin(0,0) respectively. In
addition,B(t) denotes some general time varying ballsBR(t) with radiusR(t) > 0. When we use this notation
the exact values of theR(t)’s are not too important – they can be different even whenB(t) appears in consecutiv
mathematical expressions. Finallyω denotes a realization of the Brownian motion.

3. The main results

Consider the pair of two touching ballsU0 = B1(p1) ∪ B1(p2), wherep1 = (−1,0) and p2 = (1,0). The
boundary∂U0 has the shape of a “figure-∞”. As shown in [12] there are at least two generalized flowsU∗(t) and
U∗(t) for (1.1) starting fromU0. Using the language of the generalized front propagation,U∗(t) andU∗(t) are
precisely given by

U∗(t) = Int
{
x: u(x, t) � 0

}
and U∗(t) = {

x: u(x, t) > 0
}
, (3.1)

whereu ∈ BUC(R2 × [0,∞)) is the unique viscosity solution to (1.2) with initial condition such that

U0 = {
x: u(x,0) > 0

}
, ∂U0 = {

x: u(x,0) = 0
}
, and Uc

0 = {
x: u(x,0) < 0

}
.

The fact thatU∗(t) is not equal toU∗(t) is exactly due to the failure of the no-interior condition (1.3).
Geometrically, the first flow{U∗(t)}t�0 is characterized by the property that it contains the origin(0,0) in its

interior for small positivet > 0, i.e., there is someB(t) such thatB(t) ⊆ U∗(t). (See Fig. 1.) In this sense, we s
that the figure-∞ opens vertically at the origin.

The second flow{U∗(t)}t�0 is the union of two disjoint balls:

U∗(t) = BR(t)(p1) ∪ BR(t)(p2),

where the radiusR(t) =
√

R(0)2 − 2t satisfies the ordinary differential equation:

dR(t) = − 1
, R(0) = 1. (3.2)
dt R(t)
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Fig. 1. An example of multiple solutions arising from two touching circles.

We say in this case that the figure-∞ opens horizontally.
The situation changes completely, if we consider, forε > 0, the generalized flow with normal velocity

vn = −κ + εẆ (t,ω),

or the stochastic level set evolution

du = |Du|div

(
Du

|Du|
)
dt + ε|Du| ◦ dW(t,ω). (3.3)

The following result is obtained in the paper:

Theorem 3.1(Almost sure convergence).Let Uε(t,ω) be a generalized flow to(3.3)starting fromU0. Then, for
almost everyω (with respect to the Wiener measure), asε → 0, Uε(t,ω) converges toU∗(t) in the sense that, fo
all t > 0 andx ∈ U∗(t) ∪ U∗(t)c, limε→0 1Uε(t,ω)(x) = 1U∗(t)(x).

Our second result is motivated by the following example of [7]. Consider the initial datum to be two sep
ballsV0 = B1(q1)

⋃
B1(q2) whereq1 = (−2,0) andq2 = (2,0), and consider the generalized flow to

vn = −κ + g(t),

or the level-set evolution

ut = |Du|
(

div

(
Du

|Du|
)

+ g(t)

)
, (3.4)

whereg(t) is a time varying function chosen so that the two balls enlarge initially, because the value ofg(t) is
large enough to offset the shrinking effect due to the curvature term. However,g(t) decreases int . Its precise form
is chosen to make the two balls touch at some timet∗. At this time, the value ofg(t∗) equals exactly the curvatur
so that the two touching balls begin to separate. There are (at least) two generalized flows fort > t∗. The first one,
denoted byV ∗(t), is similar toU∗(t) – the figure-∞ opens vertically. The other one, denoted byV∗(t), is similar
to U∗(t) – the figure-∞ opens horizontally. Similarly to (3.1),V ∗(t) andV∗(t) can be defined as

V ∗(t) = Int
{
x: v(x, t) � 0

}
and V∗(t) = {

x: v(x, t) > 0
}
,

wherev ∈ BUC(R2 × R+) is the unique viscosity solution to

vn = −κ + g(t),

with initial condition satisfying

V0 = {
x: v(x,0) > 0

}
, ∂V0 = {

x: v(x,0) = 0
}
, and V c

0 = {
x: v(x,0) < 0

}
.

The geometric intuition behind this example is that an external force is added to (1.2) to drive the curv
configuration (such as two touching balls) so that non-unique solutions can arise. After this moment, the
force is gradually turned off.
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For the stochastic version we consider the generalized flow to the motion law

vn = −κ + g(t) + εẆ (t,ω),

or the level-set equation

du = |Du|
(

div

(
Du

|Du|
)

+ g(t)

)
dt + ε|Du| ◦ dW(t,ω), (3.5)

and study the behavior of the solution asε → 0.
The following result holds.

Theorem 3.2(Uniqueness in Probability Law).LetV ε(t,ω) be a generalized flow to(3.5)starting fromV0. Then

P
{
ω: lim

ε→0
1V ε(t,ω)(x) = 1V ∗(t)(x), t � 0 andx ∈ V ∗(t) ∪ V ∗(t)c

}
= P

{
ω: lim

ε→0
1V ε(t,ω)(x) = 1V∗(t)(x), t � 0 andx ∈ V∗(t) ∪ V∗(t)c

}
= 1

2
, (3.6)

whereP is the underlying Wiener measure.

Few remarks are in order. The four generalized flowsU∗, U∗, V ∗ andV∗ are all stable solutions. Theorem 3
indicates that, in the limit of vanishing white noise, one of the stable solutions is always selected. The h
reason behind this is that under the white noise perturbation,Uε(t,ω) will almost surely open vertically fo
small positive time and for allε �= 0. Once this has happened, the boundary ofUε(t,ω) near the origin has hig
curvatures, which prevent theUε(t,ω) from going back to the “closed” figure-∞ shape.

In Theorem 3.2, we have in essence constructed a unique probability measure on the space of general
for (3.3). The number 1/2 is actually the probability of the two balls touching each other at some time und
combined effect ofg(t) anddWt . It is also related to the probability of reaching a certain level by some diffu
process. Once the two balls touch, we can invoke Theorem 3.1. Otherwise, the two balls will just evolve se
from each other. This explains that our second result cannot be improved to hold in the almost sure sense

4. The generalized flows and level-set formulations and some technical lemmas

We briefly summarize here the definitions of generalized flows and level-set formulations of front propa
and state some basic facts. All the definitions and statements below are supposed to hold a.s. inω. Hence, wheneve
there is no confusion, for notational simplicity we suppress theω dependence.

To this end, we assume thatF ∈ C(SN × R
N\{0} × R

N × R+) is degenerate elliptic, i.e.,

if X � Y, thenF(X,p,x, t) � F(Y,p,x, t), (4.1)

geometric, i.e., for allλ > 0,µ ∈ R,

F(λX + µp ⊗ p,λp,x, t) = λF(X,p,x, t), (4.2)

and it satisfies

−∞ < F∗(O,0, x, t) = F ∗(O,0, x, t) < +∞. (4.3)

Furthermore assume thatH ∈ C0,1(RN) is positively homogeneous of degree one, i.e., it satisfies for allλ > 0,
p ∈ R

N ,

H(λp) = λH(p). (4.4)
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The next definition is an extension to the random case of the definition put forward in [6] to study
propagation in anisotropic environments.

Definition 4.1. A family {St (ω)}t∈(a,b) of open subsets ofRN is a generalized super-flow (resp. sub-flow) w
normal velocity−(F dt + H dW) if and only if for all x0 ∈ R

N , t ∈ (a, b), r > 0, α > 0 and all smooth function
ϕ :RN → R such that{x ∈ R

N : ϕ(x) � 0} ⊂ St (ω) ∩ Br(x0), (resp.{x ∈ R
N : ϕ(x) � 0} ⊂ St (ω)c ∩ Br(x0)) with

|Dϕ| �= 0 on {x ∈ R
N : ϕ(x) = 0}, there existsh0 > 0 depending only onα andϕ through itsC4-norm inBr(x0)

such that, for allh ∈ (0, h0),{
x ∈ R

N : ϕ(x) − h
[
F ∗(D2ϕ(x),Dϕ(x), x, t

)+ H
(
Dφ(x)

)
(Wt+h − Wt)

]+ α > 0
}∩ Br(x0) ⊂ St+h(ω),

(resp.{
x ∈ R

N : ϕ(x) − h
[
F∗
(
D2ϕ(x),Dϕ(x), x, t

)− H
(
Dφ(x)

)
(Wt+h − Wt)

]− α < 0
}∩ Br(x0) ⊂ St+h

c(ω)).

A family {St (ω)}t∈(a,b) of open subsets ofRN is called a generalized flow with normal velocity−(F dt +
H dW) if it is both a sub- and super-flow.

We next formulate set evolutions in terms of the level set equations. LetE be the collection of triplets
(Γ,D+,D−) of mutually disjoint subsets ofRN such thatΓ is closed andD± are open andRN = Γ ∪D+ ∪D−.
For any(Γ0 ∪ D+

0 ∪ D−
0 ) ∈ E , chooseu0 ∈ BUC(RN) such that

Γ0 = {
x: u0(x) = 0

}
, D+

0 = {
x: u0(x) > 0

}
, D−

0 = {
x: u0(x) < 0

}
,

and let, a.s inω, u(· , ·,ω) ∈ BUC(RN × R+) be the unique solution of the initial value problem{
(i) du + F(D2u,Du,x, t) dt + H(Du) ◦ dW = 0 in R

N × R+,

(ii) u = u0 onR
N × {0}. (4.5)

We set

Γt(ω) = {x: u(x, t,ω) = 0},
D+

t (ω) = {x: u(x, t,ω) > 0}, and

D−
t (ω) = {x: u(x, t,ω) < 0}.

It turns out (see, for example, [10,12,17,21]) that(Γt (ω),D+
t (ω),D−

t (ω)) is independent of the particular choi
of the initial datumuo and only depends on(Γ0,D

+
0 ,D−

0 ). Geometrically, these sets represent the boundary, in
and outside respectively of some evolving set starting at(Γ0,D

+
0 ,D−

0 ).

Definition 4.2.For t � 0 and a.s. inω, let Et(ω): E → E be the map

Et

(
Γ0,D

+
0 ,D−

0

)
(ω) = (

Γt(ω),D+
t (ω),D−

t (ω)
)
.

The collection{Et }t�0(ω) is called the generalized level-set evolution with normal velocity−(F dt + H dW).
Given (Γ0,D

+
0 ,D−

0 ) ∈ E , the collection of closed sets{Γt(ω)}t�0 is called the generalized level-set fro
propagation ofΓ0 with normal velocity−(F dt + H dW).

It follows (see [5,6,10,12,15,17,21,23]) that the map{Et }t�0(ω) is well-defined and it satisfies, a.s. inω, the
semigroup properties:E0 = idE andEt+s = Et ◦ Es for all t, s � 0.

We summarize in the next proposition the relationships between the two definitions above and the co
to the issue of fattening. Its proof, whenH = 0, can be found in [6]. The stochastic case is discussed in [21].

Proposition 4.3.The following hold, a.s. inω:
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(i) A family{St }t∈[0,T ] of open subsets ofR
N is a generalized flow(resp. super- or sub-flow) with normal velocity

−(F dt + H dW) if and only if the functionu(x, t) = 1St (x) − 1S̄c
t
(x) is a viscosity solution(resp. super- or sub

solution) of (4.5)(i).
(ii) Let {St }t∈[0,T ] be a generalized flow and(Γt ,D

+
t ,D−

t )t∈[0,T ] be the generalized level-set evolution
(Γ0,D

+
0 ,D−

0 ) with normal velocity−(F dt + H dW) such thatD+
0 = S0 and D−

0 = S̄c
0. Then, for all t > 0,

D+
t ⊂ St ⊂ D+

t ∩ Γt . If the no-interior condition(1.3)holds, thenSt = D+
t .

The relationship between a given outward normal velocity of a set andF andH is the following: If vn =
G(Dn,n, x, t)+K(n)Ẇ denotes the outward normal velocity ofΓt , then the correspondingF andH are given by

F(X,p,x, t) = −|p|G
(

−
(
I − p ⊗ p

|p|2
)
X,− p

|p| , x, t
)
,

and

H(p) = K

(
− p

|p|
)

|p|.

For example, ifvn = −κ + g(t) + εẆ , then (4.5)(i) has the form

du = tr

((
I − p ⊗ p

|p|2
)
X

)
dt − g(t)|p|dt − ε|p| ◦ dW.

Given this correspondence betweenvn andF andH , in this paper, the phrases “generalized flow to (the mo
law) vn”, “to −(F dt +H dW)” and “to du+F(D2u,Du,x, t) dt +H(Du) ˙dW = 0” all have the same meanin

One of the most important properties of viscosity solutions is their comparison principle. Below we sta
principle for the equation

du + F
(
D2u,Du,x, t

)
dt = ε|Du| ◦ dWt . (4.6)

For the proof we refer to [17], among others, for the determistic case, and to [21] for the stochastic case.

Proposition 4.4.(i) Let u ∈ UC(RN × R+) be a sub-solution andv be a discontinuous super-solution of(4.6).
If u(· ,0) � v(· ,0) on R

N , thenu(· , t) � v(· , t) on R
N × R+. A similar result holds ifu is a discontinuous sub

solution andv ∈ UC(RN × R+) is a super-solution.
(ii) Let u and v be respectively an upper-semicontinuous sub-solution and a lower-semicontinuous

solution of(4.6) in Q × R+, whereQ is a bounded subset ofRN . If u � v on (Q × {0}) ∪ (∂Q × R+), then
u � v onQ × R+.

The next two propositions are needed in the paper to compare generalized flows.

Proposition 4.5.Let A(t) andB(t) be respectively generalized sub-flow and super-flow of(4.6). If A(0) ⊆ B(0)
anddist(∂A(0), ∂B(0)) > 0, thenA(t) ⊆ B(t) for t � 0.

Proof. Fix η > 0, definev(x, t) = 1B(t) − 1B(t)c , and letu ∈ UC(RN × R+) be the solution of (4.6) with initia
datum

uη(x,0) =



min(dist(x,∂A(0))
η

,1) for x ∈ A0,

max(−dist(x,∂A(0))
η

,−1) for x ∈ Ac
0.

Since the assumptions imply, for sufficiently smallη, thatu(x,0) � v∗(x,0), it follows from Proposition 4.4
thatu � v∗ in R

N × R+. Proposition 4.3 then yields thatA(t) ⊆ {u(x, t) � 0} ⊆ {v∗ = 1} = B(t), and hence the
claim. ✷
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Proposition 4.6.Let {Gt(ω)}t�0 and {Ht(ω)}t�0 be two generalized flows inR2 to the motion law(4.6). Let
Q = {|x| � a(ω), y � 0} and∂Q = A− ∪A0 ∪A+, where, for a positive numbera(ω), A− = {x = −a(ω), y � 0},
A0 = {|x| � a(ω), y = 0} andA+ = {x = a(ω), y � 0}. Assume that there exist two positive constantsT (ω) and
b(ω) such that, fort ∈ (0, T (ω)), the following conditions hold:



(i) G0(ω) ∩ Q ⊆ H0(ω) ∩ Q,

(ii) dist((∂G0(ω)) ∩ Q,(∂H0(ω)) ∩ Q) > 0,

(iii) Gt(ω) ∩ (A− ∪ A+) ⊆ Ht(ω) ∩ (A− ∪ A+),

(iv) dist((∂Gt(ω)) ∩ (A− ∪ A+), (∂Ht(ω)) ∩ (A− ∪ A+)) > b(ω).

(4.7)

If eitherA0 ⊆ Gt(ω) or A0 ⊆ Ht(ω), then

Gt(ω) ∩ Q ⊆ Ht(ω) ∩ Q. (4.8)

We omit the proof of Proposition 4.6, since it is based on Proposition 4.4 and it is similar to the o
Proposition 4.5.

We conclude this section with another proposition which gives a quantitative estimate, in terms of the dif
of their normal velocities, of how far interfaces move away from each other. This estimate is a new one a
believe, of independent interest. Since the results holds a.s. inω, once again we suppress this explicit depende

Proposition 4.7.SupposeE0 andF0 are two open subsets ofR
N such thatE0 ⊆ F0 anddist(∂E0, ∂F0) > 0. Let

E(t) andF(t) be respectively the generalized flows tovn = −κ starting fromE(0) = E0 andvn = −κ + εẆ (t)

starting fromF(0) = F0. Then, for allt > 0 such thatεW−(t) < dist(∂E0, ∂F0),

E(t) ⊆ F(t) and dist
(
∂E(t), ∂F (t)

)
� dist(∂E0, ∂F0) + εW(t). (4.9)

Proof. 1. We only present here the key steps of the proof and refer to [5] for the justification of some
arguments.

2. Consider the functions

u(x, t) =
{

0 if x ∈ E(t),

−∞ if x ∈ E(t)c
and v(x, t) =

{+∞ if x ∈ F(t),

0 if x ∈ F(t)c.

It follows (see the proof of Theorem 2.1 of [5]) thatu andv are respectively sub- and super-solutions of (1
and (3.3).

3. Next define the function

ρ(t) = sup
(x,y)∈R2

{
u(x, t) − v(x, t) − |x − y|}.

It is obvious that

ρ(t) = −dist
(
∂E(t), ∂F (t)

)
.

Moreover, standard arguments from the theory of viscosity solutions yield thatd satisfies

dρ � −ε dW.

Upon integrating we have

−ρ(t) � −ρ(0) − εW(t),

and hence the claim.✷
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5. The proof of Theorem 3.1

The proof of Theorem 3.1 consists of three parts, which we state below in the next three propositions
results below hold for almost allω with respect to the underlying Wiener measure. Finally,{Uε(t,ω)}t�0 refers to
a generalized flow to (3.3) starting fromU0.

Proposition 5.1 (The Initial Opening).For eachε > 0, there exist a timeT ε
1 (ω) > 0 and collection of balls

{B(t,ω)}t�0 such that, for0< t < T ε
1 (ω),Bε(t,ω) ⊆ Uε(t,ω). In addition,T ε

1 (ω) � h3(ω)ε2+γ , for some positive
numbersh3(ω) andγ .

Proposition 5.2 (The Uniform Opening).There exist a timeT ∗(ω) > 0 and collection of balls{B(t,ω)}t�0,
independent ofε, such that, fort ∈ [0, T ∗(ω)], B(t,ω) ⊆ Uε(t,ω).

Proposition 5.3(The Limiting Motion).For all t > 0 andx ∈ U∗(t) ∪ U∗(t)c , limε→0 1Uε(t,ω)(x) = 1U∗(t)(x).

The main step in the proofs of Propositions 5.1 and 5.2 is the construction of a time dependent ope
Dε(t,ω) ⊆ R

2 such that, fort ∈ [0, T ∗(ω)] and someB(t,ω),

B(t,ω) ⊆ Dε(t,ω) ⊆ Uε(t,ω).

In order to make this construction more transparent, we replace the Brownian motion{W(t,ω): t � 0} by a
smooth function{Wν(t,ω): t � 0} such thatWν(0,ω) = 0 and limν→0Wν(t,ω) = W(t,ω) locally uniformly in t

and a.s inω. In view of the results of [20] and [21], our conclusions follow by lettingν → 0.
To simplify the presentation, below we suppress the dependence onω,ν, ε in all the time dependent function

such asWν(t,ω), Uε(t,ω), Dε(t,ω) andB(t,ω), but we keep the explicit dependence onω andε in all of the
constants.

First we introduce the following definition which will be useful for the proof of Proposition 5.1 below.

Definition 5.4. For fixedR > 1 and 0� r <
√

R2 − 1, defineI (R) andJ (R, r) to be the open subsets ofR
2 (see

Fig. 2)

I (R) = BR(p1) ∪ BR(p2) and J (R, r) = (
I (R)c + Br

)c
,

whereU + V = {x + y: x ∈ U, y ∈ U} for anyU,V ⊂ R
2.

The setI (R) is the union of two balls centered at(±1,0) with radiusR > 1. Its boundary∂I (R), which consists
of two circular arcs, is piece-wise smooth with corners located at(0,±√

R2 − 1) on they-axis. The setJ (R, r)

Fig. 2. Definitions ofI (R) andJ(R, r).
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is the result of moving∂I (R) inward by distancer. Due to the two corners of∂I (R), ∂J (R, r) consists of four
circular arcs with centers at(±1,0) and (0,±√

R2 − 1). The radii of these arcs are respectivelyR and r. The
conditionr <

√
R2 − 1 ensures that∂J (R, r) is a connected curve and(0,0) is in the interior ofJ (R, r).

For future reference we note the following properties ofJ (R, r):


J (R,0) = I (R),

J (R, r) + Bs = I (R − r + s) for all r � s,

J (R, r) + Bs = J (R, r − s) for all 0 � s � r,

(J (R, r)c + Bs)
c = J (R, r + s) for all r + s <

√
R2 − 1.

(5.1)

We now begin with the

Proof of Proposition 5.1. 1. LetBR(t)(p1) andBR(t)(p2) be the evolutions with normal velocity (3.3) of the tw
ballsB1(p1) andB1(p2) comprising the initial setU0. It is immediate that the radiusR(t) of the two balls satisfie
the stochastic differential equation

dR(t) = −R(t)−1 dt + ε dWt .

Let X(t) = R(t) − 1 be thex-coordinate of the right most point of the balls centered atp1 (see Fig. 3). Then
X(t) solves

dX(t) = − 1

X(t) + 1
dt + ε dWt with X(0) = 0,

i.e.,X(t) satisfies

X(t) = −
t∫

0

ds

X(s) + 1
+ εWt . (5.2)

2. SinceW(t) is continuous andW(0) = 0, there exists a time interval[0,Λ(ω)], independent ofε, such that
for all ε > 0,

sup
0�t�Λ(ω)

∥∥X(t)
∥∥� 1

2
.

Hence (5.2) implies that, fort ∈ [0,Λ(ω)],
X(t) � −2t + εW(t). (5.3)

Fig. 3. Illustration of two circles crossing each other.
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The comparison principle for (3.3) yields

B1+X(t)(p1) ∪ B1+X(t)(p2) ⊆ U(t).

Therefore, as soon asX(t) > 0, the two balls will overlap with each other forcingU(t) to open vertically. We show
below that there exists a short time interval[0, T ε

1 (ω)] such that:

(i) there are many timest ’s in [0, T ε
1 (ω)] at whichX(t) > 0, and

(ii) the setU(t) remains opened vertically during the whole time interval[0, T ε
1 (ω)].

Lemma 5.5.For δ ∈ (0,1/2), let γ = 4δ/(1− 2δ). Then there exist positive constantsh1(ω), h2(ω), andh3(ω)

such that, ift ∈ [0, T ε
1 (ω)], whereT ε

1 (ω) = h3(ω)ε2+γ , then

εh1(ω)t1/2+δ � X+(t), X−(t) � εh2(ω)t1/2−δ. (5.4)

Indeed the estimateX+(t) > εh1(ω)t1/2+δ implies that there are many timest ’s in the interval[0, T ε
1 (ω)] at

whichX(t) > 0. This in turn yields (i) above.

3. Proof of Lemma 5.5. 3.1. The classical continuity properties of the Brownian motion (see, for exam
Theorem 2.9.23 in [19] and Theorem VIII.6 in [8]) yield the existence of positive constantsh1(ω),h2(ω) such
that

h1(ω)t1/2+δ � W+(t), W−(t) � h2(ω)t1/2−δ. (5.5)

3.2. It follows from (5.3) that, for alls ∈ [0, t],
X+(t) � εW(s) − 2s � εW(s) − 2t .

Hence

X+(t) � εW+(t) − 2t � εh1(ω)t1/2+δ − 2t = t1/2+δ
(
εh1(ω) − 2t1/2−δ

)
.

If t is restricted so that 4t1/2−δ < εh1(ω), then 2X+(t) � (2−1εh1(ω))t1/2+δ. Redefiningh1(ω) to be 2h1(ω) gives
the left-hand side inequality of (5.5). All the other inequalities are proven similarly.

3.3. Finally, forγ = 4δ/(1− 2δ), set

T ε
1 (ω) =

(
h1(ω)

4

)2/(1−2δ)

ε2/(1−2δ) = h3(ω)ε2+γ . ✷
4. To prove (ii) above we argue as follows: SinceX(t) is a smooth function of time, we may assume with

loss of generality, that initiallyX(t) is increasing and positive. If not, we can always reset the origin of time t
the first time this is true.

Next, for i � 1, we define, in the time interval[0, T ε
1 (ω)], two (finite) sequences of times{ti} and{si} such that

(see Fig. 4), fori > 1:

s1 = 0 and si < ti < si+1,

X+(t) = X(t) for t ∈ [si, ti ],
X(t) < X(ti) = X(si+1) for t ∈ [ti , si+1], and

X(t)|[si ,ti ] � X(t)|[si+1,ti+1].
5. We define now the setD(t) as follows:{

(i) D(t) = I (1 + X(t)) for t ∈ [si, ti ]|{i�1}, and
(5.6)
(ii) D(t) = J (1+ X(ti),X(ti) − X(t)) for t ∈ [ti , si+1]|{i�1}.
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Fig. 4. Definition ofsi , ti andX±(t).

The above definition together with Lemma 5.5 clearly imply that, for 0< t < T ε
1 (ω), there exists aB(t) ⊆ D(t),

such that

B(si) = BRi with Ri �
(
εs

1/2+δ
i

)1/2 � X(si).

We show below that

D(t) ⊆ U(t) for all t ∈ [0, T ε
1 (ω)

]
. (5.7)

6. First we observe thatD(t) is in fact the generalized flow to the motion law

vn = dX(t)

dt
, D(0) = U0. (5.8)

Indeed in each of the time intervals[si, ti ]{i�1}, X(t) is increasing. Since

X(u)|u∈[si,ti ] < X(v)|v∈[si+1,ti+1],
the solution to (5.8) is given exactly by (5.6)(i). In the remaining intervals[ti , si+1]{i�1}, X(t) � X(ti) = X(si+1).
It then follows from (5.1) that the solution of (5.8) is given by (5.6)(ii). The maximum principle then yields th

D(t) ⊆ U(t) for t ∈ [si, ti ].
7. To prove the same inclusion fort ∈ [ti , si+1] we need the following two lemmas, whose proof will

presented after the end of the ongoing one.

Lemma 5.6.Fix R > 0, 0 � r <
√

R2 − 1 and let t → α(t) be a smooth function such thatα(0) = 0. Then, for
all t in any connected time interval containing0 and such that0 � r − α(t) <

√
R2 − 1, {J (R, r − α(t))}t�0 is a

generalized flow to

vn = dα

dt
or ut = |Du|da

dt
. (5.9)

Lemma 5.7.Letβ(t) be the solution of

dβ

dt
= −(R − r + β(t)

)−1
, β(0) = 0. (5.10)

Then, for allt such that0 � r − β(t) <
√

R2 − 1, {J (R, r − β(t))}t�0 is a generalized sub-flow to the motion
mean curvature(1.1)or (1.2).

8. To prove thatD(t) ⊆ U(t) for t ∈ [ti , si+1], we discretize[ti , si+1] as
⋃

j [ti + j�t, ti + (j + 1)�t], where

0 � j � (si+1 − ti)(�t)−1 and we make use of the above two lemmas in the following way.
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Consider the following Euler approximation scheme of (5.7)

X0 = X(ti), and fork � 0,

X2k+1 = X2k + ε
(
W
(
ti + (2k + 1)�t

)− W(ti + 2k�t)
)
,

X2k+2 = X2k+1 + Z(X2k+1,�t)

whereZ(a, t) is the solution at timet of

dZ

dt
(a, t) = − 1

1+ a + Z(a, t)
, Z(0) = 0.

Let X�t (t) be the linear interpolation of{Xj } satisfyingX�t (ti + j�t) = Xj . Then, as�t → 0, X�t (t)

converges toX(t), uniformly on any finite time interval. This in turn leads to

1D(t)(x) = lim
�t→0

1J (1+X(ti),X(ti)−X�t (t))(x), for x /∈ ∂J (1+ X(ti),X(ti ) − X�t(t)). (5.11)

Note that, fort ∈ [ti , si+1], Lemma 5.5 and the fact thatX(t) < X(ti) = X(si+1) yield that the right-hand side o
the above equality is always defined for�t sufficiently small.

9. Letu ∈ BUC(R2 × R+) be the unique solution to (3.3) with initial datumu(· ,0) = g ∈ BUC(R2) such that

g � −1, {g > 0} = U(ti), {g = 0} = ∂U(ti ), and {g < 0} = U(ti)
c.

For 0< t < �t , we define the functionu�t by

u�t
(
x, k(�t) + t

)=
{
W(ti + k�t, t)u�t (x, k�t)(x) for k even,

K(t)u�t (x, k�t)(x) for k odd,

whereW(s, t)f andK(t)f are respectively the solutions of

vt = |Dv| ˙W(s + t) and vt = |Dv|div

(
Du

|Du|
)
, with v(0) = f.

The classical Trotter product formula (see Theorem 7.1) yields that, as�t → 0, u�t converges inC(R2 × [0, T ])
to u.

Next, forη > 0, we consider the functions

p�t(x, t) = η
(
1J (1+X(ti),X(ti)−X�t (t+η)) − 1

J (1+X(ti),X(ti)−X�t (t+η))c

)
and

p(x, t) = η
(
1D(ti+t+η) − 1D(ti+t+η)c

)
.

Since, fort close toti , X(t) � X(ti), we can always findη small enough such thatp(· ,0) � g(·) on R
2. It then

follows from Lemmas 5.6 and 5.7, Propositions 4.3 and 4.4 that, for(x, t) ∈ R
2 × [0,�t],

p�t(x,2k�t + t) � u�t(x,2k�t + t) and p�t (x, (2k + 1)�t + t) � u�t
(
x, (2k + 1)�t + t

)
.

The convergences ofp�t to p andu�t to u lead to

p∗ � u onR
2 × [ti , si+1 − η].

It follows that

D(t + η) ⊆ {
x: u(x, t) > 0

}
.

But, in view of Proposition 4.3, we also have{
x: u(x, t) > 0

}⊆ U(t) ⊆ {
x: u(x, t) � 0

}
.
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Hence, fort ∈ [t1, si+1 − η],
D(t + η) ⊆ U(t).

Finally, asη → 0, the continuity oft → D(t) in t , gives the result. ✷
We continue with the proofs of Lemmas 5.6 and 5.7.

Proof of Lemma 5.6. Let J (t) evolve according to (5.8) with initial datumJ (R, r). If α is nondecreasing in[0, η],
thenJ (t) = U0 + Bα(t). If α is nonincreasing on[0, η], thenJ (t) = (Uc

0 + Bα(t))
c. Dividing the time interval into

segments of monotonicity ofα(t) and using (5.1) we conclude.✷
The geometric reason behind Lemma 5.7 is that the radii of the circular arcs centered atp1 andp2 are shrinking

according to MMC, while the radii of the circular arcs centered at(0,±√
R2 − 1) are expanding so that the

normal velocity is opposite to the one coming from MMC. The rigorous argument is presented below in

Proof of Lemma 5.7. Let the functionh be defined by

J
(
R, r − β(t)

)∩ {x ∈ R
2: |x| � 1

}= {
(x, y): −1 � x � 1,−h(x, t) < y < h(x, t)

}
.

Since

ht � hxx

1+ h2
x

,

andJ (R, r − β(t)) is the graph, in{x ∈ R
2: |x| � 1}, of h, it follows from the theory of MMC thatJ (R, r − β(t))

is a generalized sub-flow for MMC. The conclusion now follows.✷
Proposition 5.2 asserts thatU(t) opens vertically for a time interval(0, T ∗(ω)], which is independent ofε. The

intuitive reason is that onceU(t) opens vertically, as it follows from Proposition 5.1, the part of∂U(t) near the
origin has very high curvatures which pull∂U(t) further away in the vertical direction. Thus even under the ef
of white noise perturbations,U(t) can never go back to the figure-∞ shape.

To prove Proposition 5.2, we will construct two comparison sets and use Propositions 4.6 and 4.7 to
the time interval during whichU(t) opens vertically, first from[0,O(ε2+γ )] to [O(ε2+γ ),O(ε2−α)] and then to
[O(ε2−α),O(1)]. These two steps are made precise in the following two lemmas.

Lemma 5.8.For any given constantα1 ∈ (0,1/2), there exist positive constantsε0(ω) andh4(ω) and collection of
balls {B(t)}t�0 such that, for allε ∈ (0, ε0(ω)) andt ∈ [0, h4(ω)ε2−α1], B(t) ⊆ U(t).

Proof. 1. Fix a constantβ ∈ (0,1/2) to be specified later and apply Proposition 4.6 to the sets

F0 = {
(x, y) ∈ R

2: y < |x|} and E0 = {
(x, y) ∈ R

2: y < |x| − ε2−β
}
,

which satisfy

E0 ⊆ F0 and dist(∂E0, ∂F0) = ε2−β > 0.

Proposition 4.6 yields that, if|εW−(t)| � ε2−β , then dist(∂E(t), ∂F (t)) � dist(∂E0, ∂F0) + εW(t). It follows
from (5.5) that, for allt ∈ [0, h4(ω)ε2−α1] and anyδ ∈ (0,1/2), we have

εW−(t) � εh2(ω)
(
h4(ω)ε2−α1

)1/2−δ � O(ω)ε2−α1/2−(α1−2)δ.

If β andδ are chosen so that

0< α1 + 2δ(2− α1) < 2β, (5.12)
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then, forε sufficiently small,|εW−(t)| � O(ω)ε2−β. This also implies that dist(∂E(t), ∂F (t)) > 0 during this
whole interval.

2. SinceE(t) is the solution to the mean curvature flow (1.1) andE0 is a cone, it follows thatE(t) is a self-
similar evolving shape of the form

E(t) = {
(x, y) ∈ R

2: y <
√

tf (x/
√

t) − ε2−β
}
, (5.13)

wheref (·) :R → R+ is an even, convex and positive function.
At time t = T ε

1 (ω) = h3(ω)ε2+γ , the y-coordinate of the boundary∂E(t) at x = 0 satisfies, for sufficiently
smallε,√

T ε
1 (ω)f (0) − ε2−β = O(ω)ε1+γ /2 − ε2−β > 0. (5.14)

In view of Lemma 5.5, the numberγ can be taken to be as small as possible by choosing small enoughδ. Hence{
(x, y) ∈ R

2: y < 0
}⊆ E(t) ⊆ F(t) for t ∈ [T ε

1 (ω),h4(ω)ε2−α1
]
. (5.15)

3. We now apply Proposition 4.6 withH(t) = U(t + η), andG(t) = F(t). It is clear that (4.7)(i) and (4.7)(ii
hold, if 0< η is small enough anda = 1/2.

Next consider the set

A = B(
√

3−1)/4

(
−1

2
,

√
3+ 1

4

)
∪ B(

√
3−1)/4

(
1

2
,

√
3+ 1

4

)
⊆ H0\G0.

If A evolves according to (3.3), it will not disappear before a timeT (ω), which is independent ofε. Hence (4.7)(iii)
and (4.7)(iv) also hold for 0� t � T (ω) andb = (

√
3− 1)/8.

4. For t ∈ [0, T ε
1 (ω)], Proposition 5.1 yieldsΓ 0 ⊆ H(t). Hence Proposition 4.6 leads to (4.8) for this sa

time interval. Moreover, fort ∈ [T ε
1 (ω),h4(ω)ε2−α1], in view of (5.14) and (5.15), we also haveΓ 0 ⊆ G(t). Then

Proposition 4.6 again implies (4.8).
Combining all the above, we obtain, fort ∈ [0, h4(ω)ε2−α1 −η], thatB(t) ⊆ U(t +η). Lettingη → 0 concludes

the proof. ✷
The next lemma is needed to conclude the proof of Proposition 5.2.

Lemma 5.9. There existT ∗(ω) > 0, h5(ω) > 0, 0 < α2 < 1/2 and balls {B(t)}t�0 such that, for t ∈
[h5(ω)ε2−α2, T ∗(ω)], B(t) ⊆ U(t).

Proof. 1. Consider the setsH(t) = U(t + η) andG(t) = BR(t)(0,1)c , whereR(t) solves (3.2) andη is a small
positive number. It is easy to check that all the assumptions of Proposition 4.6 hold.

2. The lowery-coordinate of∂G(t) at x = 0 solves

ẏ = [
1− y(t)

]−1 + εẆ (t), y(0) = 0,

or in integral form

y(t) =
t∫

0

ds

1− y(s)
+ εW(t).

For ε small enough, there existsT ∗(ω) such that|y(t)| � 1/2 for t ∈ [0 � T ∗(ω)]. It follows that y(t) �
2t + εW(t). In addition, (5.5) yields that|W(t)| � h2(ω)t1/2−δ in this same interval. Therefore,

t > ε|W(t)| for t > εh2(ω)t1/2−δ.



P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré – AN 21 (2004) 1–23 17

12),

ore

c by
d

,

This condition for t is equivalent tot > h5(ω)ε2/(1+2δ) = h5(ω)ε2−α2 for some constanth5(ω) and α2 =
4δ/(1+ 2δ). Hence, fort ∈ [h5(ω)ε2−α2, T ∗(ω)], we havey > t > 0. ✷

We continue with the

Proof of Proposition 5.2. The conclusion follows by applying Proposition 4.6. Note that, in view of (5.
we may assume that 0< α2 < α1. Then, fort ∈ [0, h4(ω)ε2−α1], Lemma 5.8 yieldsΓ 0 ⊆ H(t). This leads to
(4.8). Next, fort ∈ [h5(ω)ε2−α2, T ∗(ω)], we haveΓ 0 ⊆ G(t). Once more Proposition 4.6 implies (4.8). Theref
G(t) ∩ Q ⊆ H(t) ∩ Q which implies thatB(t) ⊆ U(t + η). Lettingη → 0 completes the proof.✷

To prove Proposition 5.3, we need the following:

Theorem 5.10.Let {K(t)}t�0 be a generalized flow to(1.1)starting fromU0. For anyr > 0, let r(t) = √
r2 − 2t

and Tr = (7/32)r2. If there existsr0 > 0 such that, for allr < r0 and t ∈ [0, Tr ], Br−r(t) ⊆ K(t) holds, then
K(t) = U∗(t).

The idea of proof is to squeezeK(t) betweenU∗(t) and the following a re-scaled version ofU∗(t)

ρU∗
(

t − δ

ρ2

)
⊆ K(t) ⊆ U∗(t), 0< ρ < 1, δ > 0,

where, for any subsetA of R
N , ρA = {ρx: x ∈ A}.

Letting δ → 0 and thenρ → 1 gives the desired result. The right-hand side inclusion is automati
Proposition 4.3, while the left-hand side one requires an improved rate of opening forK(t), which can be obtaine
from the hypotheses.

Proof of Theorem 5.10.1. Let δ = Tr = (7/32)r2. The radius of the ballBr−r(t) at Tr is equal tor/4, or
equivalently,

√
2δ/7. Hence the rate of vertical opening is given, fort small, by(2t/7)1/2. Below we improve

this rate to beMt1/2, whereM can be as large as possible.
2. The maximum principle and the hypotheses yield that, for all 0< r < r0 andt ∈ [0, Tr ],

B√
1−2t (p1) ∪ Br−r(t) ∪ B√

1−2t (p2) ⊆ K(t).

It follows that, fort = δ, we have

B√
1−2δ(p1) ∪ B√

2δ/7 ∪ B√
1−2δ(p2) ⊆ K(δ). (5.16)

Consider the intersection point̄A = (x̄, ȳ) between∂B√
1−2δ(p2) and∂B√

2δ/7 which, obviously (see Fig. 5)
satisfies

x̄2 + ȳ2 = 2δ

7
and (x̄ − 1)2 + ȳ2 = 1− 2δ.

It follows that

x̄ = 8δ

7
and ȳ =

√
2δ

7
−
(

8δ

7

)2

,

and, hence, asδ → 0,

ȳ → ∞. (5.17)

x̄



18 P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré – AN 21 (2004) 1–23

of

e

3. LetG(t) be the generalized flow to (1.1) starting fromG(0) = {y < |x| tanα}, whereα ∈ (0, π
2 ). Similarly to

(5.13),∂G(t) has the self-similar shape

G(t) = {
(x, y) ∈ R

2: y <
√

tfα(x/
√

t)
}
,

wherefα(·) :R → R+ is an even convex function. Hence they-coordinate of∂G(δ) atx = 0 at timet = δ is given
by

√
δfα(0).

We apply once again Proposition 4.6 for the motion law (1.1) withG(t) given above andH(t) equal toK(t +δ).
In view of (5.17), we have that, for allM > 0, there existδ0, a, b > 0 and tanα > M such that the hypotheses
Proposition 4.6 hold forT = δ < δ0. Moreover, we may assume thatfα(0) > M. Hence the following improved
version of (5.16) holds:

B√
1−2δ(p1) ∪ BMδ1/2 ∪ B√

1−2δ(p2) ⊆ K(2δ).

Considering again the intersection pointA∗ = (x∗, y∗) between∂B√
1−2δ(p2) and∂BMδ1/2 (see Fig. 6), we find

that it is of the form

x∗ =
(

M2 + 2

2

)
δ and y∗ =

√
M2δ − x∗2 ≈ Mδ1/2 asδ → 0.

Next we chooseρ = M2/(M2 + 2) – observe thatρ → 1 asM → ∞. Then, forM large enough, we have (se
Fig. 6.):

Bρ(−ρ,0) ∪ Bρ(ρ,0) ⊆ B√
1−2δ(p1) ∪ BMδ1/2 ∪ B√

1−2δ(p2) ⊆ K(2δ).

Fig. 5. Construction of a sub-solution using a wedge.

Fig. 6. Construction of a sub-solution using a re-scaled version of the initial data.
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ith
Since,Bρ(−ρ,0) ∪ Bρ(ρ,0) = ρ(B1(p1) ∪ B1(p2)) = ρU0, it follows

ρU0 ⊆ K(2δ). (5.18)

4. Definev(x, t) = 1K(t+2δ) − 1K(t+2δ)c , and, forη > 0, letuη ∈ BUC(R2 × R+) be the solution to (1.2) with
initial datum

uη(x,0) =



min(dist(x,∂U0)
η

,1) for x ∈ U0,

max(−dist(x,∂U0)
η

,−1) for x ∈ Uc
0 .

To make use of (5.18), we also consider the solutionu
ρ
η of (1.2) with initial datumu

ρ
η(x,0) = uη(xρ

−1,0). Note
that, for allη > 0 and 0< ρ < 1,{

x: uη(x,0) > 0
}= U0,

{
x: uη(x,0) = 0

}= ∂U0,
{
x: uη(x,0) < 0

}= Uc
0, and{

x: uρ
η(x,0) > 0

}= ρU0,
{
x: uρ

η(x,0) = 0
}= ρ∂U0,

{
x: uρ

η(x,0) < 0
}= ρUc

0.

The fact that dist(∂(ρU0), ∂K(2δ)) > 0, yields the existenceη > 0 such thatuρ
η(· ,0) � v∗(· ,0) onR

2. Sincev
is (viscosity) solution to (1.2), Proposition 4.4 implies thatu

ρ
η � v∗ in R

2 × R+, and, hence, fort � δ,{
x: uρ

η(x, t) � 0
}⊆ K(t + 2δ) or equivalently

{
x: uρ

η(x, t − δ) � 0
}⊆ K(t).

In addition the geometric properties of (1.2) also imply that

{
x: uρ

η(x, t − 2δ) � 0
}= {

x: u
ρ
1(x, t − 2δ) � 0

}
.

Finally, in view of the uniqueness of the viscosity solution of (1.2), we haveu
ρ
1(x, t) = u1(ρ

−1x,ρ−2t). Hence the
inclusion above can be written, fort � δ, as{

x: u1

(
x

ρ
,
t − 2δ

ρ2

)
� 0

}
⊆ K(t).

5. Let p anda > 0 be such thatp ∈ Int{x: u1(x, t) � 0} andBa(p) ⊂ {x: u1(x, t) � 0}. Using this ball as a
comparison set, we deduce the existence of sufficiently small 0< δ1, δ2 such thatBδ1(p) ⊂ {x: u1(x, s) � 0} for
s ∈ [t, t + δ2]. Then the previous inclusion yields thatp ∈ K(t). This implies thatU∗(t) = Int{x: u1(x, t) � 0} ⊆
K(t). Finally the inclusionK(t) ⊆ U∗(t) (see [6]) concludes the proof.✷

We continue with the

Proof of Proposition 5.3. 1. Letu anduε ∈ BUC(R2 × R+) be respectively the solutions to (1.1) and (3.3) w
initial data such that{

x: u(x,0) > 0
}= {

x: uε(x,0) > 0
}= U0,{

x: u(x,0) = 0
}= {

x: uε(x,0) = 0
}= ∂U0,{

x: u(x,0) < 0
}= {

x: uε(x,0) < 0
}= U0.

Proposition 4.3 yields{
x: uε(x, t) > 0

}⊆ Uε(t) ⊆ {
x: uε(x, t) � 0

}
.

Moreover, in view of the stability properties of the stochastic viscosity solutions (Theorem 7.1),uε converges in
C(RN,R+) to u. Hence we have:

1{u(t)>0} � lim inf
ε→0

1Uε(t) � lim sup1Uε(t) � 1{u(t)�0}.

ε→0
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2. Arguing similarly to the proof of Lemma 5.9 yields that, for all sufficiently smallr > 0 and t ∈
[r2−αε2−αh4(ω),T ε

r (ω)],
Brε(t)(0, r)

c ∩ {(x, y) ∈ R
2: |x| < r/4, |y| < r

}⊆ U(t) ∩ {(x, y) ∈ R
2: |x| < r/4, |y| < r

}
,

whererε(t) solves

drε = −(rε)−1 dt + ε dWt with rε(0) = r andrε
(
T ε
r (ω)

)= 3r/4.

It is easy to see (no stochastic calculus needed) that, asε → 0, rε(t) → r(t) = √
r2 − 2t locally uniformly in t ,

r(t) being the solution tȯr = −r−1. MoreoverT ε
r → Tr = 7r/32.

We also have that

Br−rε(t) ⊆ Brε(t)(0, r)
c ∩ {(x, y) ∈ R

2: |x| < r/4, |y| < r
}
.

Hence it follows, fort ∈ [0, T ε
r ] andδ > 0 sufficiently small, that

Br−rε(t) ⊆ Uε(t + δ).

Theorem 5.10 and Proposition 4.7 yield the existence ofρ ∈ (0,1) and sufficiently smallε such that

1{x: u1(x/ρ,(t−2δ)/ρ2)�0} � 1{x: uε(x,t)>0} � 1Uε(t) � 1{x: uε(x,t)�0}.

Letting ε → 0, we obtain

1{x: u1(x/ρ,(t−2δ)/ρ2)�0} � lim inf
ε→0

1{x: uε(x,t)>0} � lim inf
ε→0

1Uε(t)

� lim sup
ε→0

1Uε(t) � lim sup
ε→0

1{x: uε(x,t)�0} � 1{x: u(x,t)�0},

which again gives

1Int{x: u(x,t)�0} � lim inf
ε→0

1Uε(t) � lim sup
ε→0

1Uε(t) � 1{x: u(x,t)�0}. ✷

6. The proof of Theorem 3.2

The proof is based on the analysis of the stochastic perturbation of an ordinary differential equation. Th
already given in the remarks following the statement of the theorem.

Proof of Theorem 3.2. 1. Consider first the deterministic motion law (3.4), which can be completely characte
by the motion of the two circlesBR(t)(q1) andBR(t)(q2), and letTe be their extinction time. If the functionG is
defined by

G(t,X) = − 1

X + 2
+ g(t),

then thex-coordinate of the right most point of∂BR(t)(q1), which is given byX(t) = R(t) − 2, satisfies

dX(t) = G
(
t,X(t)

)
dt, X(0) = −1, and X(Te) = −2.

For simplicity, we defineX(t) ≡ −2 for t > Te. We assume thatg andX are smooth functions oft , and that there
exists a unique timet∗ ∈ [0, Te] such thatX(t∗) = 0, i.e.,X(t) < 0 for t ∈ [0, t∗).

2. Next consider the stochastic motion law (3.5). The thex-coordinate of the right most point of the evolvin
set, which is denoted byXε , solves the initial value problem

dXε(t) = G
(
t,Xε(t)

)
dt + ε dWt , Xε(0) = −1,
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which also has has a unique solution.
Let tε∗(ω) = inf{t : Xε(t) = 0}. The two ballsBR(t)(q1) andBR(t)(q2) touch each other if and only iftε∗ (ω) < ∞.

If this happens, we can invoke Theorem 3.1 to conclude thatV ε(t,ω) opens vertically fort > tε∗ (ω). Otherwise, the
two balls will never touch. In this caseV ε(t,ω) is just the union of two separated balls, which evolve independe
of each other.

3. Define the sets

A = {
ω: there existsε0 such that for 0< ε < ε0, Xε(t) = 0 for somet

}
, and

B = {
ω: there existsε0 such that for 0< ε < ε0, Xε(t) < 0 for all t

}
.

It follows that the claim we are trying to prove is equivalent to

P(A) = P(B) = 1

2
. (6.1)

4. To prove the above equality, we writeXε asXε(t,ω) = X(t)+ εYε(t,ω). ExpandingG(t,Xε) aroundX, we
find thatY ε satisfies the differential equation

dYε = GX

(
t,X(t)

)
Yε dt + ε

2
GXX(t, ξ)Yε

2 dt + dWt ,

whereξ is such that∣∣X(t) − ξ(t)
∣∣� ∣∣X(t) − Yε(t)

∣∣.
Since the coefficient ofdWt is a constant, deterministic theory is sufficient for the analysis of the above equ

It can be shown, in particular, that, a.s. inω, asε → 0, Yε(t) converges uniformly in[0, Te], to Z(t) which solves
the following linear stochastic differential equation:

dZ = GX(t,X)Z dt + dW.

But Z is a (Hölder) continuous Gaussian processes with Hölder exponentγ < 1
2. Therefore

P
{
ω: Z(t∗,ω) > 0

}= P
{
ω: Z(t∗,ω) < 0

}= 1

2
.

The claim (6.1) will follow as soon as we establish the inclusion{
ω: Z(t∗) > 0

}⊆ A and
{
ω: Z(t∗) < 0

}⊆ B.

5. To conclude we remark that

(i) A = {ω: there existsε0 such that for 0< ε < ε0, εYε(t) = −X(t) for somet},
(ii) B = {ω: there existsε0 such that for 0< ε < ε0, εYε(t) < −X(t) for all t > 0},
(iii) Xε(t∗) = 0, −Xε(t) � 0, and,
(iv) lim ε→0 −ε−1Xε = +∞, uniformly on[0, Te]\(Te − η,Te + η) and allη > 0.

If Z(t∗) > 0, in view of the uniform convergence ofYε to Z, we haveYε(t∗) > 0 for ε small enough. Henc
εYε(t∗) � −Xε(t∗) = 0, which implies (i) above. IfZ(t∗) < 0, the continuity ofZ in t and the earlier remark yiel
that, fort ∈ [0, Te] andε small enough,−Xε(t) > ε(Z(t) + δ), where 2δ = −Z(t∗). The uniform convergence o
Y ε to Z again leads to−ε−1Xε(t) > Yε(t) for t ∈ [0, Te] andε small enough. This implies (ii). The proof is no
complete. ✷
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7. Some of the basic properties of stochastic viscosity solutions

The notion of stochastic viscosity solutions for fully nonlinear, second-order, possibly degenerate, sto
partial differential equations such as (3.3) or (3.5) was introduced by P.-L. Lions and one of the authors in [
Instead of repeating the definition, which is a bit cumbersome, we summarize in the next theorem, which
without proof, some of the key properties of the stochastic viscosity solutions of{

du + F(D2u,Du,x, t) dt = ε|Du| ◦ dWt in R
N × R+,

u(· ,0) = u0(·) onR
N

(7.1)

and {
du = ε|Dv| ◦ dWt in R

N × R+,

u(· ,0) = u0(·) onR
N .

(7.2)

We have:

Theorem 7.1.The following hold a.s. inω:
1. There exists a unique solution to(7.1)and(7.2).
2. Let {ξα(t)}α>0 and {ηβ(t)}β>0 be two families of smooth functions such that asα andβ → 0, ξα and ηβ

converge toW uniformly on compact int and a.s. inω. Let {uα}α>0 and {vβ}β>0 in BUC(RN × R+) be the
solutions to(7.1) (resp.(7.2))withW replaced byξα andηβ respectively. Iflimα,β→0 ‖uα(· ,0) − vβ(· ,0)‖C(RN) =
0, then, for all T > 0, limα,β→0 ‖uα − vβ‖C(RN×[0,T ]) = 0. In particular, any smooth approximations ofW
produce solutions converging to the unique function stochastic viscosity solution of(7.1) (resp.(7.2)).

3. Asε → 0, the solutionuε of (7.1)converges inC(RN × R+) to the solutionu of (7.1)with ε = 0.
4. LetSF andSW be respectively the solution operators of(7.1) for ε = 0 and(7.2). Then the function

u�(· , t) = SW
(
t − [t/�t])

( [t/�t ]∏
i=1

[
SF (�t)SW (�t)

])
ϕ(·)

converges inC(RN ×R+) and a.s. inω, as�t → 0, to the solutionu of (7.1)with u(· ,0) = ϕ(·) . Here[x] denotes
the largest integers less than or equal tox.
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[8] J. Bertoin, Lévy Processes, Cambridge University Press, 1996.
[9] K. Brakke, The Motion of a Surface by its Mean Curvature, in: Mathematical Notes, vol. 20, Princeton University Press, Prince

1978.
[10] Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. D

Geom. 33 (1991) 749–786.



P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré – AN 21 (2004) 1–23 23

rential

. 45 (1992)

Differential

7–461.
re tensor,

(1998)

. R. Acad.

R. Acad.

ad. Sci.

n Math.,
[11] N. Dirr, S. Luckhaus, M. Novaga, A stochastic selection principle in case of fattening for curvature flow, Calc. Var. Partial Diffe
Equations 13 (2001) 405–425.

[12] L.C. Evans, J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (1991) 635–681.
[13] L.C. Evans, H.M. Soner, P.E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math

1097–1123.
[14] T. Funaki, Singular limits of reaction diffusion equations and random interfaces, Preprint.
[15] S. Goto, Generalized motion of noncompact hypersurfaces whose growth speed depends superlinearly on the curvature tensor,

Integral Equations 7 (1994) 323–343.
[16] T. Ilmanen, Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993) 41
[17] H. Ishii, P.E. Souganidis, Generalized motion of noncompact hypersurfaces with velocities having arbitrary growth on the curvatu

Tôhuko Math. J. 47 (1995) 227–250.
[18] Y. Koo, A fattening principle for fronts propagating by mean curvature plus a driving force, Comm. PDE 24 (1999) 1035–1053.
[19] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, second ed., Springer-Verlag, 1991.
[20] P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326

1085–1092.
[21] P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C

Sci. Paris Sér. I Math. 327 (1998) 735–741.
[22] P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations with semilinear stochastic dependence, C.

Sci. Paris Sér. I Math. 331 (2000) 617–624.
[23] P.-L. Lions, P.E. Souganidis, Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Ac

Paris Sér. I Math. 331 (2000) 783–790.
[24] H.M. Soner, Motion of set by the curvature of its boundary, J. Differential Equations 101 (1993) 313–372.
[25] P.E. Souganidis, Front propagation: theory and applications, in: Viscosity Solutions and their Applications, in: Lecture Notes i

vol. 1660, Springer-Verlag, 1997.
[26] J. Taylor, II-mean curvature and weighted mean curvature, Acta Metall. Meter. 40 (1992) 1475–1485.
[27] J. Taylor, J.W. Cahn, C.A. Handwerker, I-geometric models of crystal growth, Acta Metall. Meter. 40 (1992) 1443–1474.
[28] N.K. Yip, Stochastic motion by mean curvature, Arch. Rational Mech. Anal. 144 (1998) 313–355.
[29] N.K. Yip, Existence of dendritic crystal growth with stochastic perturbations, J. Nonlinear Sci. 8 (1998) 491–579.


