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ABSTRACT
We analyze the quality of monitoring (QoM) of stochas-
tic events by a periodic sensor which monitors a point
of interest (PoI) forq time everyp time. We show how
the amount of information captured at a PoI is affected
by the proportionq/p, the time intervalp over which the
proportion is achieved, the event type, and the stochastic
event arrival dynamics and staying times. The periodic
PoI sensor schedule happens in two broad contexts. In
the case of static sensors, a sensor monitoring a PoI may
be periodically turned off to conserve energy, thereby
extending the lifetime of the monitoring until the sensor
can be recharged or replaced. In the case of mobile sen-
sors, a sensor may move between the PoIs in a repeating
visit schedule. In this case, the PoIs may vary in impor-
tance, and the scheduling objective is to distribute the
sensor’s coverage time in proportion to the importance
levels of the PoIs. Based on our QoM analysis, we opti-
mize a class of periodic mobile coverage schedules that
can achieve such proportional sharing while maximizing
the QoM of the total system.

1. INTRODUCTION
There is considerable interest in using sensors to

protect populated areas against physical hazards,
such as chemical, biological, nuclear, radiational,
and explosive (CBNRE) leaks/attacks. Real-world
sensors have limited ranges of tens to hundreds of
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feet. If the area to be protected is large, it may be
difficult to deploy a sufficient number of sensors to
cover the entire area. This leads to strong interest in
the use of mobile sensors to expand the area of cov-
erage, so that one sensor can cover multiple points
of interest (PoIs) where interesting events may dy-
namically appear and disappear.

Note that there are many real-world examples of
mobility in monitoring tasks. In traditional pub-
lic safety work, policemen are on patrol schedules
around town to detect crimes. In national secu-
rity, reconnaissance planes routinely fly over mis-
sion areas to collect surveillance images, since the
installation of (static) video cameras in the mission
areas may be out of the question (e.g., they are
foreign or enemy territories). In the case of sensor
networks, certain sensors are expensive and com-
plete area coverage by static sensors would have pro-
hibitive costs. For example, in the Memphis Port
deployment against water pollution/poisoning [10],
the engineers emphasize in the project report that
with the high procurement, installation, and man-
agement costs of the Smith APD2000 chemical sen-
sors, it was not possible to have complete area cover-
age. They then made the difficult decision to (stati-
cally) place the sensors where the impact on people
protection is highest.

There are also situations in which, independent
of costs, mobility is required for the sensor network.
For example, when (static) sensors are placed at
PoIs where long-range data communication is dif-
ficult (e.g., underwater [1], where the high wireless
signal attenuation makes it infeasible to transmit
sensor data over long distances, or in an under-
ground system of ducts where complex pathways
connect the PoIs so that the placement of commu-
nication nodes to reliably get data out from under-
ground is extremely hard), a mobile node is neces-
sary to move between the PoIs to collect the sensor
data and carry them to a data center for analysis.
In this case, data may be buffered at a sensor before
they are read, but the buffer capacity is limited so
that unread data may be replaced by newer data
and lost. Hence, the data available for reading are



similar to stochastic events that stay for a time du-
ration after which they will disappear.1 The use
of mobile node for data collection also has the ad-
vantage of reducing the sending energy of the sen-
sors [3].

At the same time, it is recognized that the surveil-
lance region may not be homogeneous, but different
PoIs may vary in importance. For example, a real-
ized but undetected threat in some parts may im-
pact a more densely populated region than in oth-
ers, as in the Memphis Port deployment. In this
case, simple area of coverage is no longer sufficient.
An arguably more suitable goal is to allocate sens-
ing resources to the different parts in proportion
to their importance levels. Proportional sharing of
resources is not a new concept. The notion has
been employed in the scheduling of CPU time, net-
work bandwidth, etc [6, 8], where the performance
impact on the rates of computation and communi-
cation has been well studied. In the case of sen-
sor coverage, however, proportional sharing must
be evaluated in terms of its impact on the quality of
monitoring (QoM), which can be expressed as the
number of interesting events captured, or the total
amount of information captured about these events.
The problem is not well understood.

In this paper, we target the problem of infor-
mation capture about stochastic events at a set of
PoIs that may have different importance levels. The
events are detected by a mobile sensor which allo-
cates its coverage time among the PoIs in propor-
tion to the importance levels. Our contributions
are two fold, summarized as follow.

First, we provide extensive analysis to answer the
following questions as a function of the event dy-
namics and type of event: (1) What is the QoM of
a sensor that covers a PoI for q time every p time?
Does a higher proportional share of q/p imply a
linearly higher QoM? (2) For the same q/p, what
is the impact of the period p that controls the fair-
ness granularity of the proportional sharing? Under
what situations is finer/coarser time-scale sharing
preferred over the other? (3) What is the scaling
law of mobile coverage, i.e., when a mobile sensor
is allocated among k out of n PoIs, how is the aver-
age QoM over all the PoIs affected as k increases?
Can mobility fundamentally improve the sensing by
increasing the achievable QoM?

Second, based on the QoM analysis, we will ana-
lyze the performance of a class of periodic coverage
algorithms considering the travel time overhead be-
tween PoIs. We first optimize a linear periodic sen-

1The sensing range in Section 2 will then correspond to
the communication range between the sensor and the
mobile node. The event utility function there might
account for the time needed for different useful fractions
of the total data (about a physical world event) to be
uploaded from the sensor to the mobile node.

sor schedule for maximum total QoM that achieves
given proportional shares of the coverage time. We
then discuss the optimization of general periodic
schedules. We present a simulated annealing algo-
rithm, which can within a practical time budget,
find a solution close to the global optimal.

We also mention in passing that independent of
mobility, the analysis of periodic sensor schedules
has obvious applications in energy-efficient sensing.
In this case, an energy-constrained static sensor may
be deployed at each PoI, and there is a need to pe-
riodically turn off the sensor to conserve energy, so
that the sensor will last long enough until it can
be recharged or replaced. Our analysis in Section 4
gives directly the QoM of such a periodic sensor.
In particular, our results show that for events that
stay, the QoM of a sensor working for q/p of the
time may capture a fraction of information much
higher than q/p. Hence, such periodic scheduling
of the sensors can be quite productive. Our re-
sults also show where it is useful (or not) to have
finer granularity of the periodic scheduling, in terms
of a smaller p, to achieve a higher QoM. In this
case, however, it is clear that the benefits of ex-
tremely fine grained periodic scheduling may be lim-
ited/offset by the latency and energy costs of turn-
ing on/off a sensor. The development of the full de-
tails such as the energy models is out of the scope
of the present paper. Also, for simplicity of expo-
sition, we will develop our problem from the point
of view of mobile coverage only in the rest of the
paper.

2. PROBLEM STATEMENT
We assume that events appear and disappear at

given points of interest (PoIs) and are to be moni-
tored by a sensor of sensing range R. The PoIs are
located on a 2D plane. A pair of PoIs, say i and
j, are connected by a road, given by Eij , of dis-
tance dij . If there is no road that directly connects
i and j, dij = ∞. Otherwise, the sensor traveling
at speed v from i to j takes time dij/v to complete
the trip.

The next set of assumptions concerns the event
dynamics. The events appear at PoI i one after an-
other. After appearing, each event stays for a dura-
tion of time, which we call the event staying time,
and then disappears. The next event appears after
another duration of time, which we call the event
absent time. We denote the sequential staying and
absent times by {X i

k}k≥1 and {Y i
k}k≥1. The event

inter-arrival time is then denoted by Zi
k = X i

k +Y i
k .

We assume that (for each i) the {(X i
k, Y i

k )}k≥1 are
i.i.d. random variables drawn from a common dis-
tribution (X i, Y i), even though the X i

k and Y i
k may

be dependent. However, the event dynamics at dif-
ferent PoIs are assumed to be independent. Lastly
the commonly known event arrival times can be re-
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Figure 1: The utility functions.

covered by the formula: T i
0 = 0, T i

k = T i
k−1 + Zi

k

for k, i ≥ 1 even though the T i
k’s will not be used in

the analysis.
We further classify the events as follows. When

the staying time drawn from X i is always an in-
finitesimally small ǫ amount of time, the correspond-
ing events are like “blips”, i.e. they do not stay but
disappear instantaneously after arrival. Another
type of events are those which stay, i.e. there is
an 0 < ǫ ≪ 1 such that P (X ≥ ǫ) = 1. An event at
a PoI is captured by the sensor provided that the
PoI is within range of the sensor during the event’s
lifetime. We assume that events are identifiable, i.e.
when the sensor that sees an event at a PoI, leaves
the PoI, but comes back later to see the same event,
it will know that it is the same event. We assume
that as the sensor observes an event, the informa-
tion it accumulates about the event increases as the
observation time increases. We quantify the sensing
quality as a utility function that increases monoton-
ically from zero to one as a function of the total ob-
servation time. Fig. 1 illustrates the following five
examples of the utility function:

(a) Step function: UI(x) = 1 for x ≥ 0. Full infor-
mation about an event is obtained instantaneously
on detection. (b) Exponential function: UE(x) =
1 − e−Ax. Much of the information about an event
is obtained at the beginning but the marginal gain
decreases as the observation time gets longer. (c)
Linear function: UL(x) = Mx for 0 ≤ x ≤ 1

M and

UL(x) = 1 for x ≥ 1
M . Information obtained in-

creases linearly with the observation time until the
full information is achieved. (d) S-shaped function
US(x). The initial observation gains little infor-
mation until a critical observation time is reached,
at which point there is a large marginal gain of
information in a short time, and afterwards the
marginal gain drops sharply as the full information
is approached. (e) Delayed step function UD(x) =
UI(x − D). No information is gained until the to-
tal time of observation exceeds a threshold value D,
after which the full information is captured instan-
taneously. We view (a) and (e) as extreme cases.
All of the above, excepting (d), are quite amenable
to analytical formulations.

When PoI i falls within the range of the sensor,
we say that the sensor is present at i. Otherwise,

the sensor is absent from i. Since we are interested
in the resource competition between different PoIs,
we make the following assumption.

Assumption 1. The PoIs and the roads between
them are separated such that (1) no two PoIs fall
within the range of the sensor at the same time; (2)
for the sensor traveling from PoI i to PoI j on Eij

at speed v, i will be within range of the sensor for
R/v time before the sensor leaves i, and j will be
within range of the sensor for R/v time until the
sensor reaches j, and (3) no PoI other than i and j
falls within the range of the sensor during the trip
on Eij. In general, however, the sensor can vary
its speed while traveling on a road.

2.1 Definition of QoM
We now define the quantitative measurement of

the QoM at a PoI or for the whole protected area.
In the course of a deployment, denote by ei

1, . . . , e
i
mi

the sequence of events appearing at PoI i over the
duration [0, T ] of the deployment. For the event
ei

j , assume that it is within range of the sensor for
a total (but not necessarily contiguous) amount of
time tij , where tij ≥ 0. The sensor will then gain

a certain amount of information, U i
j(t

i
j), about ei

j,

where U i
j(·) is the utility function of ei

j . The total
information gained by the sensor at i is defined by
Ei(T ) =

∑

1≤j≤mi
U i

j(t
i
j), and the average informa-

tion gained per event at i during the whole deploy-
ment period is then Ēi(T ) = Ei(T )/mi. Similarly,
the total information gained by the sensor in the
whole deployment is E∗(T ) =

∑

1≤i≤n Ei(T ), where
n is the number of PoIs in the protected area. The
average information gained per event in the whole
deployment is then

Ē∗(T ) =

0

@

X

1≤i≤n

miĒi(T )

1

A /(
X

1≤i≤n

mi).

By means of the strong law of large numbers and
renewal theory, Ēi(T ) and Ē∗(T ) will converge to a
deterministic number as T −→ ∞. Hence we define
the QoM of PoI i and the whole covered area as:

Qi = lim
T→∞

Ēi(T ), and Q∗ = lim
T→∞

Ē∗(T ). (1)

Furthermore, they are related by:
Q∗ =

1

µ∗

X

1≤i≤n

µiQi, (2)

where µi = 1
E(Z) is the mean event arrival rate at

PoI i and µ∗ =
∑

1≤i≤n µi.
Note that in defining the QoM, we should in prin-

ciple divide not by the number of events m, but
by the maximum possible utility achievable for an
event:

∫ ∞

0
U(x)f(x) dx, where f(x) is the pdf of

the event staying time distribution. The latter may
be less than 1 if the events do not stay infinitely
long. However, the difference is by a proportional-
ity constant only, and will not affect our comparison
results. Unless otherwise stated, we will further as-
sume that all the events at i have the same utility
function, and denote this function by U i(·).



3. RELATED WORK
Area coverage in a sensor network has been well

studied [4, 12]. Protocols have been proposed to
task subsets of sensors in a dense network to pro-
vide maximum lifetime area coverage [15]. Simple
area coverage does not consider the varying impor-
tance of different sub-regions. Our work addresses
the heterogeneity of sub-regions by proportional-
share coverage. Proportional-share resource alloca-
tion has been proposed for CPU/network schedul-
ing [6, 8]. Mobile coverage has the additional chal-
lenge that sensor schedules can be severely con-
strained by the adjacencies and distances between
the PoIs.

The importance of the sensing time in accurately
assessing various physical phenomena has been well
documented [9]. The need for non-negligible sens-
ing durations to obtain useful information is due to
noises in the measurement process and the proba-
bilistic nature of the phenomena under observation.
The impact of the sensing time is captured by the
event utility functions in our problem statement.

Mobility has been discussed in delay-tolerant, ve-
hicular, and sensor networks. Passive mobility has
been analyzed for its effects on providing commu-
nication opportunities [5, 16]. Mobility control has
been used to deploy ferries and data mules among a
number of data sources, to optimize communication
of the source data to the data sink [13, 17].

The dynamics of real-world events are frequently
modeled as stochastic processes. Poisson arrivals
are generally accurate characterizations of a large
number of independent event occurrences, whose
event inter-arrival times are Exponentially distributed.
Real-world network/computing workloads have prop-
erties that are found to be long-range dependent [11],
which follow the Pareto distribution. In a sensor
network, the target events may have similar dy-
namic behaviors. For example, radioactive particles
arriving at a Geiger-Müller counter follow a Poisson
process [9]; a chemical leak at a facility may occur
with a probability, and the leak may persist for a
random duration until the chemical has been dis-
persed.

The sensing of stochastic events by a mobile sen-
sor has been studied in [1]. Our problem in this pa-
per is quite different. First, we consider differential
coverage of PoIs by proportional sharing whereas
they do not. In particular, we analyze the QoM of
periodic sensor schedules, as a function of the pro-
portional share q/p and the period p. Such anal-
ysis has applications besides mobile coverage, e.g.,
energy-efficient sensing by periodically turning off a
sensor. Second, we consider sensing tasks with the
temporal dimension as defined by the event util-
ity function, whereas they focus on the number of
captured events only, where an event is captured

whenever it falls within the sensing range of a sen-
sor, no matter how brief the sensing time. Third,
we define the concepts of linear and general peri-
odic schedules among the PoIs, and design optimal
algorithms for both kinds of schedule.

4. SINGLE-POI ANALYSIS OF QOM
We explain the impact on the QoM by the cover-

age schedule of a sensor at a given PoI. The schedule
specifies the time intervals over which the sensor is
present at or absent from the PoI. A given schedule
is achieved by how the sensor moves between the
PoIs according to some movement algorithm. The
problem of the algorithm design and the feasibility
of a set of PoI schedules are the subject of Section 5.

We can already illustrate some interesting QoM
properties of proportional-share mobile coverage by
considering only periodic schedules at individual PoIs.
Specifically, we assume that the sensor is alternately
present and absent at a PoI, say i, for qi and pi − qi

time units, respectively. For example, let S1 be the
following the coverage schedule of i:

S1 = {PAAAPAAA . . .}

for qi = 1 and pi = 4. In the schedule, P denotes
one time unit of the sensor’s presence and A de-
notes one time unit of the sensor’s absence. Thus
the proportional share equals qi/pi = 25% of the
sensor’s total coverage time.

Clearly, a given proportional share for i can be
achieved in many different ways. For example, qi =
2 and pi = 8 give the following schedule S2 with the
same 25% share for i:

S2 = {PPAAAAAAPPAAAAAA . . .}.

While S1 and S2 are equivalent from the proportional-
share point of view, they differ in terms of the time
scale over which the proportional share is achieved.
Specifically, S1 achieves the 25% share over a time
period of 4 time units, whereas S2 achieves the same
share over a period of 8 time units. We say that S1

has a finer fairness granularity than S2, and will use
pi to quantify this fairness granularity. Notice that
for a fixed proportional share, a smaller pi implies
a proportionately smaller qi.

The main purpose of this section is to analyze
the dependence of the QoM on the utility function
and the fairness granularity. In this section, as we
will focus on a single PoI, the subscript i will be
omitted where there is no confusion. We will fre-
quently denote the proportional share q

p by γ. For

simplicity, we use Pj = [(j − 1)p, (j − 1)p + q] and
Aj = [(j − 1)p + q, jp] to denote the j-th sensor
present and absent periods, respectively. For many
of the proofs, it is sufficient to consider just the case
j = 1, i.e. P1 = [0, q] and A1 = [q, p].

The problem as formulated in Section 2 fits per-
fectly well in the realm of renewal theory. One of
its main conclusions is that in the long run, the ex-



pected number of arrivals in an interval dt equals
µ dt where µ = 1/E(Z).

The following two types of event staying time dis-
tribution will be considered in this paper, where
f(x) is the pdf of X :

• Exponential Distribution (λ > 0):

f(x) = λe−λx, x > 0, mean =
1

λ
.

• Pareto Distribution (α, β > 0):

f(x) =
αβα

xα+1
, x > β, mean =

αβ

α − 1
.

Now we proceed to present our results. All of the
proofs will only be outlined due to space constraints,
but can be made fully rigorous.

4.1 Step utility function
We begin our discussion with events that have the

step utility function (see Fig. 1). In this case, since
the utility reaches one instantaneously, the QoM is
equivalent to the fraction of events captured. The
next result illustrates the effect on the QoM by a
periodic sensor schedule with parameters p and q at
a fixed PoI.

Theorem 1. For independent arrivals of events
that have the step utility function and do not stay,
i.e. ,“blip events”, the QoM at any PoI is directly
proportional to its share of coverage time q/p. In
particular, the achieved QoM does not depend on
the fairness granularity.

Proof. The statement is a consequence of the
fact that an event is completely captured if and
only if it arrives when the sensor is present. Hence
the QoM is simply the ratio between the expected
number (per unit time) of arrivals during the sensor
present period and the total period.

The above scenario shows that only the propor-
tional sharing information determines the QoM. On
the other hand, for events that do stay, the QoM de-
pends on the relationship between the event stay-
ing time distribution and the parameters p and q.
Specifically, we have the following result.

Theorem 2. For independent arrivals of events
that stay and have the step utility function, the QoM
at a PoI is given by

Q =
q

p
+

1

p

∫ p−q

0

Pr(X ≥ t) dt. (3)

Proof. As the utility function is a step func-
tion, the overall utility is given by the total num-
ber of events captured when the sensor is present.
Note that an event will be captured if (a) it ar-
rives during the sensor present period [0, q]; (b) it
arrives during the sensor absent period [q, p], but

stays long enough to be captured during the next
sensor present period [p, p + q]. The contribution
of (a) to the QoM is given by q

p , while that of (b)

is given by 1
p

∫ p

q
Pr(X + t ≥ p) dt, which is the sec-

ond term of Equation 3 after a simple change of
variable.

Theorem 2 implies that the sensor that stays at
a PoI for q/p of the time may be able to capture a
significantly larger fraction of events than q/p. The
following two corollaries give further statements due
to this extra fraction of events.

Corollary 1. Under the setting of Theorem 2,
with the fairness granularity p kept constant, we
have:

lim
γ→0

Q =
1

p

∫ p

0

Pr(X ≥ t) dt.

Proof. The proof is a direct consequence of Equa-
tion (3), upon taking the limit γ −→ 0.

This result clearly indicates that no matter how
small the proportional share is, there is always some
definite, positive gain of information. This is due to
the fact that the events stay.

Corollary 2. Under the setting of Theorem 2,
the QoM of a given fixed proportional share is a
monotonically decreasing function of the fairness
granularity, i.e., Q decreases as p increases. Fur-
thermore,

lim
p→0

Q(p) = 1, and lim
p→∞

Q(p) =
q

p
.

Proof. The statement again is a simple conse-
quence of Equation (3) which is re-written in the
following form:

Q = γ + (1 − γ)
1

(1 − γ)p

Z (1−γ)p

0
Pr(X ≥ t) dt.

where q
p = γ. The results follow by taking the cor-

responding limits.

In contrast to Theorem 1 for blip events, Corol-
lary 2 implies that finer-grained fairness does gen-
erally improve the QoM for staying events having
Step utility. In particular, no matter how small the
proportional share is, an arbitrarily high QoM can
be achieved by an extremely fine fairness granular-
ity.

We now consider a scaling result for mobile sensor
coverage among k out of n PoIs, whose event arrival
and departure processes are i.i.d., as k increases.
Assume that initially, the sensor achieves periodic
schedules among k of the n PoIs such that qi = δ
and pi = kδ, for 1 ≤ i ≤ k, where δ is a unit of
time. The following theorem holds.

Theorem 3. The expected fraction of events cap-
tured is an increasing function of k, the number of
PoIs covered.



Proof. The expected fraction of the events cap-
tured in the schedule is

Q∗ =
1

n

X

1≤j≤k

"

1

k
+

1

kδ

Z (k−1)δ

0
P (X ≥ t) dt

#

=
1

n

"

1 +
1

δ

Z (k−1)δ

0
P (X ≥ t) dt

#

which is clearly an increasing function of k.

Theorem 3 provides a formal justification for mo-
bile coverage, namely that the amount of informa-
tion captured increases as the sensor moves among
more PoIs to search for interesting information.

4.2 General utility function
We now turn our attention to events that have a

general utility function U(·). In this case, we have
the following QoM result.

Theorem 4. For independent arrivals of events
at a PoI that have the utility function U(·) and
whose event staying time pdf is given by f(x), the
achieved QoM equals (ξi = iq− t, ηi = x + ip− t):

Z q

0

"

Z q−t

0
U(x)f(x) dx +

∞
X

i=1

Z q

0
U(ξi + x)f(ηi) dx

+
∞

X

i=1

U(ξi)

Z 0

−(p−q)
f(ηi) dx

#

dt (4)

+

Z p

q

"

∞
X

i=1

Z q

0
U(ξi − q)f(ηi) dx

+
∞

X

i=1

U(ξi + t)

Z p

q

f(ηi) dx

#

dt. (5)

Proof. The above formula follows from the fact
that the overall utility available for any particular
event depends on the total length of the intersecting
region (which might be discontinuous) during which
both the event and sensor are present. The vari-
ous summands in integral (4) and (5) correspond to
the cases that the event arrives when the sensor is
present or absent.

The formula above can have a complicated ana-
lytical form in general, but it is certainly amenable
to numerical computation. Nevertheless, we first
present two exact analytical results. (Recall γ = q

p .)

(1) Exponential utility function UE and Expo-
nential staying time: f(x) = λe−λx.

Q =
Aγ

A + λ
−

1 − e−λq

λp
+

λ(1 − e−(A+λ)q)

(A + λ)2p

+
(eλq − 1)2

λpeλq(eλp − 1)
−

λ(e(A+λ)q − 1)2e−(A+λ)q

(A + λ)2p(e(Aq+λp) − 1)

+
2(eλ(p−q) − 1)

p

×

"

eλq − 1

λ(eλp − 1)
−

e(A+λ)q − 1

(A + λ)(e(Aq+λp) − 1)

#

+
(eAq − 1)eλq(eλ(p−q) − 1)2

λp(eλp − 1)(e(Aq+λp − 1)
. (6)

Note that the above leads to

lim
p→0

Q =
Aγ

Aγ + λ
, lim

p→∞
Q =

Aγ

A + λ
. (7)

(2) Delayed utility function UD and Exponential
staying time: f(x) = λe−λx.

When p is very small such that D is an integral
multiple of q, i.e. D = kq for k = 1, 2, . . ., we have:

Q = e−
λD
γ

[

γ +
eλ(1−γ)p − 1

λp

]

. (8)

On the other hand, when p is very large, specifically,
when q > D, then

Q = e−λD

[

γ +

(
1

λ
− D

)
1 − e−λ(p−q)

p

]

. (9)

Combining Equations (8) and (9), we have:

lim
p→0

Q = e−λ D
γ , lim

p→∞
Q = γe−λD. (10)

The above analytical results can be intuitively
understood in many ways, which are instructive to
discuss.

4.3 Implications of theoretical results
The first three discussion points concern various

limiting cases.
(i) Let the fairness granularity p and the propor-

tional share γ be fixed. Then as the event staying
time goes to infinity, every event will always be cap-
tured and the maximum value 1 for the utility can
be achieved. Furthermore, the QoM is an increas-
ing function of the mean event staying time. Note
that this scenario corresponds to λ −→ 0 for the
exponential staying time distribution, and β −→ ∞
for the Pareto distribution.

(ii) In the limit of p −→ 0, every event which
stays will always be captured. However, the total
observation time is only γ fraction of the event’s
duration. Hence the average utility achieved is:

Q0 =

∫ ∞

0

U(γx)f(x) dx. (11)

This result is consistent with the explicit results (7)
and (10).

(iii) In the limit of p −→ ∞, each event, if cap-
tured, will essentially be observed for its whole du-
ration. On the other hand, only γ fraction of the
events will be captured. Hence the QoM is given
by:

Q∞ = γ

∫ ∞

0

U(x)f(x) dx, (12)

which is also consistent with the explicit results (7)
and (10).

The next two discussion points concern the two
most important qualitative descriptions of the QoM
function.

(iv) For the step and exponential utility func-
tions, the QoMs are monotonically decreasing func-
tions of p. This is because both utility functions are
concave functions of the observation time. Hence



it is advantageous to capture as many new events
as possible rather than to gain information for the
same event. A finer fairness granularity exactly
achieves this. (This is consistent with Theorem 2
and the analytical formula (6).)

(v) However, the key feature is that for certain
utility functions, the maximum QoM is only achieved
at some optimal fairness granularity. We spend a
moment to explain this important phenomenon.

This observation is easiest to explain for the de-
layed step utility UD. In the limit of p −→ 0, any
event can always be captured. This is essentially
the statement of Corollary 2. However, in order
to gain enough information about the event, it is
necessary that the event staying time be at least
D
γ long. This probability is given by Pr(X ≥ D

γ ).

However, when p is positive (no matter how small
it is), this is not absolutely necessary. In fact, if
the event arrives right at the beginning of a sen-
sor present period, then the event staying time just
needs to be at least D

γ − (1 − γ)p long. It is this

saving that increases the QoM. Hence initially, the
QoM is an increasing function of p for small p. (This
can also be seen analytically from Equation (8).)

The behavior of QoM when p is large is also in-
teresting and quite intricate. From Equation (9),
observe that the QoM is a decreasing, constant, or
increasing function of p for λ less than, equal to,
or greater than 1

D , respectively. This is due to the
competitive effect (for p large) of the loss of utility
for events arriving near the end of a sensor present
period and the gain of utility for events arriving be-
fore the sensor present period. Hence for λ < 1

D ,
the QoM initially increases and then decreases as a
function of p. Thus it is optimal at some interme-
diate p value.

All of the above implications are supported by
the simulation results in Section 6.

5. COVERAGE ALGORITHMS
The previous section discussed the QoM of peri-

odic schedules at a specific single PoI. We now ad-
dress the problem of covering n PoIs by the sensor.
This is achieved by a visit schedule of the sensor
to all the PoIs under a coverage algorithm to be
designed.

We will analyze the QoM of periodic coverage of n
PoIs. By this we mean that the schedule is realized
by a periodic visit schedule of the sensor to the PoIs,
in which the visit schedule in the smallest period is
denoted by

S = {(L1, C1), . . . , (Lm, Cm)}, (13)

where Lj denotes the jth PoI visited for a time of
Cj in the sensor schedule, Lj 6= L(j mod m)+1, and

each of the n distinct PoIs appears at least once
in S. Recall from Assumption 1 on Page that the
sensor cannot be present at more than one PoI at a

time. If m = n, each PoI appears in S exactly once,
then we call S a linear periodic schedule. However,
it is clear that not all periodic schedules are lin-
ear. For example, S = {(1, δ), (2, 3δ), (1, δ), (3, 2δ)},
where δ is a unit of time, is not. In the defini-
tion (13), if m > n, we call the periodic sched-
ule nonlinear. We restrict our attention to periodic
schedules for now.

Given a sensor schedule S, we define its maximum
feasible utilization as

U∗(S) = sup
∑

1≤i≤n

qi

pi
,

where the sup is taken over all possible sensor move-
ments that realize S. The utilization is affected
by the travel time overhead between two adjacent
PoIs in S during which the sensor is not present at
any PoI. Using d(i, j) as an equivalent notation to
dij for the distance between i and j, we define for
j = 1, . . . , m:

aj =
1

vmax

[

d(Lj , L(j mod m)+1) − 2R
]

as the minimum travel time overhead from Lj to
L(j mod m)+1 for the sensor moving at maximum

speed vmax. Then the following statement holds.

Theorem 5. (For linear periodic schedule), the
maximum feasible utilization of S is

U∗(S) = sup

[

1 −

∑

1≤j≤m aj
∑

1≤j≤m(Cj + aj)

]

,

where the sup is taken over all possible sensor move-
ments realizing S.

Proof. Completing one period of the sensor sch-
edule requires P∗ =

∑

1≤j≤m(Cj + aj) time units.
Hence the proportional share for PoI i is given by
Cj

P∗
. The result thus follows from:

∑

j
qj

pj
=

∑

j
Cj

P∗
=

1 − 1
P∗

∑

j aj .

Theorem 5 shows that 100% sensor utilization is
feasible if and only if each adjacent pair of PoIs
in S are exactly 2R apart. In actual application,
we would like to maximize U∗(S). As its form is
a decreasing function of the sum

∑

i≤j≤m aj , we
would indeed want to minimize the travel overhead.

5.1 Linear periodic schedule optimization
Here we discuss the optimization of the QoM Q∗

(defined in Section 2) for the overall system in the
realm of linear periodic schedules. The solution
must satisfy a given proportional fairness objective,
i.e., for each pair of PoIs, say i and j, we must
achieve a given ratio, γij , of their shares of cover-
age time. I.e., for the periodic schedules induced by

S at i and j, we have qi/pi

qj/pj
= γij .

A linear periodic schedule exists if there is a Hamil-
tonian circuit of the PoIs. An optimization ap-



proach for linear periodic schedules works as fol-
lows. We first determine the visit order of the PoIs
in S that will minimize

∑

1≤j≤m aj. The problem
is the Traveling Salesman Problem and is NP hard,
but practical approaches exist that give solutions
within a few percent of the optimal for problem
sizes of up to 100,000 [7]. Once the visit order is
determined, aj , j = 1, . . . , m, is known, and it re-
mains to determine the Cj , j = 1, . . . , m. Notice
that in a linear periodic schedule, m = n, Cj = qj ,
and p1 = . . . = pn =

∑

j(Cj + aj) = P∗. We first
select each Cj to satisfy Cj = γj1C1 so that all the
coverage times can be expressed in terms of C1 only.
This greatly simplifies the problem as it becomes a
purely one-dimensional optimization problem. The
choice of C1 that optimizes Q∗ depends on the event
utility function U .

We illustrate the above approach by a simple ex-
ample. Consider first blip events and the step utility
function UI , If

∑

j aj = 0, then any choice of C1 is
optimal as the QoM is simply the fraction of events
captured at the PoIs. More precisely,

Q∗ =
1

nP∗

∑

j

Cj =
1

n
.

On the other hand, if
∑

j aj > 0, then the optimal
Q∗ cannot be attained but it can be approached as
close as possible by using a finite but sufficiently
large value of C1.

For general event utility functions, we need to
compute the corresponding QoM Qi for each i using
Theorem 4. Recall that Ci = γi1C1, and Q∗ is
expressible as a weighted sum of the individual Qi’s
(from Equation 2):

Q∗ =
1

µ∗

∑

j

µjQi

(
γj1C1

P∗

)

.

Therefore Q∗ is a function of C1 only. The value
of C1 that optimizes QoM Q∗ can be computed by
solving

dQ∗

dC1
= 0, and

d2Q∗

dC2
1

< 0.

Note that Q∗ can possibly have multiple local max-
ima as each Qi has its own optimal Ci’s. But the
issue can be easily resolved by a numerical search
since the problem is one-dimensional.

5.2 General periodic coverage
The previous section discussed the optimization

of linear periodic sensor schedules. However, a lin-
ear periodic schedule does not exist if there is no
Hamiltonian circuit of the PoIs. Even if it exists,
a linear schedule is in general sub-optimal as the
QoM depends on the fairness granularity (Corol-
lary 2). This is illustrated by the following example.
Consider three PoIs, located such that d12 = d13 =
d23 = 2R, and the proportional fairness objective

of γ12 = n/(n − 1) and γ13 = n. For events that
stay and have the step utility function, the optimal
linear periodic sensor schedule is {(1, nδ), (2, (n −
1)δ), (3, δ)}, where δ = 2R/vmax is the minimum
presence time of the sensor arriving at and then
leaving a PoI — recall Assumption 1. From The-
orem 2, however, we know that the QoM at i in-
creases as the fairness granularity decreases. Hence,
the optimal non-linear periodic schedule
{(1, δ), (2, δ), . . . , (1, δ), (2, δ),
︸ ︷︷ ︸

n−1 times

(1, δ), (3, δ)} increases

the QoM at 1 and 2 without affecting either the
travel overhead or the QoM at 3. When n is large,
the performance loss of the optimal linear schedule
can be significant for certain distributions of the
event staying time, e.g., when the mean event stay-
ing time is on the order of δ.

The above argues for the need to search for gen-
eral periodic schedules with better performance. A
beginning observation is that a new and potentially
better periodic schedule can be obtained by rear-
ranging the PoI order in an original schedule. Chang-
ing the PoI order affects the fairness granularity as
discussed above, but it also affects the travel over-
head between the adjacent PoIs visited. Since the
travel time overhead is known given a PoI visit or-
der, the achieved Q∗ measure of the new schedule
can be computed by applying Theorem 4 with a
modification for non-linear periodic schedules.

For the case of the step utility function UI , the
QoM is in fact simply a weighted sum of the QoMs
for the linear periodic sub-schedules which consti-
tute the whole schedule (see the next Theorem). For
simplicity, we ignore the travel overhead (which can
be easily incorporated). To set up the notation, for
a general periodic schedule, let

{
pi

k − qi
k, qi

k

}

1≤k≤Ki

be the consecutive sensor absent and present times
for PoI i. Note that p∗ =

∑

1≤k≤Ki
pi

k is the total

period of the schedule (which is the same for all i’s).
Then we have the following result.

Theorem 6 (Step utility function). The
QoM of PoI i is given by

Qi =

Ki∑

k=1

pi
k

p∗

[

qi
k

pi
k

+
1

pi
k

∫ pi
k−qi

k

0

Pr(X ≥ t) dt

]

.

In particular, the QoM is a linear combination of
the QoM of each individual sub-linear periodic sched-
ules which constitute the overall nonlinear periodic
schedule.

Proof. The proof follows the same line as The-
orem 2. The key observation that makes the proof
go through is that if an event arriving during the
absent period pi

k − qi
k is ever captured, then it must

be first captured in the next present period qi
k.

5.3 General periodic schedule optimiza-
tion



Simulated Annealing Algorithm
1 best = s = initial periodic schedule
2 Qbest = Qs = QoM(best)
3 for (i = 0; i < computation_budget; i++)
4 p1, p2 = random positions in s

subjected to selection criteria
5 new = s with p1, p2 swapped
6 if (new is physically infeasible)
7 continue
8 Qnew = QoM(new)
9 if (Qnew >= Qs)

10 s = new, Qs = Qnew
11 if (Qnew > Qbest)
10 best = new, Qbest = Qnew
12 else // simulated annealing
13 if (random < exp((Qnew - Qs) * i))
14 s = new, Qs = Qnew
15 return best

Figure 2: Simulated annealing algorithm for
optimal periodic schedule.

We now illustrate how the above Theorem is used
to optimize a general periodic schedule for Step util-
ity. Starting with any initial periodic schedule of
length n, there are n! straightforward permutations
of the schedule to obtain a general periodic sched-
ule. An exhaustive search for an optimal schedule
is computationally infeasible for large n. To over-
come the challenge, we use a simulated annealing
algorithm to search for a general nonlinear periodic
schedule with its Q∗ value as close to the optimal as
possible. (The use of simulated annealing for opti-
mization problems was presented in [7]. See also [2]
for an application to the traveling salesmen prob-
lem.) To apply simulated annealing in our problem
domain, care must be taken to consider the physical
constraints of mobility including the finite speed of
the sensor and the adjacencies of the PoIs.

The optimization algorithm is specified in Fig. 2.
We initialize the current search candidate s to some
initial periodic schedule, and keep track of the cur-
rent best schedule best seen so far. We then ran-
domly select two elements in s, say (Li, Ci) and
(Lj , Cj), and swap kiδ cover time from Ci with kjδ
time from Cj , to obtain a new schedule denoted by
new, where δ = 2R/vmax, ki and kj are randomly
selected positive integers such that kiδ ≤ Ci and
kjδ ≤ Cj . To avoid a cover time of less than δ for
any element, we have the additional rule that any
fractional δ time left by itself after a swap will be
moved together with the associated whole number
multiple of δ time moved. If two adjacent PoIs in
new have distance ∞ between them, new is rejected
as physically infeasible.

For general utility functions, the closed analyti-
cal form of the QoM for a general (non-linear) pe-
riodic schedule can be complicated. In particular,
it will not be a weighted sum of the QoMs of the
linear periodic sub-schedules. Nevertheless, in or-
der to apply the simulated annealing, one can still
write down an analytical formula for the QoM (The-
orem 7) and resort to numerical integration to com-
pute its value.

Theorem 7 (General utility function).
Let U i be the utility function of the events at PoI i
and f(x) be the pdf of the event staying time. Then

Qi =
1

p∗

∫ p∗

0

∫ ∞

0

[U ]i(t, x)f(x) dx dt,

where [U ]i(t, x) = U i
(∫ t+x

t pi(s) ds
)

and pi(s) is a

function which takes the value 1 when the sensor is
present at PoI i at time s, and 0 otherwise.

Proof. The proof is the same as Theorem 4 with
the following understanding. The variable t refers
to the event arrival time, x refers to the event stay-

ing time, and
∫ x+t

x pi(s) ds is the total time the
event is observed by the sensor.

Note that by increasing the duration of the op-
timization period, the algorithm will optimize over
an increasingly larger set of the candidate sched-
ules, which can be quite general when the period is
sufficiently long.

6. SIMULATION RESULTS

6.1 Single-PoI QoM
We present simulation results to illustrate the an-

alytical results in Section 4. Recall the use of X
and Y to denote the event staying and absent time
variables, respectively. We measure the QoM Qi

achieved over 1,000,000 time units in a simulation
run, and report the average Qi of 10 different runs.
The different runs produce results that have ex-
tremely small differences. Hence, we omit the error
bars in the reported results. Note that not all the
events in a simulation stay long enough to be cap-
tured at the full utility. The maximum information
available for capture is given by

∫ ∞

0 U(x)f(x) dx as
explained in Section 2.1. Each reported experiment
uses the same distribution for both the event stay-
ing and absent times, which is either Exponential
with varying λ, or Pareto with varying β (and α is
kept to be 2).

6.1.1 Step utility
We first present results for the Step utility func-

tion UI and Exponential event dynamics.2 Fig-
ure 3(a) shows the QoM as a function of the propor-
tional share q/p. The results agree with Theorem 2
and its instantiations for the distribution. Note that
the fraction of events captured can be significantly
higher than the proportional share, e.g., a QoM of
close to 0.4 is achieved for Exp(λ = 0.25) even when
the share is only slightly positive (see Corollary 1).
The observation time of the events increases as the
events stay longer, and so the QoM is higher when

2Results for Pareto event dynamics support similar con-
clusions and can be found in [14].



0.4

0.5

0.6

0.7

0.8

0.9

1

Q
o

M
 Q

i

λ = 0.25

λ = 0.5

λ = 1

λ = 2

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Q
o

M
 Q

qi/pi (with pi fixed to be 10 time units)

λ = 2

(a)

0.5

0.6

0.7

0.8

0.9

1

Q
o

M
 Q

i

λ = 0.25

λ = 0.5

λ = 1

λ = 2

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

Q
o

M
 Q

qi in time units (with qi/pi fixed to be 0.1)

λ = 2

(b)

Figure 3: Achieved QoM for events that stay

and have the Step utility function UI ; X ∼
Y ∼ Exp(λ).

λ is smaller for the Exponential event dynamics (see
Sec. 4.3(i)). In general, the QoM is not linear in the
proportional share.

Figure 3(b) shows the QoM as a function of the
fairness granularity. As predicted by Corollary 2,
the QoM is a monotonically decreasing function of
p, meaning that finer grained fairness will improve
performance. As explained before, the QoM in-
creases as λ decreases. Furthermore, the QoM con-
verges to the maximum value one and the propor-
tional share γ = q/p as p converges to 0 and ∞ (see
Corollary 2).

6.1.2 Exponential utility
We now present results for the Exponential util-

ity function UE (with A = 5). Figure 4(a) shows
the achieved QoM as a function of the proportional
share for Exponential event dynamics. Unlike Step
utility, the achieved QoM is close to zero when the
share is only slightly positive. This is due to the
need to accumulate information for Exponential util-
ity. As the share increases initially, however, there
is a sharp gain in the QoM. This is because most
information is gained during the initial observation
of an event for Exponential utility. Moreover, the
initial gain is higher when the events stay longer
(i.e., smaller λ), because longer staying events are
more likely to be captured even if they arrive when
the sensor is not present. As the share further
increases, the marginal gain in the QoM becomes
smaller, again mimicking the decreasing marginal
gain of information with longer observation time for
the type of event. Note that for the larger λ values
(e.g., λ = 2), the QoM is significantly smaller than
one even for a large share. This is in part because
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Figure 4: Achieved QoM for events that stay

and have the Exponential utility function UE,

A = 5; X ∼ Y ∼ Exp(λ).

at those parameter values, the events do not stay
long enough to be captured at their full utility.

Figure 4(b) shows the achieved QoM as a func-
tion of the fairness granularity. For the Exponential
utility, the results agree with Equations 6 and 7.
(See also Section 4.3(iv).) In particular, it shows
that the QoM is monotonically decreasing in p and
gives the correct QoM limits in Eq. (7) as p → 0
and p → ∞. In addition, the QoM increases when
λ decreases.

6.1.3 Delayed Step utility
We now present simulation results for the De-

layed Step utility UD (D = 0.5 time units) with
Exponential and Pareto event staying time distribu-
tions. Similar results hold for the S-shaped utility
but they are not shown due to space.

Figures 5(a) and 5(b) show the achieved QoM as a
function of the proportional share for the Exponen-
tial and Pareto event dynamics, respectively. They
show that the QoM is monotonically increasing in
the proportional share, and the QoM is higher when
the events stay longer (i.e., smaller λ or larger β).

Figures 5(c) and 5(d) show the achieved QoM as
a function of the fairness granularity. Note that
in this case, the QoM is no longer monotonically
decreasing in p, but the optimal fairness occurs at
an intermediate value. Note also that for λ = 2 =
1
D , the QoM is a constant function of p for large p.
These properties are all discussed in Section 4.3(v).

6.2 General periodic coverage optimization
We present simulation results to illustrate the

performance of the optimization algorithm in Sec-
tion 5 for periodic schedules. We use 3 PoIs, de-



0.4

0.5

0.6

0.7

0.8

0.9

1

Q
o

M
 Q

i

λ = 0.25

λ = 0.5

λ = 1

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Q
o

M
 Q

qi/pi (with pi fixed to be 10 time units)

λ = 2

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
o

M
 Q

i

β = 0.5β = 1

β = 2

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Q
o

M
 Q

qi/pi (with pi fixed to be 10 time units)

β = 0.25

(a) X ∼ Y ∼ Exp(λ) (b) X ∼ Y ∼ Pareto(α = 2, β)

0.3

0.4

0.5

0.6

Q
o

M
 Q

i λ = 0.25

0

0.1

0.2

0.3

0 2 4 6 8 10

Q
o

M
 Q

qi in time units (with qi/pi fixed to be 0.1)

λ = 0.5

λ = 1

λ = 2

0.4

0.5

0.6

0.7

0.8

Q
o

M
 Q

i

β = 2

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

Q
o

M
 Q

qi in time units (with qi/pi fixed to be 0.1)

β = 0.25

β = 0.5

β = 1

β = 2

(c) X ∼ Y ∼ Exp(λ) (d) X ∼ Y ∼ Pareto(α = 2, β)

Figure 5: Achieved QoM for Delayed Step utility with delay of 0.5 time unit.

noted as 1, 2, and 3, such that d12 = d13 = d23 =
2R, where R is the sensing range. The maximum
speed of the sensor is such that it will take one
time unit to cover a distance of 2R. In a cover-
age schedule, therefore, the minimum staying time
of the sensor at any PoI is δ = 1 time unit. For each
experiment, we report the average of 20 runs of the
algorithm. The differences in the measurements are
small. We will thus omit the error bars, although in
the case of the deployment QoM, we will also report
the maximum Q∗ achieved in the 20 runs.

6.2.1 Revisit of example (Section 5.2)
This example motivates the use of optimized gen-

eral periodic schedules. The proportional shares of
1, 2, and 3 are in ratios of 50:49:1. We show the
optimizations over schedules of period m, where
m = 100 time units. The algorithm in Fig. 2 is
run with the initial schedule set to be the optimal
linear periodic schedule of the given length. Fig-
ure 6(a) plots the maximum and average deploy-
ment QoM Q∗ achieved by the simulated annealing
algorithm for small computation budgets of up to
1000 iterations. The optimal deployment QoM is
also shown as the horizontal green line in the fig-
ure. Figure 6(b) plots the corresponding results for
larger computation budgets of up to 100000 itera-
tions.

From the smaller computation budget results, note
that the optimal linear periodic schedule is sub-
optimal in general but the simulated annealing pro-
duce schedules that can very quickly approach the
optimal. From the larger computation budget re-
sults, the algorithm can find a solution extremely
close to the optimal (within 2%). When m = 400
time units, the results (not shown due to space) are
similar and a solution which is close to the optimal

is found within 100000 iterations. Initially, how-
ever, Q∗ increases more slowly with the number of
iterations than m = 100 time units. This is because
in this particular experiment, the globally optimal
schedule can be found with a period length of 100
time units. Increasing the optimization period to
400 time units will not increase the potential to find
a better solution, but will increase the search space
for the optimal solution.

We have measured the run time of the simulated
annealing, written in C#, on a Pentium-4 3.4 GHz
PC with L1/L2 cache sizes of 8 KB/512 KB and
2 GB of RAM. The results (not shown due to space)
indicate that the run time is linear in the number
of iterations, and is about 3.5 s and 7.7 s for 100000
iterations and an optimization period of 100 and
400 time units, respectively.

6.2.2 Other proportional shares
We now use proportional share ratios of 53:29:17

for the 3 PoIs. The results are shown in Figure 7
for up to 5000 iterations when the optimization pe-
riod is 99 time units. The search can approach the
optimal Q∗ value very quickly, within a few thou-
sand iterations. The algorithm takes about 0.1s to
complete 5000 iterations for an optimization period
of 99 time units.

7. CONCLUSIONS
We have presented extensive analysis to under-

stand the QoM properties of proportional-share mo-
bile sensor coverage. We show that (1) A higher
share of the coverage time generally increases the
QoM, but the relationship is not linear except for
blip events. (2) For staying events, the QoM can be
much higher than the proportional share, due to the
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Figure 6: Achieved deployment QoM Q∗ for

staying events with Step utility and propor-

tional share ratios of 50:49:1. X ∼ Y ∼
Exp(λ = 1), period = 100 time units.
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Figure 7: Achieved deployment QoM for pro-

portional share ratios of 53:29:17. X ∼ Y ∼
Exp(λ = 1). Step utility function, period =

99 time units.

observation of “extra” events that arrive when the
sensor is not present. This justifies mobile coverage
from an information-capture point of view, i.e., the
sensor gains by moving between places to search for
new information. (3) The event utility function is
important in determining the optimal fairness gran-
ularity p. For concave utility functions such as Step,
Exponential, and Linear utilities, the QoM mono-
tonically decreases with p (though for Linear, whose
results were not shown due to space, it is initially
flat for some range of p), whereas for Delayed Step
and S-Shaped utilities, the QoM generally peaks
at an intermediate p. Our analysis for Exponen-
tial/Pareto event dynamics and different forms of
the utility function is all supported by the simula-
tion results. We presented optimization algorithms
for both linear and general proportional-share peri-
odic coverage. Implementation results show that
the simulated annealing algorithm can efficiently
compute a periodic schedule that practically max-

imizes the total QoM, even for huge search spaces
implied by long scheduling periods.
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