
MA 351: Introduction to Linear Algebra and Its Applications

Fall 2021, Final Exam

Instructor: Yip

• This test booklet has SEVEN QUESTIONS, totaling 140 points for the whole test. You have

120 minutes to do this test. Plan your time well. Read the questions carefully.

• This test is closed book, closed note, with no electronic device.

• In order to get full credits, you need to give correct and simplified answers and explain in

a comprehensible way how you arrive at them.

Name: (Major: )

Question Score

1.(20 pts)

2.(20 pts)

3.(20 pts)

4.(20 pts)

5.(20 pts)

6.(20 pts)

7.(20 pts)

Total (140 pts)

1

 

Answerkey



1. You are given the following list of vectors:
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(a) Find a basis for the subspace spanned by the above vectors.

(b) Express each of the above vectors as a linear combination of the basis vectors you have

just found.
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2. Fill in blanks. 0
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3. Let det

0
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CA = 3. Find the values of the following determinants.
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(b) det
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4. Consider the following 3⇥ 4 matrix:

B =

0
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(a) Find the dimensions of Col(B), Null(B), and Row(B).

(b) Find a basis for Col(B), Null(B), and Row(B).

(c) Do the basis vectors of Col(B) form a basis for R3
? If not, find some additional vector(s)

so that combined together they do form a basis for R3
.

(d) If you combine the basis vectors of Null(B) and Row(B), do they form a basis for R4
?

If not, find some additional vector(s) so that combined together they do form a basis for

R4
.
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5. This problem explores the property of matrices which might not be square.

Let A be some given general matrix.

(a) Suppose there is a matrix B such that AB = I. Show that the linear transformation

X �! AX is onto.

(b) Suppose there is a matrix C such that CA = I. Show that the linear transformation

X �! AX is one-to-one.

Now let A =

 
1

1

2

1

1

1

!
.

(c) If possible, find a matrix B such that AB = I. Is your answer unique?

(d) If possible, find a matrix C such that CA = I. Is your answer unique?
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6. Let A =

 
0.3

0.7

0.5

0.5

!
. Let also X =

 
x0

y0

!
be an arbitrary vector from R2

.

(a) Find an exact formula for AnX. More precisely, let

 
xn

yn

!
= AnX. Find an explicit

formula for xn and yn.

(b) Find the limiting value of AnX as n �! 1.
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7. Let P =
1

1+m2

 
1

m

m

m2

!
. (It is the matrix that projects an arbitrary vector in R2

perpen-

dicularly onto the line y = mx.)

(a) Show that P 2
= P .

(b) Find all the eigenvalues and eigenvectors of P .

Now let R = 2P � I. (It is the matrix that reflects an arbitrary vector in R2
with respect to

the line y = mx.)

(c) Show that R2
= I.

(d) Find all the eigenvalues and eigenvectors of R.
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Ortry to find and directly

detP XI detf.imdFmaHmFh
i

d Emi Was

P 1 1 174
D A 1 1 0,1

x O PX 11 1 8

1



You can use this blank page.

18

4 P I X 0
m 1

if

May

1X L
1

c R

2P.IRP I 4p 4P I pZp

4P 4P I I

d RX X R X RW RX X

II



You can use this blank page.

19

R tf
d

y.mx
in d I

6
1 V

Can also find a directly
det R XI 0

R 2P 3 Fml In 1

7E Far



dit R XI detfth.DE
Em x

EF d EIA CHF
a b f a b

ña
12 E 1,4mg

12 m4 2m 4m

1m
2

m't 2m41
2ab bItm272

12 1 11

ii 1 R 210 t.hn
f

E Emt

xi.li
fill



You can use this blank page.

20

1 1 Reto Fm
me

ti

I
M El


