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1.1

The power of mathematics is often to change one thing
into another, to change geometry into language.

Marcus du Sautoy

This chapter serves as an introduction to the various objects—vectors, matrices,
and linear transformations—that are the central focus of linear algebra. Instead
of investigating what we can do with these objects, for now we simply focus
on understanding their basic properties, how they interact with each other, and
their geometric intuition.

Vectors and Vector Operations

The notationa e S
means that the
object aisin the
set§,soveR”
means that the
vector v is in the set
R" of n-dimensional
space.

In earlier math courses, focus was on how to manipulate expressions involving a
single variable. For example, we learned how to solve equations like 4x —3 =7
and we learned about properties of functions like f(x) = 3x+ 8, where in each
case the one variable was called “x”. One way of looking at linear algebra
is the natural extension of these ideas to the situation where we have two or
more variables. For example, we might try solving an equation like 3x+2y =1,
or we might want to investigate the properties of a function that takes in two
independent variables and outputs two dependent variables.

To make expressions involving several variables easier to deal with, we
use vectors, which are ordered lists of numbers or variables. We say that
the number of entries in the vector is its dimension, and if a vector has n
entries, we say that it “lives in” or “is an element of” R”. We denote vectors
themselves by lowercase bold letters like v and w, and we write their entries
within parentheses. For example, v = (2,3) € R? is a 2-dimensional vector and
w=(1,3,2) € RR3 is a 3-dimensional vector (just like 4 € R is a real number).

In the 2- and 3-dimensional cases, we can visualize vectors as arrows that
indicate displacement in different directions by the amount specified in their en-
tries. The vector’s first entry represents displacement in the x-direction, its sec-
ond entry represents displacement in the y-direction, and in the 3-dimensional
case its third entry represents displacement in the z-direction, as in Figure 1.1.

The front of a vector, where the tip of the arrow is located, is called its
head, and the opposite end is called its tail. One way to compute the entries
of a vector is to subtract the coordinates of its tail from the corresponding
coordinates of its head. For example, the vector that goes from the point
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Chapter 1. Vectors and Geometry

Some other books
denote vectors
with arrows like v, or
AB if they wish to
specify that its tail
is located at point
A andits head is

located at point B.

When a vector is in

standard position,

the coordinates of
the point at its
head are exactly
the same as the
entries of the

vector.

1.1.1

v=(3,2)

O T T
0 1 2 3

(b) The vector v=(1,3,2) € R’

(a) The vector v=(3,2) € R?,

Figure 1.1: Vectors can be visualized as arrows in (a) 2 and (b) 3 dimensions.

(—1,1) to the point (2,2) is (2,2) — (—1,1) = (3,1). However, this is also the
same as the vector that points from (1,0) to (4, 1), since (4,1) — (1,0) = (3,1)
as well.

It is thus important to keep in mind that the coordinates of a vector specify
its length and direction, but not its location in space; we can move vectors
around in space without actually changing the vector itself, as in Figure 1.2.
To remove this ambiguity when discussing vectors, we often choose to display
them with their tail located at the origin—this is called the standard position
of the vector.
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Figure 1.2: Three copies of the vector v = (3,1) located at different positions in
the plane. The vector highlighted in orange is in standard position, since its tail is
located at the origin.

Vector Addition

Even though we can represent vectors in 2 and 3 dimensions via arrows, we
emphasize that one of our goals is to keep vectors (and all of our linear algebra
tools) as dimension-independent as possible. Our visualizations involving ar-
rows can thus help us build intuition for how vectors behave, but our definitions
and theorems themselves should work just as well in R” (even though we can-
not really visualize this space) as they do in R3. For this reason, we typically
introduce new concepts by first giving the algebraic, dimension-independent
definition, followed by some examples to illustrate the geometric significance
of the new concept. We start with vector addition, the simplest vector operation
that there is.
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Definition 1.1.1
Vector Addition

Despite the
friangle and
parallelogram
pictures looking
different, the
vector v+w is the

same in each.

Theorem 1.1.1

Vector Addition
Properties

Suppose v = (vi,v2,...,v;) € R" and w = (w1, w2, ...,w,) € R" are vec-
tors. Then their sum, denoted by v+ w, is the vector

def
V+w= (V1+W1,VQ+W2,...,V,,+W").

Vector addition can be motivated in at least two different ways. On the
one hand, it is algebraically the simplest operation that could reasonably be
considered a way of adding up two vectors: most students, if asked to add
up two vectors, would add them up entry-by-entry even if they had not seen
Definition 1.1.1. On the other hand, vector addition also has a simple geometric
picture in terms of arrows: If v and w are positioned so that the tail of w is
located at the same point as the head of v (in which case we say that v and w
are positioned head-to-tail), then v 4w is the vector pointing from the tail of v
to the head of w, as in Figure 1.3(a). In other words, v+ w represents the total
displacement accrued by following v and then following w.

If we instead work entirely with vectors in standard position, then v +
w is the vector that points along the diagonal between sides v and w of a
parallelogram, as in Figure 1.3(b).

y y

w V+W

V+ W

(a) Adding vectors head-to-tail. (b) Adding vectors in standard position.

Figure 1.3: How fo visualize the addition of two vectors. If vand w are () positioned
head-to-tail then v+ w forms the third side of the friangle with sides v and w, but if v
and w are (b) in sftandard position, then v+ w is the diagonal of the parallelogrom
with sides vand w.

Before actually making use of vector addition, it will be useful to know
some of the basic properties that it satisfies. We list two of the most important
such properties in the following theorem for easy reference.

Suppose v,w,x € R" are vectors. Then the following properties hold:

a) v+w=w+vVv,and (commutativity)
b) (v+w)+x=v+(W+Xx). (associativity)

Proof. Both parts of this theorem can be proved directly by making use of the
relevant definitions. To prove part (a), we use the definition of vector addition
together with the fact that the addition of real numbers is commutative (i.e.,
x+y=y+xforall x,y € R):

V+w=(vi+wi,va+wa, ...,V +wy)

=(wi+vi,wa+va,... Wyt v,) =WV
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Example 1.1.1

Numerical
Examples
of Vector
Addition

Even though we
are adding 8
vectors, we can
only see 7 vectors
in the image. The
missing vector that
we cannot see is

(0,0,0).

Sums with lots of
terms are often
easier fo evaluate
if we can exploit
some form of
symmetry, as we
do here in

example (c).

The proof of part (b) of the theorem similarly follows fairly quickly from the
definition of vector addition, and the corresponding property of real numbers,
so we leave its proof to Exercise 1.1.14. |

The two properties of vector addition that are described by Theorem 1.1.1
are called commutativity and associativity, respectively, and they basically
say that we can unambiguously talk about the sum of any set of vectors without
having to worry about the order in which we perform the addition. For example,
this theorem shows that expressions like v+ w 4 x make sense, since there is
no need to question whether it means (v+ w) +x or v+ (W +x).

While neither of these properties are surprising, it is still important to
carefully think about which properties each vector operation satisfies as we
introduce it. Later in this chapter, we will introduce two operations (matrix
multiplication in Section 1.3.2 and the cross product in Section 1.A) that are not
commutative (i.e., the order of “multiplication” matters since v X w # w X V),
so it is important to be careful not to assume that basic properties like these
hold without actually checking them first.

Compute the following vector sums:
a) (2,5771) + (177172)7
b) (1,2)+(3,1)+(2,—1), and
c¢) the sum of the 8 vectors that point from the origin to the corners of
a cube with opposite corners at (0,0,0) and (1,1,1), as shown:

%

Solutions:
a) (275771) + (177172) - (2+ 175 - 1; -1 +2) = (374, 1)
b) (1,2)+(3,1)+(2,-1)=(1+3+2,2+1—1) = (6,2). Note that
this sum can be visualized by placing all three vectors head-to-tail,
as shown below. This same procedure works for any number of

vectors.
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¢) We could list all 8 vectors and explicitly compute the sum, but a
quicker method is to notice that the 8 vectors we are adding are
exactly those that have any combination of 0’s and 1’s in their 3
entries (i.e., (0,0,1), (1,0,1), and so on). When we add them, in
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1.1.2

Definition 1.1.2

Scalar
Multiplication

“Scalar” just means
“number”.

In other words,

vector subtraction
is also performed in
the “obvious”
entrywise way.

any given entry, exactly half (i.e., 4) of the vectors have a 0 in
that entry, and the other half have a 1 there. We thus conclude that
the sum of these vectors is (4,4,4).

Scalar Multiplication

The other basic operation on vectors that we introduce at this point is one that
changes a vector’s length and/or reverses its direction, but does not otherwise
change the direction in which it points.

Suppose v = (vi,v2,...,v,;) € R" is a vector and ¢ € R is a scalar. Then
their scalar multiplication, denoted by cv, is the vector

def
cv = (evi,cevy, ..., cvy).

We remark that, once again, algebraically this is exactly the definition that
someone would likely expect the quantity cv to have. Multiplying each entry
of v by ¢ seems like a rather natural operation, and it has the simple geometric
interpretation of stretching v by a factor of ¢, as in Figure 1.4. In particular,
if |c| > 1 then scalar multiplication stretches v, but if |c| < 1 then it shrinks v.
When ¢ < 0 then this operation also reverses the direction of v, in addition to
any stretching or shrinking that it does if |¢| # 1.

y
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Figure 1.4: Scalar multiplication can be used to stretch, shrink, and/or reverse the
direction of a vector.

Two special cases of scalar multiplication are worth pointing out:

e If ¢ = 0 then cv is the zero vector, all of whose entries are 0, which we
denote by 0.

e If ¢ = —1 then cv is the vector whose entries are the negatives of v’s
entries, which we denote by —v.

We also define vector subtraction via v—w < v+ (—w), and we note that
it has the geometric interpretation that v — w is the vector pointing from the
head of w to the head of v when v and w are in standard position. It is perhaps
easiest to keep this geometric picture straight (“it points from the head of which
vector to the head of the other one?”) if we just think of v — w as the vector that
must be added to w to get v (so it points from w to v). Alternatively, v — w is
the other diagonal (besides v+ w) in the parallelogram with sides v and w, as
in Figure 1.5.
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Theorem 1.1.2

Scalar
Multiplication
Properties

Property (a) says
that scalar
multiplication
distributes over

vector addition,

and property (b)
says that scalar
multiplication
distributes over real

number addition.

Example 1.1.2

Numerical
Examples
of Vector
Operations

Figure 1.5: How to visualize the subtraction of two vectors. If v.and w are in
standard position then v—w is one of the diagonals of the parallelogram de-
fined by v and w (and v+ w is the other diagonal, as in Figure 1.3(b)).

It is straightforward to verify some simple properties of the zero vector,
such as the facts that v—v =0 and v+ 0 = v for every vector v € R", by
working entry-by-entry with the vector operations. There are also quite a few
other simple ways in which scalar multiplication interacts with vector addition,
some of which we now list explicitly for easy reference.

Suppose v,w € R" are vectors and ¢,d € R are scalars. Then the following
properties hold:

a) c(v+w)=cv+cw,

b) (c+d)v=cv+dv,and

) ¢(dv) = (cd)v.

Proof. All three parts of this theorem can be proved directly by making use of
the relevant definitions. To prove part (a), we use the corresponding properties
of real numbers in each entry of the vector:

c(v+w)=c(vi+wi,va+wa,...,vy+wy) (vector addition)
= (c(vi+w1),c(va+wa),...,c(vy+wy,)) (scalar mult.)
= (evi+ewr,eva+cewa, ..o cvy+ewy) (property of R)
= (evi,eva,...,0v) + (ewr,ewn, ... ewy,)  (vector addition)
=c(vi,va,...,vn) +c(wi,wa,...,wy,) (scalar mult.)
=cV—+cw.

The proofs of parts (b) and (c) of the theorem similarly follow fairly
quickly from the definitions of vector addition and scalar multiplication, and
the corresponding properties of real numbers, so we leave their proofs to
Exercise 1.1.15. |

Compute the indicated vectors:
a) 3v—2w, where v=(2,1,—1) and w = (—1,0,3), and
b) the sum of the 6 vectors that point from the center (0,0) of a regu-
lar hexagon to its corners, one of which is located at (1,0), as shown:
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This method of
solving (b) has the
nice feature that it

still works even if
we rotate the
hexagon or
change the
number of sides.

Example 1.1.3
Vector Algebra

The "=" symbol
here is an
implication arrow
and is read as
“implies”. It means
that the upcoming

statement (e.g..

x = (1,1,1)) follows
logically from the

one before it (e.g.,
4x = (4,4,4)).

1.1.3

(1,0)

Solutions:

a) 3v—2w=(6,3,-3)—(-2,0,6) = (8,3,-9).

b) We could use trigonometry to find the entries of all 6 vectors ex-
plicitly, but an easier way to compute this sum is to label the vec-
tors, in counter-clockwise order starting at an arbitrary location,
as v, w, X, —v, —w, —x (since the final 3 vectors point in the op-
posite directions of the first 3 vectors). It follows that the sum is
V+w4+x—v—w—x=0.

By making use of these properties of vector addition and scalar multipli-
cation, we can solve vector equations in much the same way that we solve
equations involving real numbers: we can add and subtract vectors on both
sides of an equation, and multiply and divide by scalars on both sides of the
equation, until the unknown vector is isolated. We illustrate this procedure with
some examples.

Solve the following equations for the vector x:
a) x—(3,2,1) =(1,2,3) — 3x, and
b) x+2(v+w)=—-v—3(x—w).

Solutions:
a) We solve this equation as follows:

x—(3,2,1) = (1,2,3) - 3x
= x = (4,4,4)—3x (add (3,2,1) to both sides)
— 4x = (4,4,4) (add 3x to both sides)
= x=(1,1,1). (divide both sides by 4)

b) The method of solving this equation is the same as in part (a), but
this time the best we can do is express X in terms of v and w:

Xx+2(v+w)=—-v-3(x—w)

—> Xx+2v+2w=—-v—3x+3w (expand parentheses)
— 4x = —3v+w (add 3x, subtract 2v + 2w)
— x=1(w—3v). (divide both sides by 4)

Linear Combinations

One common task in linear algebra is to start out with some given collection of
vectors vy, Vs, ..., Vi and then use vector addition and scalar multiplication to
construct new vectors out of them. The following definition gives a name to
this concept.
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Definition 1.1.3

Linear
Combinations

We will see how to
determine whether
or not a vectoris a
linear combination
of a given set of
vectors in Section 2.1.

Whenever we use
these vectors, the
dimension of e; will
be clear from
context or by
saying things like
e3 € R7,

When we see
expressions like this, it
is useful to remind
ourselves of the
“type” of each
object: vi,va,...,v,
are scalars and
ej,e,...,e, Are
vectors.

A linear combination of the vectors vi,vs,...,v; € R" is any vector of
the form

C1Vl + oV + -+ + Cp Vi,

where c1,cp,...,cr € R.

For example, (1,2,3) is a linear combination of the vectors (1,1,1) and
(—1,0,1) since (1,2,3) =2(1,1,1) + (—1,0,1). On the other hand, (1,2,3) is
not a linear combination of the vectors (1, 1,0) and (2,1,0) since every vector
of the form ¢;(1,1,0) + ¢2(2,1,0) has a 0 in its third entry, and thus cannot
possibly equal (1,2,3).

When working with linear combinations, some particularly important vec-
tors are those with all entries equal to 0, except for a single entry that equals 1.
Specifically, for each j =1,2,...,n, we define the vector e; € R" by

def

e; = (0,0,...,0,1,0,...,0).
1 j-th entry

For example, in R? there are two such vectors: e; = (1,0) and e, = (0, 1).
Similarly, in R? there are three such vectors: e; = (1,0,0), e; = (0, 1,0), and
e3 = (0,0,1). In general, in R” there are n of these vectors, ej,e,...,e,, and
we call them the standard basis vectors (for reasons that we discuss in the
next chapter). Notice that in R? and R3, these are the vectors that point a
distance of 1 in the direction of the x-, y-, and z-axes, as in Figure 1.6.

y
2 -
e, =(0,1)
L §
e = (1,0)
0 i f X
0 1 2
(a) The standard basis vectors e and  (b) The standard basis vectors e;,e,, and e; in
e in R, R3.

Figure 1.6: The standard basis vectors point a distance of 1 along the x-, y-, and
Z-QXES.

For now, the reason for our interest in these standard basis vectors is that
every vector v € R” can be written as a linear combination of them. In particular,
if v=(vi,va,...,v,) then

vV=vier +ver+---+ Ve,

which can be verified just by computing each of the entries of the linear com-
bination on the right. This idea of writing vectors in terms of the standard basis
vectors (or other distinguished sets of vectors that we introduce later) is one
of the most useful techniques that we make use of in linear algebra: in many
situations, if we can prove that some property holds for the standard basis
vectors, then we can use linear combinations to show that it must hold for all
vectors.
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Example 1.1.4

Numerical
Examples of Linear
Combinations

Remark 1.1.1

No Vector
Multiplication

Exercises

Compute the indicated linear combinations of standard basis vectors:

a) Compute 3e; —2e; +e3 € R>, and
b) Write (3,5, —2,—1) as a linear combination of e, e>,e3,e, € R*.

Solutions:

a) 3e; —2ey+e3=3(1,0,0)—2(0,1,0)+(0,0,1)=(3,—2,1).In gen-
eral, when adding multiples of the standard basis vectors, the result-
ing vector has the coefficient of e, in its first entry, the coefficient
of e, in its second entry, and so on.

b) Just like in part (a), the entries of the vectors are the scalars in the
linear combination: (3,5,—2,—1) = 3e; + 5¢; — 2e3 —e4.

At this point, it seems natural to ask why we have defined vector addition
v+ w and scalar multiplication cv in the “obvious” entrywise ways, but
we have not similarly defined the entrywise product of two vectors:

def
VW = (V]W] S VOW2, ..., v,,w,,).

The answer is simply that entrywise vector multiplication is not par-
ticularly useful—it does not often come up in real-world problems or
play a role in more advanced mathematical structures, nor does it have a
simple geometric interpretation. There are some other more useful ways
of “multiplying” vectors together, called the dot product and the cross
product, which we explore in Sections 1.2 and 1.A, respectively.

solutions to starred exercises on page 435

1.1.1 Draw each of the following vectors in standard posi-

tion in R2:

*(a) v=(3,2)
x(¢) x=(1,-3)

+1.1.2 Draw each of the vectors from Exercise 1.1.1, but
with their tail located at the point (1,2).

1.1.6 If the vectors v,w,x, and y are as in Exercise 1.1.4,
then compute

(b) 4w+3w— (2w+6w)
(d) 2x—w—y

#(@) v+y
*(c) 4x—2w

(b) w=(—05,3)
@) y=(-2,-1)

x1.1.7  Write each of the vectors v,w,x, and y from Ex-
ercise 1.1.4 as a linear combination of the standard basis
vectors e, e, e3 € R3.

x1.1.3 If each of the vectors from Exercise 1.1.1 are posi-
tioned so that their heads are located at the point (3,3), find
the location of their tails.

1.1.4 Draw each of the following vectors in standard posi-
tion in R3:
x(a) v=(0,0,2)
*(c) x=(1,2,0)

(b) w=(—1,2,1)

1.1.5 If the vectors v,w,x, and y are as in Exercise 1.1.1,
then compute

(b) v+w+y
(d) v+2w+2x+2y

(@) v+w
#(e) y—2x

1.1.8 Suppose that the side vectors of a parallelogram are
v=(1,4) and w = (—2,1). Find vectors describing both of
the parallelogram’s diagonals.

«x1.1.9  Suppose that the diagonal vectors of a parallelo-
gram are x = (3,—2) and y = (1,4). Find vectors describing
the parallelogram’s sides.

1.1.10 Solve the following vector equations for x:

x(@) (1,2) —x=(3,4)—2x

(b) 3((1,—1)+x) =2x

#(c) 2(x+2(x+2x)) = 3(x+3(x+3x))
@ —2(x—(1,-2)) =x+2(x-+ (1,1))
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1.1.11  Write the vector X in terms of the vectors v and w:

#(a) V-X=W+X

(b) 2v—3x =4x—5w

#(c) 4(x+V)—x=2(W+Xx)

(d) 2(x+2(x+2x)) =2(v+2v)

(a) Show that if n is even then the sum of these n vec-
tors is 0. [Hint: We solved the n = 6 case in Exam-
ple 1.1.2(b).]

(b) Show that if n is odd then the sum of these n vectors
is 0. [Hint: This is more difficult. Try working with
the x- and y-entries of the sum individually.]

#1.1.12  Does there exist a scalar ¢ € R such that ¢(1,2) =
(3,4)? Justify your answer both algebraically and geometri-
cally.

xx1.1.14  Prove part (b) of Theorem 1.1.1.

++x1.1.15 Recall Theorem 1.1.2, which established some
of the basic properties of scalar multiplication.

1.1.13 Let n > 3 be an integer and consider the set of n
vectors that point from the center of the regular n-gon in R?
to its corners.

(a) Prove part (b) of the theorem.
(b) Prove part (c) of the theorem.

1.2 Lengths, Angles, and the Dot Product

When discussing geometric properties of vectors, like their length or the angle
between them, we would like our definitions to be as dimension-independent
as possible, so that it is just as easy to discuss the length of a vector in R’
as it is to discuss the length of one in R2. At first it might be somewhat
surprising that discussing the length of a vector in high-dimensional spaces is
something that we can do at all—after all, we cannot really visualize anything
past 3 dimensions. We thus stress that the dimension-independent definitions
of length and angle that we introduce in this section are not theorems that we
prove, but rather are definitions that we adopt so that they satisfy the basic
geometric properties that lengths and angles “should” satisfy.

1.2.1 The Dot Product

The main tool that helps us extend geometric notions from R? and R3 to
arbitrary dimensions is the dot product, which is a way of combining two
vectors so as to create a single number:

Definition 1.2.1
Dot Product

Suppose v = (vi,v2,...,v;) € R" and w = (w1, wa,...,w,) € R" are vec-
tors. Then their dot product, denoted by v - w, is the quantity

def
VW= viw +vawa + - v, wp.

It is important to keep in mind that the output of the dot product is a number,
not a vector. So, for example, the expression v- (w-x) does not make sense,
since w - X is a number, and so we cannot take its dot product with v. On the
other hand, the expression v/(w - x) does make sense, since dividing a vector by
a number is a valid mathematical operation. As we introduce more operations
between different types of objects, it will become increasingly important to
keep in mind the type of object that we are working with at all times.

Example 1.2.1

Compute (or state why it’s impossible to compute) the following dot

Numerical products:
Examples a) (1,2,3)-(4,-3,2).
of the Dot

b) (3,6,2)(~1,5,2,1), and
Product )(7 ) ) ( IS )’ anl



