MA 351 Fall 2024 (Aaron N. K. Yip) Homework 1 Due: Thursday, Aug. 29, in class

Penney, Linear Algebra: Ideas and Applications (4th edition) Section 1.2 EXERCISES

p. 38: 1.49, 1.50, 1.51, 1.53, 1.55(a,c,e,g,i,k), 1.59.

Additional Problems: Consider the following transformation T on vectors from \mathbb{R}^2 :

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}ax+by\\cx+dy\end{array}\right)$$

and a, b, c, d are some given numbers. Prove the following linearity statements about T:

(a):
$$T\left(\begin{pmatrix} x_1\\ y_1 \end{pmatrix} + \begin{pmatrix} x_2\\ y_2 \end{pmatrix}\right) = T\begin{pmatrix} x_1\\ y_1 \end{pmatrix} + T\begin{pmatrix} x_2\\ y_2 \end{pmatrix};$$

(b): $T\left(\lambda\begin{pmatrix} x\\ y \end{pmatrix}\right) = \lambda T\begin{pmatrix} x\\ y \end{pmatrix};$
(c): $T\left(\lambda\begin{pmatrix} x_1\\ y_1 \end{pmatrix} + \mu\begin{pmatrix} x_2\\ y_2 \end{pmatrix}\right) = \lambda T\begin{pmatrix} x_1\\ y_1 \end{pmatrix} + \mu T\begin{pmatrix} x_2\\ y_2 \end{pmatrix}.$

In the above, λ and μ are some numbers. In fact, statement (c) includes both statement (a) $(\lambda = \mu = 1)$ and (b) $(\mu = 0)$. For this problem, you need to prove all the statements.