MA 351 Fall 2025 (Aaron N. K. Yip) Homework 8

Due: Friday, Nov. 21, 12:00pm, in MATH 432 (slide under the door if closed)

Penney, Linear Algebra: Ideas and Applications (4th edition)

p.249 EXERCISES: 4.1(acegi, use co-factor expansion), 4.4, 4.5; p.258 EXERCISES: 4.12(acg, use row-operations), 4.13(acg, use column operations), 4.15, 4.16, 4.17, 4.19

Additional Problem. This problem shows that for square matrices A and B, if AB = I, then BA = I. In the following, all matrices are $n \times n$.

Now, let's start from AB = I and complete the following sequence of thoughts/statements.

- 1. Show that if BX = 0 then X must be the zero vector and hence Nullity(B) = 0. (Hint: multiply BX = 0 by A from the left hand side.)
- 2. Why Rank(B) = n?
- 3. Show that there is a C such that BC = I. (Hint: use the fact that BX = b has a solution for any b. Choose b to be the standard basis vectors of \mathbb{R}^n .)
- 4. Combining AB = I and BC = I, show that A = C.
- 5. Conclusion: BA = I.