MA 351 Fall 2025 (Aaron N. K. Yip) Homework 9

Due: Friday, Dec. 5, 12:00pm, in MATH 432 (slide under the door if closed)

Penney, Linear Algebra: Ideas and Applications (4th edition)

p.260 EXERCISES: 4.25, 4.26;

p.268 EXERCISES: 4.34, 4.36, 4.39, 4.41;

p.279 EXERCISES: 5.1, 5.2, 5.3, 5.5(a,c,e,g,h), 5.7

Additional Problem. Read the note Week 14: Geometric Applications of Linear Transformations.

- 1. Find the matrices corresponding to projection (P) and reflection (R) in \mathbb{R}^2 with respect to the straight line y = mx. Verify that $P^2 = P$ and $R^2 = I$.
- 2. Consider the matrix $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ which rotates a vector in \mathbb{R}^2 counterclockwise by angle θ . Explain in intuitive geometric terms and also by actually verifying algebraically the following statements:

$$R_{\theta}R_{\phi} = R_{\theta+\phi}$$
, and $R_{\theta}^{-1} = R_{-\theta}$.