A Very Simple Introduction to Matlab Aaron N. K. Yip 01-2015

MATLAB is an interactive, matrix-based system for scientific and engineering numerical computations and visualizations. MATLAB is the short form for MATrix LABoratory.

MATLAB is very user-friendly as a desk calculator, computational tool for linear algebra and matrix analysis, solver for ordinary and partial differential equations, graph plotter and much more.

1 Get Onto Matlab

Matlab is becoming more and more popular. It can be found in many PC and UNIX systems.

- In the various campus instructional computer labs, you can access Matlab by simply clicking its icon. (It can be found by using find.)
- Matlab also exists in most UNIX systems. Just type matlab to see if it exists in the system you are using.

There should be a person on duty in the Computing Center if you have problems accessing Matlab.

2 Try This....

The following is the *actual screen* you will see (plus some edited comments). For starters, after you have opened matlab, you can just follow the lines and see.... Jump to the next section at anytime if you wish.

>>				% This is the matlab prompt.
>> [A=[1 2	3; 4	5 6; 7 8 9]	% Creating a matrix called A.
A =				
	1	2	3	
	4	5	6	
	7	8	9	

>> B=[% Creating a matrix called B.
123			% Note that the format is quite flexible
561			
3 -1 9			
1			
J			
_			
B =			
1	4	2 3	
5	6	51	
3	-1	L 9	
>> A			% To see what is A.
A =			
1	4	2 3	
4	Ę	5 6	
7	8	3 9	
·		5 0	
>> ^ +	P		°/ ∧ + R − ?
// N	Ъ		
alis –			
2		1 6	
2	-	± 0	
9	11		
10		/ 18	
>> C =	A + F	3	% Set C = A + B
C =			
2	4	1 6	
9	11	L 7	
10	7	7 18	

>> D= 2*A - 3*B		% Compute D =	= 2*A - 3*B
D =			
-1 -2 $-3-7$ -8 9			
5 19 -9			
>> C=[1; 2; 3]		% Create a co	lumn vector
C =			
1 2 3			
>> R = [1; 2; 3]		% Create a ro	vector
R =			
1 2 3			
>> R=[1 2 3]			
R =			
1 2 3			
>> whos		% You can see % defined and	what variables you have their data.
Name	Size	Elements By	tes Density Complex
A	3 by 3	9	72 Full No
C	3 by 3 3 by 1	3	12FullNO24FullNo

			D	3	by	3				9			72		F	ul	1		No
			R	1	by	3				3			24		F	ul	1		No
			ans	3	by	3				9			72		F	ul	1		No
Grand	l total	L is	42 elem	ents	usi	ing	336	by	tes										
>> A								%	To :	see	Аа	gai	n.						
A =																			
	1	2	3																
	4	5	6																
	7	8	9																
>> A((1,1)							%	You	cai	n se	e p	art	icula	ar e	ent	ry	of A	Į
ans =	-																		
	1																		
>> A((3,2)							%	the	(3	,2)	ent	ry	of A	is?	?			
ans =	=																		
	8																		
>> A((2,2)=3	3.5						%	chai	nge	the	(2	,2)	ent	ry c	of.	A t	o be	e 3.5
A =																			
1	.0000	4	2.0000	3.0	000)													
Z.	Ł.0000	3	3.5000	6.0	000)													
7	7.0000	8	3.0000	9.0	000)													
>> A((1,3)=5	5.1						%	chai	nge	the	(1	,3)	ent	ry c	of.	A t	o be	e 5.1
A =																			

1.0000 2.0000 5.1000 4.0000 3.5000 6.0000 7.0000 8.0000 9.0000 >> P=rand(4)% create a random 4 by 4 matrix P = 0.2470 0.6515 0.2727 0.2378 0.9826 0.0727 0.4364 0.2749 0.7227 0.6316 0.7665 0.3593 0.7534 0.8847 0.4777 0.1665 >> Q=rand(3) % create a random 3 by 3 matrix Q = 0.4865 0.0606 0.5163 0.8977 0.9047 0.3190 0.9092 0.5045 0.9866 >> rank(A) % To find the rank of A ans = 3 % online help for rand >> help rand RAND Uniformly distributed random numbers and matrices. RAND(N) is an N-by-N matrix with random entries, ordinarily chosen from a uniform distribution on the interval (0.0,1.0). RAND(M,N) or RAND([M,N]) is an M-by-N matrix with random entries. RAND(SIZE(A)) is the same size as A. RAND with no arguments is a scalar whose value changes each time it is referenced.

5

RAND('seed') returns the current seed of the uniform generator. RAND('seed',s) sets the uniform generator seed to s. RAND('seed',0) resets the seed its startup value. RAND('seed',sum(100*clock)) sets it to a different value each time.

By default, RAND samples a uniform distribution. The function RANDN generates normally distributed random matrices. RAND and RANDN have separate generators, each with its own seed.

Previous versions of MATLAB allowed RAND('normal') to switch the prevailing distribution to normal, RAND('uniform') to switch back to uniform distribution, and RAND('dist') to return a string containing the prevailing distribution, either 'uniform' or 'normal'. MATLAB Version 4.0 continues to allow this switch, but issues a warning message discouraging its use.

See also RANDN, SPRANDN.

```
>> help rank
```

ans =

% online help for rank

RANK Number of linearly independent rows or columns. K = RANK(X) is the number of singular values of X that are larger than MAX(SIZE(X)) * NORM(X) * EPS. K = RANK(X,tol) is the number of singular values of X that are larger than tol.

>> 1+2	%	simple	arithmetics
ans =			
3			
>> 2*7			

14

>> 5/2

ans =

2.5000

>> pi

ans =

3.1416

>> exp(1)

ans =

2.7183

>> format long
>> exp(1)

ans =

2.71828182845905

>> help format

FORMAT Set output format.

All computations in MATLAB are done in double precision. FORMAT may be used to switch between different output display formats as follows: FORMAT Default. Same as SHORT. FORMAT SHORT Scaled fixed point format with 5 digits. FORMAT LONG Scaled fixed point format with 15 digits. FORMAT SHORT E Floating point format with 5 digits.

% change the format to be long

	FORMAT	LONG E	Floating point format with 15 digits.
	FORMAT	HEX	Hexadecimal format.
	FORMAT	+	The symbols +, - and blank are printed
			for positive, negative and zero elements.
			Imaginary parts are ignored.
	FORMAT	BANK	Fixed format for dollars and cents.
	FORMAT	COMPACT	Suppress extra line-feeds.
	FORMAT	LOOSE	Puts the extra line-feeds back in.
F	FORMAT F	RAT A	Approximation by ratio of small integers.

>> Q

Q =

0.48651738301223	0.06056432754759	0.51629196364260
0.89765628655332	0.90465309233621	0.31903294116214
0.90920810164381	0.50452289474407	0.98664211201791

>> 3/4

ans =

0.75000000000000

>> A

A =

	1.00000000000000	2.00000000000000	5.100000000000
	4.00000000000000	3.50000000000000	6.000000000000
	7.00000000000000	8.00000000000000	9.000000000000
>>	format		% reset format to be default - short
>>	A		

A =

	1.0000	2.0000	5.1000	
	4.0000	3.5000	6.0000	
	7.0000	8.0000	9.0000	
>>	A*B			% A*B, matrix multiplication
ans	3 =			
	26.3000	8.9000	50.9000	
	39.5000	23.0000	69.5000	
	74.0000	53.0000	110.0000	
>>	B*A			% B*A, matrix multiplication
				% note that A*B is not equal to B*A
ans	5 =			
	30.0000	33.0000	44.1000	
	36.0000	39.0000	70.5000	
	62.0000	74.5000	90.3000	
>>	С			
C =	=			
	1			
	2			
	3			
>>	A*C			
ans	5 =			
	20.3000			
	29.0000			
	50.0000			
>>	C*A			% Matrix multiplication fails due to

```
% incompatible dimensions
??? Error using ==> *
Inner matrix dimensions must agree.
>> A^2
                                       % A^A = A*A
ans =
  44.7000
            49.8000
                      63.0000
  60.0000
            68.2500
                      95.4000
  102.0000 114.0000 164.7000
>> A*A
ans =
  44.7000
            49.8000
                      63.0000
  60.0000
            68.2500
                      95.4000
  102.0000 114.0000 164.7000
>> A^3
ans =
  1.0e+03 *
   0.6849
             0.7677
                       1.0938
   1.0008
             1.1221
                       1.5741
   1.7109
             1.9206
                       2.6865
>> A*A*A
ans =
  1.0e+03 *
   0.6849
             0.7677
                       1.0938
```

	1.0008		1.1221	1.5741	
	1.71	.09	1.9206	2.6865	
>> E	3				
в =					
_					
	1	2	3		
	5	6	1		
	3	-1	9		
>> E	3,				% transpose
ans	=				
	1	5	3		
	2	6	-1		
	3	1	9		
>> F	3,,				% B transpose and transpose again
ans	=				
	1	2	3		
	5	6	1		
	3	-1	9		
>> (2				
C =					
•					
	1				
	2				
	3				
	2				
>> F	2				
	•				

R =						
1	1 2	2	3			
>> C*F	ł					% column vector times row vector
ans =						
1		2	3			
2	2 4	4	6			
3	3 6	6	9			
>> R*(;					% row vector times column vector
ans =						
14	Ł					
>> zer	cos(3)					% To create a 3 by 3 zero matrix
ans =						
C) (0	0			
C) (0	0			
C) (0	0			
>> zer	cos(5)					
ans =						
C) (0	0	0	0	
C) (0	0	0	0	
C) (0	0	0	0	
C) (0	0	0	0	
C) (0	0	0	0	
>> eye	e(5)					% To create a 5 by 5 identity matrix

ans	5 =								
	4	0	0	0	~				
	1	0	0	0	0				
	0	1	1	0	0				
	0	0	1	1	0				
	0	0	0	1	1				
	0	0	0	0	T				
>>	eye(3)								
ans	5 =								
	1	0	0						
	0	1	0						
	0	0	1						
>>	E=rand	(3,4	.)			%	То	create	a random 3 by 4 matrix
E =	=								
	0 101	0	0 0478	0 38/	1	0 5207			
	0.434	1	0.0737	0.30-	· 1	0.3237			
	0.200	7	0.5007	0.217	188	0.9410			
	0.000	•	0.0001	0.010	.0	0.0110			
>>	rref(E)				%	То	obtain	the reduced row echelon form
						%	of	E	
ans	5 =								
	1.000	0	0		0	0.6739			
		0	1.0000		0	-0.2346			
		0	0	1.000	0	1.0914			
	D								
//	ם								
в =	=								

2 3 1 5 6 1 3 -1 9 >> rref(B) ans = 1 0 0 0 1 0 0 1 0 >> help rref % Online help for rref RREF Reduced row echelon form. R = RREF(A) produces the reduced row echelon form of A. [R,jb] = RREF(A) also returns a vector, jb, so that: r = length(jb) is this algorithm's idea of the rank of A, x(jb) are the bound variables in a linear system, Ax = b, A(:,jb) is a basis for the range of A, R(1:r,jb) is the r-by-r identity matrix. [R,jb] = RREF(A,TOL) uses the given tolerance in the rank tests. Roundoff errors may cause this algorithm to compute a different value for the rank than RANK, ORTH and NULL. See also RREFMOVIE, RANK, ORTH, NULL, QR, SVD. >> lookfor row % lookfor keyword row RANK Number of linearly independent rows or columns. RREF Reduced row echelon form. RREFMOVIE Movie of the computation of the reduced row echelon form. WATCHOFF Sets the current figure pointer to the arrow. FINDROW Find the rows of a matrix that match the input string. IDUIPOIN Sets and resets the window pointer to watch and arrow

14

ARROW an arrow		
PDEBSPLIT Splits s	pace separated string	g into separate rows.
>> lookfor echelon		
RREF Reduced row e	chelon form.	
RREFMOVIE Movie of	the computation of t	the reduced row echelon form.
>> B		
B =		
1 2 3		
5 6 1		
3 -1 9		
0 1 0		
>> det(B)		% determinant of B
ans =		
-98		
>> inv(B)		% inverse of B
ans =		
-0.5612 0.21	43 0.1633	
0.4286	0 -0.1429	
0.2347 -0.07	14 0.0408	
>> D=inv(B)		% Set D = inv(B)
D =		
-0.5612 0.21	43 0.1633	
0.4286	0 -0.1429	
0.2347 -0.07	14 0.0408	

>> B*D			% B*D = I, of course
ans =			
1.0000	0.0000	0	
-0.0000	1.0000	0.0000	
0	0.0000	1.0000	
>> D*B			% D*B = I, of course
ans =			
1.0000	-0.0000	-0.0000	
0.0000	1.0000	0.0000	
-0.0000	0.0000	1.0000	
>> det(D)			% det(D) = ?
ans =			
-0.0102			
>> det(B)*de	et(D)		% det(B)*det(D) = 1, of course
ans =			

and

1.0000

>> whos

Name	Size	Elements	Bytes	Density	Complex
А	3 by 3	9	72	Full	No
В	3 by 3	9	72	Full	No
С	3 by 1	3	24	Full	No
D	3 by 3	9	72	Full	No
E	3 by 4	12	96	Full	No
Р	4 by 4	16	128	Full	No

	Q	3 by 3	9	72	Full	No
	R	1 by 3	3	24	Full	No
	ans	1 by 1	1	8	Full	No
Grand total :	is 71 elem	ents using 56	8 bytes			
>> size(P)			% size	of P		
ans =						
4 4						
>> size(R)			% size	of R		
ans =						
1 3						
>> help size						
SIZE Matrix D = SIZE(X) row vector in the mat	dimension), for M-b D = [M, N rix.	s. y-N matrix X,] containing	returns the the the number of	two-elemen rows and	ıt columns	
[M,N] = SI in separate	ZE(X) retu e output v	rns the numbe ariables.	r of rows and	columns		
M = SIZE() N = SIZE(X	X,1) retur ,2) return	ns just the n s just the nu	umber of rows mber of column	ns.		
>> save myfi	le.mat		% save t] % myfile	ne workspa .mat	ace into fi	le called.
>> whos						
	Name	Size	Elements	Bytes	Density	Complex
	А	3 by 3	9	72	Full	No

	В	3 by 3	9	72	Full	No
	С	3 by 1	3	24	Full	No
	D	3 by 3	9	72	Full	No
	Е	3 by 4	12	96	Full	No
	Р	4 by 4	16	128	Full	No
	Q	3 by 3	9	72	Full	No
	R	1 by 3	3	24	Full	No
	ans	1 by 2	2	16	Full	No
Grand total	is 72 elem	ments using 57	'6 bytes			
>> clear			% clear	the worksp	ace.	
>> whos			% now, t	nere are n	o variable	es defined.
>> load myfi >> whos	le		% don't v % previov % See, no	worry! You is workspa ow all the	a can reloa ace e previous	nd the variables
			% are the	ere.		
	Name	Size	Elements	Bytes	Density	Complex
	А	3 by 3	9	72	Full	No
	В	3 by 3	9	72	Full	No
	С	3 by 1	3	24	Full	No
	D	3 by 3	9	72	Full	No
	E	3 by 4	12	96	Full	No
	Р	4 by 4	16	128	Full	No
	Q	3 by 3	9	72	Full	No
	R	1 by 3	3	24	Full	No
	ans	1 by 2	2	16	Full	No

Grand total is 72 elements using 576 bytes

>> quit

3 Some Useful Commands

It is quite useful to get acquainted with the following. Just try them out.... You can get more information about them by typing help command.

3.1 General Commands

lookfor keyword

look for the commands related to a key word. This is very useful if you forget the exact name of the command.

help command —

give online help for the command (if you know the name)

diary filename —

save all the screen output to the file "filename". Default filename is "diary". diary off will turn off the diary mode. After you are done, you can then take a look of the screen output (and edit it) at your leisure.

save filename -

save the whole workspace (i.e. all the variables) into a file. Default filename is "matlab.mat".

load filename —

load all the variables from the file "filename" into the workspace. Default filename is "matlab.mat".

whos

list information about current variables. The long form of who.

clear

clear the workspace. You can clear a particular variable by typing clear variablename.

3.2 Mathematical Operations and Functions

You can just type help to get a list of all the types of functions available. Of particular interests to starters are:

Operators and special characters.

+ - Plus

-	- Minus
*	- Matrix multiplication
/	- division
,	- Matrix Transpose
=	- Assignment
%	- Comment

Matrix analysis.

rref	- Reduced row echelon form.
det	- Determinant.
inv	- Matrix inverse.
rank	- Number of linearly independent rows or columns.
trace	- Sum of diagonal elements.
null	- Null space.
orth	- Orthogonalization.
expm	- Matrix exponential.

Eigenvalues.

eig	-	Eigenvalues	and	eigenvectors.
poly	-	Characterist	tic	polynomial.

Trigonometric.

sin	-	Sine.
sinh	-	Hyperbolic sine.
asin	-	Inverse sine.
asinh	-	Inverse hyperbolic sine.
cos	-	Cosine.
cosh	-	Hyperbolic cosine.
acos	-	Inverse cosine.
acosh	-	Inverse hyperbolic cosine.
tan	-	Tangent.

tanh	-	Hyperbolic tangent.
atan	-	Inverse tangent.
atan2	-	Four quadrant inverse tangent.
atanh	-	Inverse hyperbolic tangent.
sec	-	Secant.
sech	-	Hyperbolic secant.
asec	-	Inverse secant.
asech	-	Inverse hyperbolic secant.
csc	-	Cosecant.
csch	-	Hyperbolic cosecant.
acsc	-	Inverse cosecant.
acsch	-	Inverse hyperbolic cosecant.
cot	-	Cotangent.
coth	-	Hyperbolic cotangent.
acot	-	Inverse cotangent.
acoth	-	Inverse hyperbolic cotangent.

Exponential.

exp -	Exponential.
log -	Natural logarithm.
log10 -	Common logarithm.
sqrt -	Square root.

Complex.

abs	- Absolute value.
angle	- Phase angle.
conj	- Complex conjugate.
imag	- Complex imaginary part.
real	- Complex real part.

Numeric.

fix	-	Round	towards	zero.	
floor	-	Round	towards	minus	infinity.
ceil	-	Round	towards	plus	infinity.

round	- Round towards nearest integer.
rem	- Remainder after division.
sign	- Signum function.

Polynomials.

roots	- Find polynomial roots.
poly	- Construct polynomial with specified roots.
polyval	- Evaluate polynomial.
polyvalm	- Evaluate polynomial with matrix argument.
residue	- Partial-fraction expansion (residues).
polyder	- Differentiate polynomial.
conv	- Multiply polynomials.
deconv	- Divide polynomials.