

Network / Graph G1= (N, E)
(nodes) (edges/arcs) undirected

Trees

An undirected graph $G = (\mathcal{N}, \mathcal{E})$ is called a *tree* if it is connected and has no cycles. If a node of a tree has degree equal to 1, it is called a leaf. See Figure 7.3 for an illustration.

Theorem 7.1

- (a) Every tree with more than one node has at least one leaf.
- (b) An undirected graph is a tree if and only if it is connected and has $|\mathcal{N}| 1$ arcs.
- (c) For any two distinct nodes i and j in a tree, there exists a unique path from i to j.
- (d) If we start with a tree and add a new arc, the resulting graph contains exactly one cycle (as long as we do not distinguish between cycles involving the same set of nodes).

Theorem 7.1

- (a) Every tree with more than one node has at least one leaf.
- (b) An undirected graph is a tree if and only if it is connected and has $|\mathcal{N}| 1$ arcs.
- (c) For any two distinct nodes i and j in a tree, there exists a unique path from i to j.
- (d) If we start with a tree and add a new arc, the resulting graph contains exactly one cycle (as long as we do not distinguish between cycles involving the same set of nodes).

Spanning trees

Given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, let \mathcal{E}_1 be a subset of \mathcal{E} such that $T = (\mathcal{N}, \mathcal{E}_1)$ is a tree. Such a tree is called a spanning tree.

Spanning trees

Given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, let \mathcal{E}_1 be a subset of \mathcal{E} such that $T = (\mathcal{N}, \mathcal{E}_1)$ is a tree. Such a tree is called a spanning tree.

Spanning trees

Given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, let \mathcal{E}_1 be a subset of \mathcal{E} such that $T = (\mathcal{N}, \mathcal{E}_1)$ is a tree. Such a tree is called a spanning tree.

connects all the nodes

Theorem 7.2 Let $G = (\mathcal{N}, \mathcal{E})$ be a connected undirected graph and let \mathcal{E}_0 be some subset of the set \mathcal{E} of arcs. Suppose that the arcs in \mathcal{E}_0 do not form any cycles. Then, the set \mathcal{E}_0 can be augmented to a set $\mathcal{E}_1 \supset \mathcal{E}_0$ so that $(\mathcal{N}, \mathcal{E}_1)$ is a spanning tree.

Spanning trees

Given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, let \mathcal{E}_1 be a subset of \mathcal{E} such that $T = (\mathcal{N}, \mathcal{E}_1)$ is a tree. Such a tree is called a spanning tree.

Spanning trees

Given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, let \mathcal{E}_1 be a subset of \mathcal{E} such that $T = (\mathcal{N}, \mathcal{E}_1)$ is a tree. Such a tree is called a *spanning tree*.

Figure 7.4: (a) An undirected graph. The thicker arcs form a spanning tree. (b) Another undirected graph. The arcs $\{1,2\}$, $\{2,3\}$, $\{4,6\}$ do not form any cycle. They can be augmented to form a spanning tree, e.g., by adding arcs $\{3,6\}$ and $\{5,6\}$.

7.10 The minimum spanning tree problem

We are given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, with n nodes. For each edge $e \in \mathcal{E}$, we are also given a cost coefficient c_e . (Recall that an edge in an undirected graph is an unordered pair $e = \{i, j\}$ of distinct nodes in \mathcal{N} .) A minimum spanning tree (MST) is defined as a spanning tree such that the sum of the costs of its edges is as small as possible.

7.10 The minimum spanning tree problem

We are given a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$, with n nodes. For each edge $e \in \mathcal{E}$, we are also given a cost coefficient c_e . (Recall that an edge in an undirected graph is an unordered pair $e = \{i, j\}$ of distinct nodes in \mathcal{N} .) A minimum spanning tree (MST) is defined as a spanning tree such that the sum of the costs of its edges is as small as possible.

LP formulation

Minimize

$$z = \sum_{i-j \in E} w_{ij} x_{ij}$$

Subject to

$$\sum_{\substack{i-j\in E\\i,j\in S}} x_{ij} = |V| - 1$$

$$\sum_{\substack{i-j\in E\\i,j\in S}} x_{ij} \le |S| - 1 \quad \text{for each } S \subset V, \ S \neq \emptyset$$

$$x_{ij} \ge 0 \qquad \text{for each } i-j\in E$$

Mininum Spanning Tree, (Bertsimes-Tsitsiklis)

Freedy algorithm: at every step, find the

next minimum arcs

Greedy algorithm for the minimum spanning tree problem

- 1. The input to the algorithm is a connected undirected graph $G = (\mathcal{N}, \mathcal{E})$ and a coefficient c_e for each edge $e \in \mathcal{E}$. The algorithm is initialized with a tree $(\mathcal{N}_1, \mathcal{E}_1)$ that has a single node and no edges (\mathcal{E}_1) is empty.
- 2. Once $(\mathcal{N}_k, \mathcal{E}_k)$ is available, and if k < n, we consider all edges $\{i, j\} \in \mathcal{E}$ such that $i \in \mathcal{N}_k$ and $j \notin \mathcal{N}_k$. Choose an edge $e^* = \{i, j\}$ of this type whose cost is smallest. Let

$$\mathcal{N}_{k+1} = \mathcal{N}_k \cup \{j\}, \qquad \mathcal{E}_{k+1} = \mathcal{E}_k \cup \{e^*\}.$$

Mininum Spanning Tree (Berkimas-Tsitsiklis) Greedy algorithm: at every step, find the next minimum arcs

Mininum Spanning Tree (Berkimas-Tsitsiklis) Greedy algorithm: at every step, find the next minimum arcs

Mininum Spanning Tree (Bertsimus-Tsitsiklis) Firedy algorithm: at every step, find the next minimum arcs

Theorem 7.20 For k = 1, ..., n, the tree $(\mathcal{N}_k, \mathcal{E}_k)$ is part of some MST. That is, there exists an MST $(\mathcal{N}, \overline{\mathcal{E}}_k)$ such that $\mathcal{E}_k \subset \overline{\mathcal{E}}_k$.

Pf (by induction on k)

(Nk, Ek)

(1) k=1(2) $k< n \implies k+1$

