
Homework & Solution

Hw8 [V] #12-3 Given $able_1 \leq b_1 \leq \cdots \leq b_{m-1} \leq b_m$, min max |x-b|

= min max d 1x-b1, 1x-bm/}

 $= \min_{x} \max_{x} \left\{ x - b_{i}, b_{m} - x \right\}$

= $\frac{bm-b_1}{2}$ achieved at $x = \frac{bm+b_1}{2}$

$$[V]^{\sharp} 12.4 \quad \text{min} \quad \sum_{i=1}^{M} |X-b_i|^2$$

$$= \text{min} \quad \sum_{i} |X-b_i| |X-b_i|^2$$

$$+ake \quad \text{gradient} \quad \text{wrt} \quad X$$

$$\Rightarrow 2 \sum_{i} (X-b_i) = 0$$

$$X = \frac{1}{m} \sum_{i=1}^{M} b_i^2$$

12.7 Sales Force Planning. A distributor of office equipment finds that the business has seasonal peaks and valleys. The company uses two types of sales persons: (a) regular employees who are employed year-round and cost the company \$17.50/h (fully loaded for benefits and taxes) and (b) temporary employees supplied by an outside agency at a cost of \$25/h. Projections for the number of hours of labor by month for the following year are shown in Table 12.2. Let a_i denote the number of hours of labor needed for month i and let x denote the number of hours per month of labor that will be handled by regular employees. To minimize total labor costs, one needs to solve the following optimization problem:

g optimization problem:
minimize
$$\sum_{i} (25 \max(a_i - x, 0) + 17.50x). = \left(\sum_{i} 25 \max(a_i - x, 0)\right) + 2/0 \chi$$

- (a) Show how to reformulate this problem as a linear programming problem.
- (b) Solve the problem for

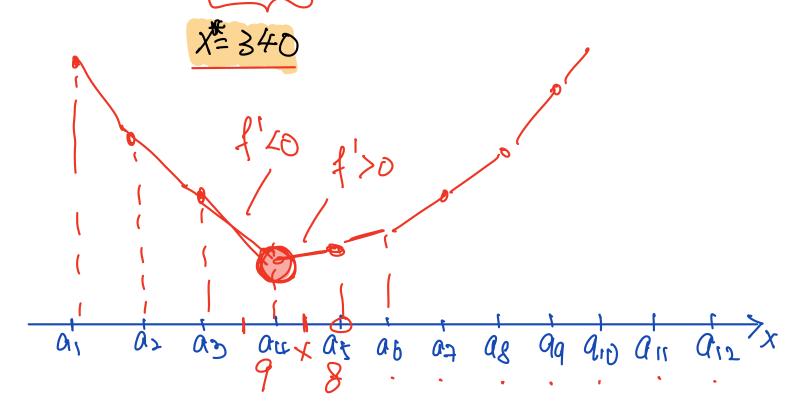
(c) Use calculus to find a

r the specific data given above. a formula giving the optimal value for x .	Jan	390	May	310	Sep	550	
	Feb	420	Jun	590	Oct	360	
	Mar	340	Jul	340	Nov	420	
	Apr	320	Aug	580	Dec	600	

TABLE 12.2. Projected labor hours by month.

(a) min
$$2/0x + 25$$
 $\sum \epsilon_i$
 $\epsilon_i \geq \alpha_i - x$
 x , $\epsilon_i \geq 0$

(c) Let
$$f(x) = 210x + 25 \sum_{i} max(a_{i} - x, \delta)$$

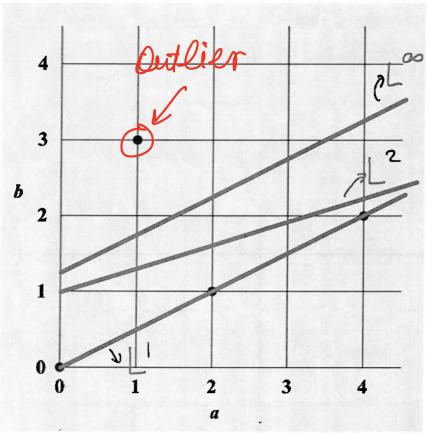

(d)

$$f'(x) = 210 + 25 \sum_{i} (-i) 1_{1} x < a_{i} y$$

$$= 210 - 25 \sum_{i} 1_{2} x < a_{i} y = 0$$

for simplicity, re-order as s.t. 9,5925.592

310,320,340,340,360,390,420,420,550,580,590,600



Kerall L-Regression (Least Square) $\lim_{(X_1, \dots, X_n)} \left[\left(b_i - \sum_{j=1}^n a_{ij} x_j \right)^{2j} \right]$ min // b-AX//2 AX= b (might not be Solvable) ATAX=ATS (normal equation, always solvable) $X = (A^TA)^TA^Tb (if (A^TA)^T-vnists)$ L'- regression min $\sum_{i} |b_i - \sum_{j} a_{ij} x_j|$ min / b - A X //2

 $min \sum_{i=1}^{n} t_i$ 1bi- 5 ajxj/x ti -tisbi- = Qij Xj 5+i

L^{$$\infty$$} - Regression min $(\max_{i} |b_{i} - \sum_{j} a_{ij} x_{j})$
min $||b - Ax||_{\infty}$

mim
$$\delta$$

s.t. $-\delta \leq b_i - \sum_j a_{ij} x_j \leq \delta$
 $|b_i - \sum_j a_{ij} x_j| \leq \delta$ for all i

Note that L' is least sensitive to outlier.

Los is most sensitive to outlier

(Solution from Student)