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Ry - X, ., and the objective function = in terms of the remaining n (2.15)
variables.

The properties (2.14) and (2.15) are the defining properties of dictionaries.
In addition to these two properties, dictionaries (2.3). (2.8). and (2.10) have the
following property:

Setting the right-hand side variables at zero and evaluating the left-hand side
variables, we arrive at a feasible solution.

Dictionaries with this additional property will be called feasible dictionaries. Hence.
every feasible dictionary describes a feasible solution. However. not every feasible
solution is described by a feasible dictionary: for instance, no dictionary describes
the feasible solution x; = 1,x, = 0.x5; = L.x; = 2. x5 = 5.x¢ = 30f(2.]). Feasible
solutions that can be described by dictionaries are called basic. The characteristic
feature of the simplex method is the fact that it works exclusively with basic feasible
solutions and ignores all other feasible solutions.

SECOND EXAMPLE

We shall complete our preview of the simplex method by applying it to another

P problem: _ ]
maxinize 5x, 4+ 5x, + 3x; < M‘M 7@‘
subject to X; 4+ 3%, + X33 &/— 9<9< S@{A,

-\, + 33 <2 «e— ;Q~

2, — N, +2x3 4 —— X4

2x; + 3x;, — X3 <2 —— 4(7L
X1 X5.83 20

In this case, the initial feasible dictionary reads

Xg =3 — X; —3X; — X3 <& ?((i(s
Ns =2+ X, — 3x;
e =4 -2 + X, -2y &— N &2 (2.16)
Np=2-2 -3+ Xy E&— X S/ 9(,{/'3’)(?_
= Sxy 4+ 5x, + 3x;.
S—

(Even though the order of the equations in a dictionary is quite irrelevant. we shall
make a habit of writing the formula for = last and separating it from the rest of the
table by a solid line. Of course, that does nor mean that the last equation 1s the sum
of the previous ones.) This feasible dictionary describes the feasible solution

e

Xp=0, x; =0, x3=0, x; =3, xs=2, x4 =4 x;,=2
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However, there is no need to write this solution down, as we just did: the solution
1s implicit in the dictionary.

In the first iteration, we shall attempt to increase the value of = by making one
of the right-hand side variables positive. At this moment, any of the three variables
X{. X5, X3 would do. In small examples, it is common practice to choose the variable
that, in the formula for z. has the largest coefficient: the increase in that variable
will make z increase at the fastest rate (but not necessarily to the highest level). In
our case, this rule leaves us a choice between x; and x,: choosing arbitrarily, we
decide to make x, positive. As the value of x, increases, so does the value of xs.
However, the values of x,, x,, and x, decrease, and none of them is allowed to
become negative. Of the three constraints x;, > 0, x, = 0, x5 = 0 that impose upper

bounds on the increment of x,, the last constraint x, > 0 i1s the most stringent:

it implies x; < I. In the improved feasible solution, we shall have x, = 1 and

x, = 0. Without writing the new solution down, we shall now construct the new
dictionary. All we need to know is that x, just made its way from the right-hand
side to the left, whereas x, went in the opposite direction. From the fourth equation

in (2.16), we have Vi
/ (s

s e e = (2.17)
1 2 2 2 3 2 7 -s 'x.g

Substituting from (2.17) into the remaining equations of (2.16), we arrive at the
desired dictionary

4 1 1
.\'1 = I — 3.\'2 + T)x3 - Ex'?

3 3 1 %
S — 2 — j).\'z e “5.\'3 + ;.\7 o KB I é

3 5 1 3 (2.18)
\5 = 3 —_ ;.\'2 — 3X3 - ’,;X'[ é—— xa \{‘ _/f_

7 2

\6 = /2 + 4\2 — 3\3 + \7 — /& \< j &"

5 11 5 —N
= 5 - 5-\.2 S "‘7—X3 — 5,\'7. Xa & Q

The construction of (2.18) completes the first iteration of the simplex method.

Digression on Terminology

The variables x; that appear on the left-hand side of a dictionary are called basic;
the variables x; that appear on the right-hand side are nonbasic. The basic variables
are said to constitute a basis. Of course. the basis changes with each iteration: for
example. in the first iteration. x, entered the basis whereas x- left it. In each iteration,
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we first choose the nonbasic variable that is to enter the basis and then we find out
which basic variable must leave the basis. The choice of the entering variable is
motivated by our desire to increase the value of z; the determination of the leaving
variable is based on the requirement that all variables must assume nonnegative

values. The leaving variable is that basic variable whose nonnegativity imposes the
most stringent upper bound on the increment of the entering variable. The formula
for the leaving variable appears in the pivotr row of the dictionary: the computational
process of constructing the new dictionary is referred to as pivoting.

Back to the Second Example
In our example, the variable to enter the basis during the second iteration is quite
unequivocally x;. This is the only nonbasic variable in (2.18) whose coeflicient mn

the last row is positive. Of the four basic variables, x, imposes the most stringent

upper bound on the increase ol x3, and, therefore, ias 10 leave the basis. Pivoling,
we arrive at our third dictionary.

2 4 i
gy = g 3.\'3+§.\'7— -—.\'6
4 5 | | S
M= 3m gnmgns v e Ko -
4 2'2 2'6 > BN .} '
4 29 4 5
= gmEnTget e — BT L (L2
. : 7 7 F
, 6.9 2 1L
F T3 T T3V T e N, ¢ Xy

In the third iteration, the entering variable is v, and the leaving variable is x5.
Pivoting yields the dictionary

29072977 T 2970 T 297 57
30 1 3 8
29 7 29%7 T 29N T a9t /[3& }"/
32 3 9 5
.32 3 9 5 . 32
X117 39 T 297 T a9 te T s A) = 3/59

1 28 3 21 /
.\.4"—__“}“.\.7—'—‘.\'6"'—.\'5 X4‘:: /2?

29 29
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At this point, no nonbasic variable can enter the basis without making the value of ¢
decrease. Hence, the last dictionary describes an optimal solution of our example.
That solution 1s

32 8 30

.\:1: .\'2=_ X3='_

%

and 1t yields z = 10.

The reader may have noticed that, having first carefully laid down the definition of a
dictionary, we then proceeded to refer to (2.18), (2.19), and (2.20) as dictionaries,
without bothering to verify that they do indeed have property (2.14). Such careless-
ness can be easily justified. Take, for example, system (2.18). Since (2.18) arises from
(2.16) by arithmetical operations (namely, pivoting with x, entering and x, leaving),
every solution of (2.16) must be also a solution of (2.18). The converse is also true.
since (2.16) can be obtained from (2.18) by pivoting with x, entering and x, leaving.
Hence, every solution of (2.18) is a solution of (2.16), and vice versa. Similar arguments
show that every solution of (2.19) is a solution of (2.18), and vice versa; and that every
solution of (2.20) is a solution of (2.19), and vice versa.

Another point of concern is the question of the uniqueness, as opposed to the existence, of
optimal solutions. This question will be of no great interest to us: nevertheless, it is easy to deal
with and so we will get it out of the way now. Note that in each of our two examples. we not only
found an optimal solntion, but we also collected the evidence to prove that there is only one
optimal solution. For instance, the final dictionary for our first problem reads

X3 = l +- .\'2 + 3,\:4 - 2.\:0
.V] e 2 - 2.\‘2 S 2.\‘_;. =F ,\'(,
Xg = | 4+ 5x;, + 2,
=13 -3x; — Ny — X,
The last row shows that every feasible solution with = = 13 satisfies x, = x; = x, = 0. the

rest of the dictionary shows that every such solution satisfies x; = 1, x; = 2, x5 = |: therefore,
there is just one optimal solution. A similar argument applies to the second problem.
Of course, there are LP problems with more than just one optimal solution: having solved
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A tableau 1s nothing but a cryptic recording of a dictionary with all the variables collected on
the left-hand side and the symbols for these variables omitted. We shall continue to use dictio-

naries instead, since they are more expliat. (Of course. nothing prevents the reader tired of
writing the same symbols x, x,

over and over again from using the tableau shorthand.)
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_Initialization
The only remaining point that needs to be explained is getting hold of the initial
feasible dictionary in a probiem

n
maximize Y cx;
i=1
n
subject to Soagn; < b (i=12....m)
j=1
X; >0 el o

with an infeasible origin. The trouble with an infeasible origin is twofold. First, it
may not be clear that our problem has any feasible solutions at all. Second, even if a
feasible solution is apparent. a feasible dictionary may not be. One way of getting
around both obstacles uses a so-called auxiliary problem,

minimize e
n

subject to Y ax;—xo<b,  (i=12..... m)
=

x; =20 = Ul e i)

A feasible solution of the auxiliary problem is readily available: it suflices to set the
value of each x; with 1 < j < n at zero and make the value of x, sufficiently large.
Furthermore. it is easy to see that the original problem has a feasible solution if and
only if the auxiliary problem has a feasible solution with x, = 0. To put it differently.
the original problem has a feasible solution if and only if the optimum value of the
auxiliary problem is zero. Hence our plan is to solve the auxiliary problem first: the
technical details are illustrated on the problem

maximize X; — N>+ X3
subject to 2x; — x>+ 2x3< 4
2% — I, + X3 £ =8
—X; + Xx; — 2x; < =1
Nj. X2. X3 = O

To avoid unnecessary confusion. we write the auxiliary problem in its maximization
form:

maximize —Xo
O ——
subject to 2x; — Np 4 2y — Xl 4
Ixg — 33X, + X3 — Xp|< -5
_\1+ \‘)_2.\‘3-\0S—]
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Writing down the formulas defining the slack variables x,. x5. X, and the objective
function w, we obtain the dictionary

Xg= 4-2x; 4+ x, —2x5; + X,
r
X = = 2_\'1 + 3_\'2 — X3 + Xy < — dpﬁ%m W—m w%
Xe=—14+ x; — x;+ 2x; + X
= s Ko 6> As

which is infeasible. Nevertheless. this infeasible dictionary can be transformed into
a feasible one by a single pivot, with x, entering and x4 leaving the basis:

Xo= SH 2x; — 3x, + X3 + X5 /)()‘(5
Xy = 9 — 2x, — X3 + X; é&,
E e e &— Kos U
,\6— 4+3.\1 “"4.\2+3_\3+.\5
wo= —5 — 2x; + 3x, — X3 — Xs. ?()/‘(/
In general, the auxiliary problem may be written as ’X > /S O(é
maximize —Xp
subject 10 Y agx;—xg<bh (i=12....m
i=1

X =10 (j=0.1.....n).

2
Writing down the formulas defining the slack vanables x, . ;. X, .5..... X, .+ m and
the objective function w gives us the dictionary

1!

H
by — > apx;+xo  i=1.2..... m)
i=1

X

nEi

W = — .\‘0

which is infeasible. Nevertheless. this infeasible dictionary can be transformed into
a feasible one by a single pivot, with x, entering and the “most infeasible™ x, . ;
leaving the basis. More precisely, the leaving variable is that x,., whose negative
value, b,. has the largest magnitude among all the negative numbers b,. After pivoting,
the variable x, assumes the positive value of —b,, whereas each basic x, ., ; assumes
the nonnegative value of b, — b,. Now we are set to solve the auxiliary problem by the
simplex method. In our illustrative example, the computations go as follows.
After the first iteration. with x, entering and x4 leaving:

Xy = 14 0.75x; + 0.75x; + 0.25x; — 0.25x, o
Xo = 2 —025x; — 1.25x; + 0.25x, + 0.75x, X3 & Tor E—
Ny = 7 — 15x;, — 25x; + 05x5 + 0.5x¢ /Xg \< j-—
w = —2 + 025x, + [.25x; — 0.25x5 — 0.75x,. 2Y
2 7
g 2.8
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After the second iteration, with x5 entering and x, leaving: /X\a > ‘?(O

X3 = 1.6 — 0.2x; + 0.2x5 + 0.6x¢ — 0.8x,
X, = 2.2 + 0.6x;, + 04x5 + 0.2x4 — 0.6x,

3 — .\'1 - '\-6 + 2.\'0

o e Np=0 (S ittne)

The last dictionary (3.12) is optimal. Since the optimgl value of the auxiliary problem
is zero., dictionary (3.12) points out a feasible solption of the original problem:
x; = 0,x, = 2.2, x; = 1.6. Furthermore, (3.12) cap be easily converted into the
desired feasible dictionary of the original problem. To obtain the first three rows of
the desired dictionary, we simply copy down the first three rows of (3.12), omitting

all the terms involving x:
(%.=0)

-
e
[

.‘(3 B 16 e 0.2.\.1 St 0.2.\'5 -+ 0.6.\.0

X, = 22 4 0.6x; + 04x5 + 0.2x4 (3.13)
Naktd D — Dy - Ng-

To obtain the last row, we have to express the original objective function
£=X; — X; + X; (3.14)

in terms of the nonbasic variables x,. x5. x,. For this purpose, we simply substitute
from (3.13) into (3.14), obtaining

=X, — (22 + 0.6x;, + 04x5 + 0.2x,) + (1.6 — 0.2x; + 0.2x5 + 0.6x¢)
= —0.6 + 0.2x; — 0.2x5 + 0.4x,.

In short, the desired dictionary reads
x; = 1.6]— 0.2x; + 0.2x5 + 0.6x, e[ « 'y, '
.\-2 - 2.2 + 0.6.\'1 + 0-4.\'5 + 0'2'\-6 &' m/g'
.\.4 — 3 == .\‘1 — .\’6

— —0.6 + 02x, — 0.2x5 + 04x,.

t

Clearly, the same procedure will transform an optimal dictionary of the auxilary
problem into a feasible dictionary of the original problem whenever x, 1s nonbasic
in the former.

Now, let us review the general situation. We have learned how to construct the
auxiliary problem and its first feasible dictionary. In the process of solving the
auxiliary problem, we may encounter a dictionary where x, competes with other
variables for leaving the basis. If and when that happens, it i1s only natural to choose
X, as the actual leaving variable; immediately after pivoting, we obtain a dictionary
where

X, 1s nonbasic, and so the value of w s zero. (3.15)
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Clearly, a feasible dictionary with this property is optimal. However, we may also
reach the optimum of the auxiliary problem while x; is still basic. Thus. we may
obtain an optimal dictionary where

X, Is basic and the value of w is nonzero (3.16)
or, conceivably, an optimal dictionary where
X, 1s basic and the value of w is zero. (3.17)

Let us examine case (3.17). Since the next-to-last dictionary was not yet optimal,
the value of w = — x, must have changed from some negative level to zero in the
last iteration. To put it differently, the value of the basic variable x, must have
dropped from some positive level to zero in the last iteration. But then x, was a
candidate for leaving the basis; yet, contrary to our policy, we did not pick it. This
contradiction shows that (3.17) cannot occur. Hence the optimal dictionary of the
auxiliary problem has either property (3.15) or property (3.16). In the former case.
we construct a feasible dictionary of the original problem as illustrated previously
and proceed to solve the original problem by the simplex method: in the latter case,
we simply conclude that the original problem i1s infeasible.

This strategy is known as the two-phase simplex method. In the first phase, we set up
and solve the auxiliary problem: if the optimal dictionary turns out to have property
(3.15) then we proceed to the second phase, solving the original problem itself. We
shall return to the two-phase simplex method in Chapter 8.

THE FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

This name 1s given to the following result.

THEOREM 3.4. Every LP problem in the standard form has the foliowing three
properties:

(i) If it has no optimal solution. then it 1s either infeasible or unbounded.

(i1) 1f it has a feasible solution, then it has a basic feasible solution.

(1) If it has an optimal solution. then it has a basic optimal solution.

PROOF. The first phase of the two-phase simplex method either discovers that the problem
is infeasible or else it delivers a basic feasible solution. The second phase of 1he two-phase simplex
method either discovers that the problem is unbounded or else it delivers a basic optimal
solution. |
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What if all of the ratios, a; / b;, are nonpositive? In that case, none of the basic vari-
ables will become zero as the entering variable increases. Hence, the entering variable
can be increased indefinitely to produce an arbitrarily large objective value. In such
situations, we say that the problem is unbounded. For example, consider the following
dictionary:

<:5—|—1$3—1ZL’1

To = 5 + 2 x3 — 3 11
T4a = 7 — 4
T5 = x1
The entering variable is x3 and the ratios are
—2/5,  =0/7, 0/0.

Since none of these ratios is positive, the problem is unbounded.
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such problems by the simplex method. we can effectively describe all the optimal solutions. For
example, consider the following dictionary:

Ng =3+ x; — 2x5 + Tx;

.\'1 == l - 5.\'2 + 6.\'5 - 8.\'3

Xe¢ =4+ 9x; + 2x5 — Xx;

The last row shows that every optimal solution satisfies x; = 0 (but not necessarily x, = 0 or
x5 = 0). For such solutions, the rest of the dictionary implies

.\'4 = 3 + X3 = 2.\'5
'\.l = ] - 5,\'2 aF 6.\.5 (2.2] )
.\'6 == 4 'I' 9\.2 + 2.\‘5.

We conclude that every optimal solution arises by the substitution formulas (2.21) from some
X, and x; such that

—x, + 2vs <3

5x, — 6y <
-9y, — 2x, < 4
08>, \is| =l

(In fact. the inequality —9x, — 2x5 < 4 is clearly redundant; its validity is forced by x, > 0
and x5 > 0.)
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THE FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

This name is given to the following result.

THEOREM 3.4. Every LP problem in the standard form has the following three
properties:

(i) If it has no optimal solution, then it 1s either infeasible or unbounded.

(i) If it has a feasible solution, then it has a basic feasible solution.

(i) If it has an optimal solution. then it has a basic optimal solution.

PROOF. The first phase of the two-phase simplex method either discovers that the problem
is infeasible or else it delivers a basic feasible solution. The second phase of 1he two-phase simplex
method either discovers that the problem is unbounded or else it delivers a basic optimal
solution. i

[v] p36

THEOREM 3.4. For an arbitrary linear program in standard form, the following
statements are true:

(1) If there is no optimal solution, then the problem is either infeasible or un-
bounded.

(2) If a feasible solution exists, then a basic feasible solution exists.

(3) If an optimal solution exists, then a basic optimal solution exists.

PROOF. The Phase I algorithm either proves that the problem is infeasible or
produces a basic feasible solution. The Phase II algorithm either discovers that the
problem is unbounded or finds a basic optimal solution. These statements depend, of
course, on applying a variant of the simplex method that does not cycle, which we now
know to exist. [l



