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FIGURE 23.7. The beginnings of the enumeration tree.

FIGURE 23.6. The feasible subregions formed by the first branch.
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FIGURE 23.8. The refinement of  to Fs. FIGURE 23.9. The enumeration tree after solving Ps.



FIGURE 23.10. The refinement of P3 to Py and Ps5. Note that Py is
just a short vertical line segment.
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FIGURE 23.11. The enumeration tree after solving ;. The double
box around P; indicates that it is a leaf in the tree.
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FIGURE 23.14. The enumeration tree after solving Fs, P7, and Pk.



FIGURE 23.13. The refinement of Pz to P; and Py. Note that Py
consists of just a single point: (4,0).
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There are three reasons why depth-first search is generally the preferred order in
which to fathom the enumeration tree. The first 1s based on the observation that most
integer solutions lie deep in the tree. There are two advantages to finding integer feasi-
ble solutions early. The first is simply the fact that it is better to have a feasible solution
than nothing in case one wishes to abort the solution process early. But more 1mpor-
tantly, identifying a feasible integer solution can result in subsequent nodes of the
enumeration tree being made into leaves simply because the optimal objective func-
tion associated with that node 1s lower than the best-so-far integer solution. Making
SUCh nodes 1nto leaves 1S called pruning e tree and can account 10t tremendous gains
in efficiency.
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A second reason to favor depth-first search is the simple fact that it 1s very easy
to code the algorithm as a recursively defined function. This may seem trite, but one
should not underestimate the value of code simplicity when implementing algorithms
that are otherwise quite sophisticated, such as the one we are currently describing.
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The third reason to favor depth-first search is perhaps the most important. It is based

g on the observation that as one moves deePer in the enumeration tree, each subsequent

linear programming problem is obtained from the preceding one by simply adding (or

ing) a Oy ri _To see why this is an advan-

tage, consider, for example, problem P, which is a refinement of F,. The optimal
dictionary for problem F; is recorded as

_ 205 _ 5 o, 1
<_3 3'U)1 3w2
[5) 1 7
Ty = 3 — 3 W1+ 3 W
10 1 10
Tp = 3 T 3 W — F W

Problem P is obtained from P, by adding the constraint that z; > 2. Introducing a
variable, g1, to stand for the difference between x; and this lower boundyand using the
dictionary above to write x; in terms of the nonbasic variables, we get

1 1 7

g1 =1 3 3’w1+3’w2
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Therefore, we can use the following dictionary as a starting point for the solution

of Ps:
(=% - Sw - }w @Mfmﬁl&
1= 3 — 3w+ 3w
Ty = 13—0—1—%101—13—0102
o =8 - L un Tws e hend) CONSTM,

This dictionary i1s dual feasible but primal infeasible. Therefore, the dual simplex
method is likely to find a new optimal solution in very few iterations. According to
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FIGURE 23.16. The integer program given in Equation (23.5). The
red dots mark the points visited by the simplex method applied to
the LP-relaxation.
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FIGURE 23.17. The integer program with our first new Gomory cut
constraint added.
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FIGURE 23.18. The integer program with two Gomory cuts added.
This time the optimal solution to the LP-relaxation is an all integer
solution.
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( Tf??"a,ag_) Uninodular Matnew [ez, chiq]

Definition 19.1 An m X n integer matrix A € Z™*"™, m < n, is unimodular
if all its nonzero mth-order minors are 1 (i.e., either 1 or —1). i

Lemma 19.1 Consider the linear equation Ax = b where A € Z™*"™,

m < n, is unimodular and b € Z™. Then, all basic solutions have integer
components. O

Corollary 19.1 Consider the LP constraint

Ax =b
x>0,

where A is unimodular, A € Z™ ", m < n, and b € Z™. Then, all basic
feasible solutions have integer components. O
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Definition 19.2 An m X n integer matrix A € Z™*"™ is totally unimodular
if all its nonzero minors are +1. |

Proposition 19.1 If an m X n integer matriz A € Z™*™ 1is totally unimod-
ular, then the matriz (A, I| is unimodular. O

Corollary 19.2 Consider the LP constraint

[A,Ilx =b
x > 0,

where A € Z™ ™ is totally unimodular and b € Z™. Then, all basic feasible
solutions have integer components. O

minimize c¢'x .A.)(v[-' N b

bject to Ax <b
subject to m:;:o = [‘A 1]‘ :l)
xeZ" _W




