Integer Programming Novlinear Objective Fraction [V] p.394

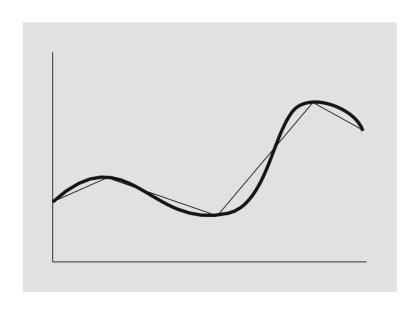


FIGURE 23.3. A nonlinear function and a piecewise linear approximation to it.

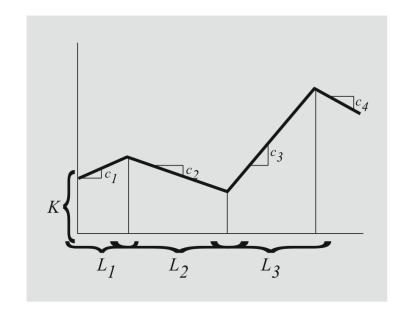


FIGURE 23.4. A piecewise linear function.

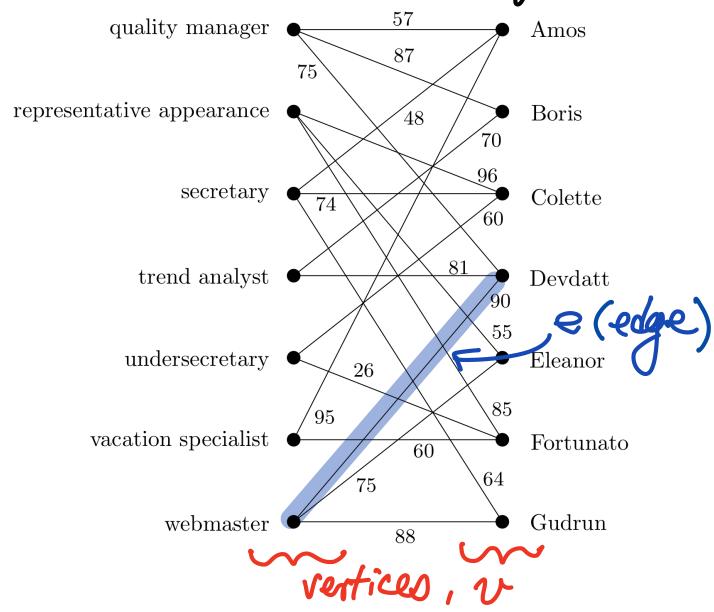
Noulinear Objective Fraction [V] p.394

$$W_1$$
 W_2 W_3 W_4 E_1O_1 X
 $L_jw_j \le x_j \le L_jw_{j-1}$ $j=1,2,\ldots,k$
 $w_0=1$
 $w_j \in \{0,1\}$ $j=1,2,\ldots,k$
 $x_j \ge 0$ $j=1,2,\ldots,k$.

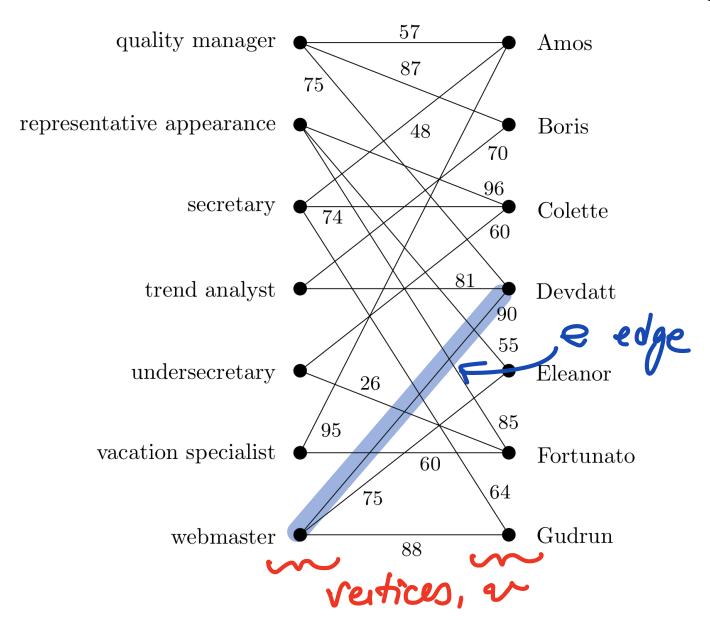
Indeed, it follows from these constraints that $w_j \leq w_{j-1}$ for $j=1,2,\ldots,k$. This inequality implies that once one of the w_j 's is zero, then all the subsequent ones must be zero. If $w_j = w_{j-1} = 1$, the two-sided inequality on x_j reduces to $L_j \leq x_j \leq L_j$. That is, $x_j = L_j$. Similarly, if $w_j = w_{j-1} = 0$, then the two-sided inequality reduces to $x_j = 0$. The only other case is when $w_j = 0$ but $w_{j-1} = 1$. In this case, the two-sided inequality becomes $0 \leq x_j \leq L_j$. Therefore, in all cases, we get what we want. Now with this decomposition we can write the piecewise linear function as

$$K + c_1 x_1 + c_2 x_2 + \dots + c_k x_k$$
.

Integer Programming [MED p. 31 Maximum Weight Matching



Integer Programming [MED p. 31 Maximum Weight Matching



max I we re

s.t. for any v,

Z ree

e, vee

Xee 30, 1

2. The Assignment Problem

Given a set S of m people, a set D of m tasks, and for each $i \in S$, $j \in D$ a cost c_{ij} associated with assigning person i to task j, the assignment problem is to assign each person to one and only one task in such a manner that each task gets covered by someone and the total cost of the assignments is minimized. If we let

$$x_{ij} = \begin{cases} 1 & \text{if person } i \text{ is assigned task } j, \\ 0 & \text{otherwise,} \end{cases}$$

then the objective function can be written as

minimize
$$\sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{D}} c_{ij} x_{ij}.$$

The constraint that each person is assigned exactly one task can be expressed simply as

$$\sum_{j \in \mathcal{D}} x_{ij} = 1, \quad \text{for all } i \in \mathcal{S}.$$

Also, the constraint that every task gets covered by someone is just

$$\sum_{i \in \mathcal{S}} x_{ij} = 1, \quad \text{for all } j \in \mathcal{D}.$$

3.3 Minimum Vertex Cover

[MG, p. 37]

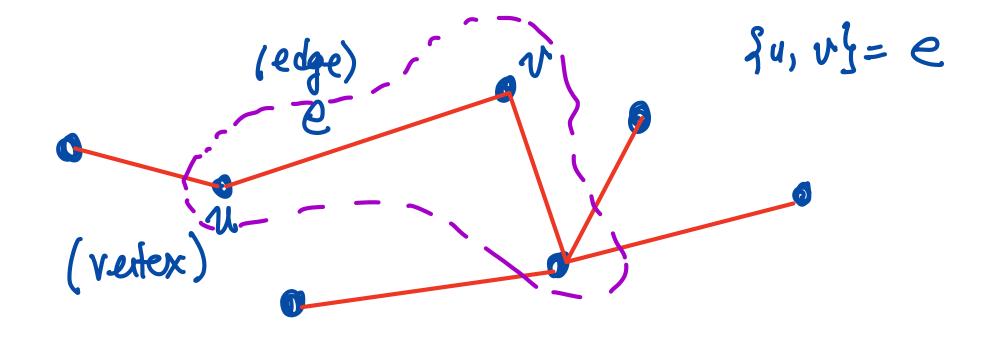
The Internet had been expanding rapidly in the Free Republic of West Mordor, and the government issued a regulation, purely in the interest of improved security of the citizens, that every data link connecting two computers must be equipped with a special device for gathering statistical data about the traffic. An operator of a part of the network has to attach the government's monitoring boxes to some of his computers so that each link has a monitored computer on at least one end. Which computers should get boxes so that the total price is minimum? Let us assume that there is a flat rate per box.

(vertex)

(edge)

$$v = e$$

(vertex)



This problem can be written as an integer program:

Minimize
$$\sum_{v \in V} x_v$$

subject to $x_u + x_v \ge 1$ for every edge $\{u, v\} \in E$ (3.2)
 $x_v \in \{0, 1\}$ for all $v \in V$.

For every vertex v we have a variable x_v , which can attain values 0 or 1. The meaning of $x_v = 1$ is $v \in S$, and $x_v = 0$ means $v \notin S$. The constraint $x_u + x_v \ge 1$ guarantees that the edge $\{u, v\}$ has at least one vertex in S. The objective function is the size of S.

Knapsack Problem

[v] p.413

23.1 Knapsack Problem. Consider a picnicker who will be carrying a knapsack that holds a maximum amount b of "stuff." Suppose that our picnicker must decide what to take and what to leave behind. The jth thing that might be taken occupies a_j units of space in the knapsack and will bring c_j amount of "enjoyment." The knapsack problem then is to maximize enjoyment subject to the constraint that the stuff brought must fit into the knapsack:

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_j x_j \leq b$ $x_j \in \{0,1\}$ $j=1,2,\ldots,n.$

[C] p.201

In the usual notation, the knapsack problem is recorded as

maximize
$$\sum_{i=1}^{m} c_i x_i$$
subject to
$$\sum_{i=1}^{m} a_i x_i \le b$$

$$x_i = \text{nonnegative integer} \qquad (i = 1, 2, ..., m).$$
(13.5)

Integer Programming [MED] p. 148 Machine Scheduling

	Single B&W	Duplex B&W	Duplex Color
Master's thesis, 90 pages two-sided, 10 B&W copies		45 min	60 min
All the Best Deals flyer, 1 page one-sided, 10,000 B&W copies	2h 45 min	4h 10 min	5h 30 min
Buyer's Paradise flyer, 1 page one-sided, 10,000 B&W copies	2h 45 min	4h 10 min	5h 30 min
Obituary, 2 pages two-sided, 100 B&W copies		2 min	3 min
Party platform, 10 pages two-sided, 5,000 color copies			3h 30 min

Integer Programming
[MED] p. 148 Machine Scheduling $M = \{1, 2, ---, m\}$ m - MachinesJ=d1,2,--, n) n- Jobs dij-running time of Jobj in Machine i t (total run time) min Ziem Kij = 1 jeJ $\sum_{j \in J} dij X_{ij} \leq t$ $X_{ij} \in \{0, 1\}$

A paper mill manufactures rolls of paper of a standard width 3 meters. But customers want to buy paper rolls of shorter width, and the mill has to cut such rolls from the 3 m rolls. One 3 m roll can be cut, for instance, into two rolls 93 cm wide, one roll of width 108 cm, and a rest of 6 cm (which goes to waste).

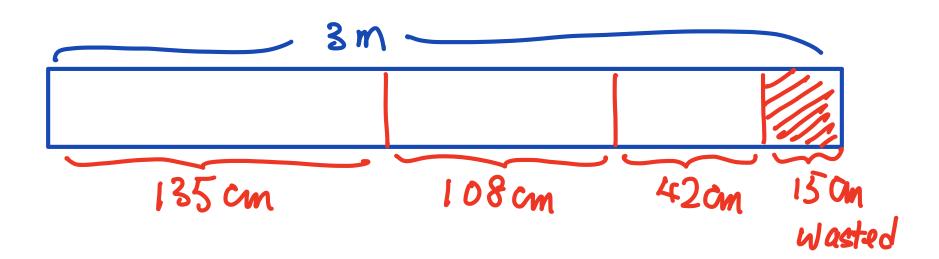
Let us consider an order of

- 97 rolls of width 135 cm,
- 610 rolls of width 108 cm,
- 395 rolls of width 93 cm, and
- 211 rolls of width 42 cm.

A paper mill manufactures rolls of paper of a standard width 3 meters. But customers want to buy paper rolls of shorter width, and the mill has to cut such rolls from the 3 m rolls. One 3 m roll can be cut, for instance, into two rolls 93 cm wide, one roll of width 108 cm, and a rest of 6 cm (which goes to waste).

Let us consider an order of

- 97 rolls of width 135 cm,
- 610 rolls of width <u>108 cm</u>,
- 395 rolls of width 93 cm, and
- 211 rolls of width 42 cm.



In order to engage linear programming one has to be generous in introducing variables. We write down all of the requested widths: 135 cm, 108 cm, 93 cm, and 42 cm. Then we list all possibilities of cutting a 3 m paper roll into rolls of some of these widths (we need to consider only possibilities for which the wasted piece is shorter than 42 cm):

P1: 2×135 P7: $108 + 93 + 2 \times 42$ P2: 135 + 108 + 42 P8: $108 + 4 \times 42$

P3: 135 + 93 + 42 P9: 3×93

P4: $135 + 3 \times 42$ P10: $2 \times 93 + 2 \times 42$

P5: $2 \times 108 + 2 \times 42$ P11: $93 + 4 \times 42$

P6: $108 + 2 \times 93$ P12: 7×42

 $258 \le 135 n_1 + 108 n_2 + 93 n_3 + 42 n_4 \le 300$ 0 \le n_i, integers

In order to engage linear programming one has to be generous in introducing variables. We write down all of the requested widths: 135 cm, 108 cm, 93 cm, and 42 cm. Then we list all possibilities of cutting a 3 m paper roll into rolls of some of these widths (we need to consider only possibilities for which the wasted piece is shorter than 42 cm):

 2×135 P1: P7: $108 + 93 + 2 \times 42$ 135 + 108 + 42P8: P2: $108 + 4 \times 42$ P3: P9: 135 + 93 + 42 3×93 P4: $135 + 3 \times 42$ P10: $2 \times 93 + 2 \times 42$ P5: $2 \times 108 + 2 \times 42$ P11: $93 + 4 \times 42$

P6: $108 + 2 \times 93$ P12: 7×42

In order to engage linear programming one has to be generous in introducing variables. We write down all of the requested widths: 135 cm, 108 cm, 93 cm, and 42 cm. Then we list all possibilities of cutting a 3 m paper roll into rolls of some of these widths (we need to consider only possibilities for which the wasted piece is shorter than 42 cm):

P7: $108 + 93 + 2 \times 42$

P1: 2×135

P2:	135 + 108 + 42	P8:	$108 + 4 \times 42$		
P3:	135 + 93 + 42	P9:	3×93		
P4:	$135 + 3 \times 42$	P10:	$2 \times 93 + 2 \times 42$		
P5:	$2 \times 108 + 2 \times 42$	P11:	$93 + 4 \times 42$		
P6:	$108 + 2 \times 93$	P12:	7×42		
$3x_{1} + 3x_{2} + 3x_{3} + 3x_{4} \ge 97$ $3x_{1} + 2x_{5} + 3x_{6} + 3x_{7} + 3x_{8} \ge 610$ $3x_{2} + 2x_{5} + 3x_{7} + 2x_{9} + 3x_{11} \ge 395$ $3x_{2} + 3x_{5} + 3x_{7} + 4x_{8} + 2x_{10} + 4x_{11} \ge 7x_{12} \ge 610$					

Network Flow ([V] Chapter 14) N = set of nodes di} A = set of (directed) arcs $\leq f(i,j): i,j \in N$ Network = (N, A)
Graph (or digraph)

Network Flow ([V] Chapter 14)

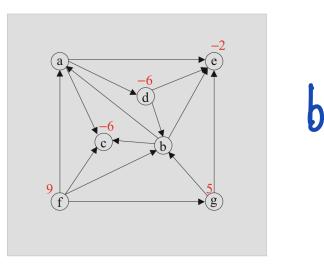


FIGURE 14.1. A network having 7 nodes and 14 arcs. The numbers written next to the nodes denote the supply at the node (negative values indicate demands; missing values indicate no supply or demand).

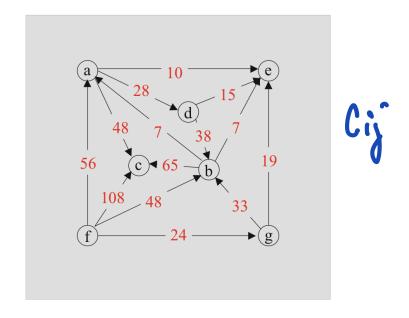


FIGURE 14.2. The costs on the arcs for the network in Figure 14.1.

(1) bi >0 (supply); bi <0 (demand)
$$\sum_{i \in N} \sum_{i \in N} \sum_{j \in N} \sum_{i \in N} \sum_{i \in N} \sum_{j \in N} \sum_{j \in N} \sum_{i \in N} \sum_{j \in N} \sum_{i \in N} \sum_{j \in N}$$

Network Flow ([v] Chapter 14)

(i) bh (j)

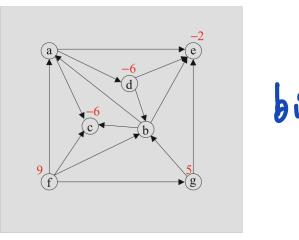
Balanced ean:
$$\sum_{i} x_{ik} + b_{ik} = \sum_{j} x_{kj}$$

at mock k : $\sum_{i} x_{ik} - \sum_{j} x_{kj} = -b_{k}$
 $\sum_{i} x_{ik} - \sum_{j} x_{kj} = -b_{k}$

min
$$c^T X$$

 $AX = -b$, $X \ge a$

Network Flow ([V] Chapter 14)



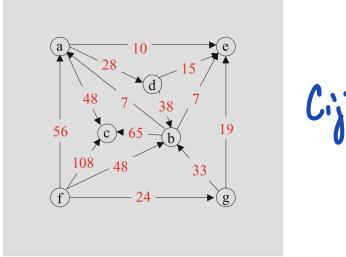
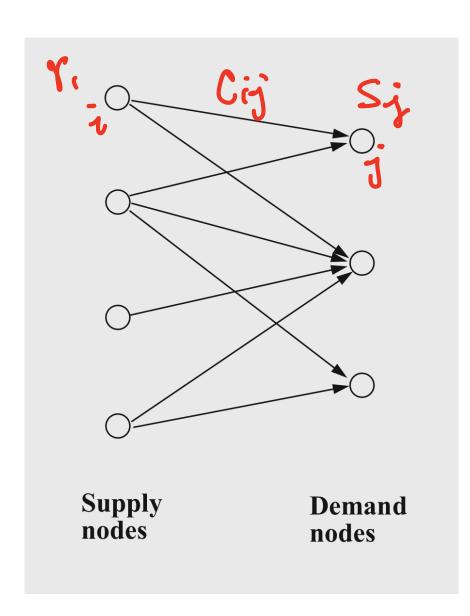


FIGURE 14.1. A network having 7 nodes and 14 arcs. The numbers written next to the nodes denote the supply at the node (negative values indicate demands; missing values indicate no supply or demand).

FIGURE 14.2. The costs on the arcs for the network in Figure 14.1.

Transportation Problem [V] p. 258



$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{D}} c_{ij} x_{ij} \\ \text{subject to} & \displaystyle \sum_{j \in \mathcal{D}} x_{ij} \ = \ r_i \qquad i \in \mathcal{S} \\ & \displaystyle \sum_{i \in \mathcal{S}} x_{ij} \ = \ s_j \qquad j \in \mathcal{D} \\ & \displaystyle x_{ij} \ \geq \ 0 \qquad i \in \mathcal{S}, j \in \mathcal{D}. \end{array}$$

(bipoutite graph)

A Miracle The matrices for assignment, network flow (and transportation) problems are totally uni-modular and hence given integer supplies and demands, the solutions one automatically integers.