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We begin with an example:

S-I-(r D maximize —I|— o

subject to —2x1 — xo
@ —2%1 + 4ZU2

—x1 + 329

AV VAN VAN VAN

L1, T2
The dual of this problem 1is
minimize 4y — 8ys — Ty3
@ subject to —2y; — 2y — Y3
—y1 + 4y2 + 3y3

Y1, Y2, Y3
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Introducing variables w;, © = 1,2, 3, for the primal slacks and z;, j = 1,2, for the
dual slacks, we can write down the initial primal and dual dictionaries:



(P) ( = — 1 x1 — 1 29
wy = 44+ 22 + x9 ~ )'T
wy = —8 + 2 x; — 4 xo =
wy = —( + 11 — 3 X9 \
(D) —§ = —4y1+8y2+7ysl
21 =1—-2y1 — 2y — y3
=1—- y1 +4y2+ 3 ys3
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(P) (= —4 — 05 wy — 3 9
S i wy = 12 + wy + 5 xy
A R N

y2:05_ 1y1_05 z1 — 0.9 Y3

w3:—3

2 = 3_5y1_2 Zl+1 Y3

Shﬁ)a (P) C= 71w — 4z

w1, = 18+2w3—|—7x2 T
1 = T+ ws + 3 29 = _[ )

w2 = 6+2’U}3—|—2x2

—§=7—-18y1 — 721 — 6 ¥y
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o

ys = 1 — 2 y1 — 21 — 2 Yo
22:4—7y1_3zl_2y2
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maximize —xq + 4xo

subjectto —2x1 — x2 < 4
—2x1 +4xy < —8
—T1 +3x2 < =7
C13173322 0.
(P) C: —1(131—|-4332
(D) - = — 4y + 8 y2 + 7 y3
wp = 4+ 231 + @9
3 ) A z1= 1 —=2y1 — 2y — Y3
Wy = —6 + 221 — 4
’ ' ? 29 = =4 — y1 + 4 y2 + 3 y3
w3 = —7 + r1 — 3 X9
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maximize —x1+4x, & C‘\ o()]
subjectto —2x1 — a9 < 4 -(v(-
—2x1 + 42y < —8
"Xl— X2
—T1 + 3z < =7
L1, L2 Z 0.
(P) C = — 1 1 + Xo
D e= -4y 98,07
o — 40200+ B (D) § Y1 Y2 Y3
n= 1—24y —2yy —
wo =28+ 2 5 — 4 1 1 Y2 Y3
32:%— y1-|—4y2+3y3
w3 = —7 + r1 — 3 X9 i
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— |
(P) C: —1$1—|-/$2

(D) —§ = —4dy1 + 8y + 7 ys
R R z1= 1 —=—2y1 — 2y — y3
we =N - YRR Z2=74/— 1 + 4 y2 + 3 y3
w3 = —7 + x1 — 3 T2 j—

Opl”
(P) ¢ =-T-1ws — 4 / ~
wi = 18 + 2 wy + 7 23 @M\%\MJ 9[9'\.2@“% (F@f

r1 = 7 + ’LU3+3332

V ]4
we = 6 + 2 w3 + 2 x9 S(X): "’Yl-ﬁ X)—
(D) —§=7—-18y — 7z — 6y
ys =1 = 2y — 21— 2 — "7"14)3’1'9(;_
22:4—7y1—321—2y2
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max: SK) = ~F-my £k

s3. M}\ = 1&+ &\\)3‘?73(1
X, = 74 Wy + 3X
Wy= 6+ dW,*AX,
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THEOREM 5.3. Suppose that x = (x1,%2,...,%y) is primal feasible and that
Y= (Y1,Y2, - - -, Ym) is dual feasible. Let (w1, ws, ..., w,,) denote the corresponding
primal slack variables, and let (21, zo, . .., z,) denote the corresponding dual slack

variables. Then x and y are optimal for their respective problems if and only if

x;z; =0, forg=1,2,...,n,
(3.7) w;y; =0, fori=1,2,...,m.

PROOF. We begin by revisiting the chain of inequalities used to prove the weak
duality theorem:

(58) chf’fj S y: (S: yiaij> X
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Duality theory is often useful in that it provides a certificate of optimality. For ex-
ample, suppose that you were asked to solve a really huge and difficult linear program.
After spending weeks or months at the computer, you are finally able to get the sim-
plex method to solve the problem, producmg as it does an optimal dual solution y*
in addition to the optlmal primal solution z*. Now, how are you going to convince

your boss that your solution is correct? Do ) you really want to ask her to verify the
correctness of your computer programs? The answer is probably not. And in fact it
1s not necessary. All yoﬁ need to do is supply the prima-l and the dual solution, and
she only has to check that the primal solution is feasible for the primal problem (that
is easy), the dual solution is feasible for the dual problem (that is just as easy), and
the primal and dual objective values agree (and that is even easier). Certificates of
optimality have also been known to dramatically reduce the amount of time certain
underpaid professors have to devote to grading homework assignments!
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Now we shall show how the supervisor can often recover the certificate of optimatity
W ¥E. . v¥ from the optimal solution ~x7, x3. ..., x7 alone. The key to the pro-
cedure is a convenient way of breaking down equation (5.16) into simple constituents.

THEOREM 5.2. Let x¥, x%....,x¥ be a feasible solution of (5.12) and let
N PO v be a feasible solution of (5.13). Necessary and suflicient condi-
tions for simultaneous optimality of x¥. x¥.. ... x¥ and ¥}, v3... ., vk are
Y a3t =c¢; or x¥=0 (orboth) forevery j=12..... n o (5.17)
i=1
*
and 5(". Z& =D
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=
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b; or yf =0 (orboth) foreverygai=4.2.....m (5.18)

gi Wi=d
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THEOREM 5.3. A feasible solution x¥, x% ... .. Xy of (53.12) is optimal if
and only if there are numbers y¥, v¥, . ... yv* such that

o I

th

> a;y¥ =¢; whenever x* > 0

i=1

L

(5.22)

n
vit =0 whenever ) a; ¥ < b,
j=1

and such that

m
Z a;yF =2 c¢; forall j=1,2,...,n
izl (5.23)

yv¥>0 forall i

I
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THEOREM 5.4. 1f x¥, x%. ..., x¥is a nondegenerate basic feasible solution
of (5.12), then (5.22) has a unique solution.



I: C 633 maximize 40x, + 70x,
Nt

subject to X, + x, < 100
10x, + 50x, < 4.000

KN, > 0.

e [ts optimal solution 1s x¥ = 25 and x%* = 75.
. 1 2
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[ C /P L:D mize  40x, + 70x,

subject to X, + < 100
10x, + 50x, < 4.000

.\-]. .\.2 2 O.

’)’YW ' —> [ts optimal solution i1s x§¥ = 25 and x% = 75.

SIK)= GxXT+ PKy = 40001 P[0
= 6;)@ “WS@"Q

g(Y')- 1905,-&419@0% 100 (132 ’3’0
Heuce. 9{97‘. = 6957)
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First, let us consider the claim that

NF=2 xt=4 x31=0 xf=0 xft=7 xf=0

1s an optimal solution of the problem

maximize 18x; — x5 + 12x5 + 5x, + 8x4
subject to 2x; —6x;, + 2x3 4+ Uxy + 3x5 + 8xg < |
—3x; — X3 4+ 43— 3x;+ X5+ 2% < —2
8x; — 3x, + 5x; — 2x, + 2x < 4
4x, + 8x;3 4+ Txy — X+ 3xg < |
3y +2x5; — 3x3 +6xy —2X5 — xg < 5

\%
-

Xy, X5, X3, X4, N5, Ng

Z|=DJ Z)_:"D ; 2; =0 , 3)30, b{s.:b
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In this case, (5.22) reads

0 = 3y 4+ 8y + vk + S5yE = I8
— 0y — ¥3 — 33 Tl 2N —
3y + )3 — W =-2yi= 0 T,
; . JE8

y
y&E= 0 /
-k

Since its solution (4, 0, 3. 1, 0) satisfies (5.23). the proposed solution x¥, x¥, ... W
1S optimal.
Second. let us consider the claim that

o ¥

3 K D) -k o — -k
X7 =0, x5 =2 x3=0 =7 xt2=0

1s an optimal solution of the problem
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Second. let us consider the claim that

X =0, x

1o ¥

=2 x3=0 xt=7 x¥t=0

1s an optimal solution of the problem

maximize 8x; — 9x, + 12x;3 + 4xy + 11x;
subject to 2x, — 3x, + 4dx3+ xpa+ x5 <1 =
Xy + Txa + 333 — 283+ x5 <1 <
5x; +4x;, — 6x;3 +2x, + x5 <22 =
XgaK5, X3, N3 X5 = 0O

Here (5.22) becomes

Z,=0, Z4 =0, 5{.,,:0

—3f 4+ Ty + 4 = -9
=2 +23= 4 1>/>
. _

Since its unique solution (3.4, 0, 0.3) violates (5.23), the proposed solution
x¥, x%, ..., x% 1s not optimal.







