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Find minimizers and maximizers of the function
1 4 l 4
flz1,20) = 3%~ 4z, + 3%2 16z2.

Consider the following function f : R? — R:

fl®)=x" [i 3} x+x’ [2} + 6.

Find the gradient and Hessian of f at the point [1,1]7.

Find the directional derivative of f at [1,1]" with respect to a unit vector
in the direction of maximal rate of increase.

Find a point that satisfies the FONC (interior case) for f. Does this
point satisfy the SONC (for a minimizer)?
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6.10 Consider the following function f : R? — R:

a.

b.

flx)=aT [_21 ?] T+

3
Jor

Find the directional derivative of f at [0,1]" in the direction [1,0]".

Find all points that satisfy the first~order necessary condition for f.

Does f have a minimizer? If it does, then find all minimizer(s); otherwise,
explain why it does not.



6.30 Suppose that we are given a set of vectors {a:(l), - ,(B(p)}, z() ¢ R,
t=1,...,p. Find the vector & € R™ such that the average squared distance
(norm) between & and &1, ..., z®,

1 <& .
- Z “:E - w(Z)Hgv
P =

Example 12.7 Find the point closest to the origin of R? on the line of in-
tersection of the two planes defined by the following two equations:

561-}—2332—1123:1,
4x1 + 2o + 323 = 0.

Note that this problem is equivalent to the problem

minimize |||
subject to Ax = b,

e |

Thus, the solution to the problem is

where

0.0952
z*=AT(AAT)"1b = | 0.3333
—0.2381

12.19 Solve the problem
minimize |@ — :JI:OHQ

subject to [1 1 1] =1,

where xo = [0,-3,0]T.
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An alternative method of arriving at the least-squares solution is to proceed
as follows. First, we write

f(z) = [|Az — b]®
= (Ax —b)T (Ax — b)

= %mT(QATA)a: —x (2ATb) +b"b.

Therefore, f is a quadratic function. The quadratic term is positive definite
because rank A = n. Thus, the unique minimizer of f is obtained by solving
the FONC (see Exercise 6.33); that is,

Vf(x) =247 Az —2A b =0.
The only solution to the equation Vf(x) =0is z* = (AT A)"1ATb.

Example 12.1 Suppose that you are given two different types of concrete.

The first type contains 30% cement, 40% gravel, and 30% sand (all percentages
of weight). The second type contains 10% cement, 20% gravel, and 70% sand.
How many pounds of each type of concrete should you mix together so that
you get a concrete mixture that has as close as possible to a total of 5 pounds
of cement, 3 pounds of gravel, and 4 pounds of sand?

The problem can be formulated as a least-squares problem with

03 0.1 )
A=104 02/, b= 3|,
03 0.7 4

where the decision variable is ¢ = [a:l,azz]T and z; and z, are the amounts
of concrete of the first and second types, respectively. After some algebra, we
obtain the solution:

z*=(ATA) AT
B 1 054 —0.32] |3.9
T (0.34)(0.54) — (0.32)2 | —0.32 0.34 | {3.9
| 106
-~ l0.961|°

(For a variation of this problem solved using a different method, see Exam-
ple 15.7.) |

We now give an example in which least-squares analysis is used to fit mea-
surements by a straight line.
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Table 12.1  Experimental Data for Example 12.2.

i |0 1 2
t; |2 3 4
v |3 4 15

Example 12.2 Line Fitting. Suppose that a process has a single input ¢t € R
and a single output ¥ € R. Suppose that we perform an experiment on the
process, resulting in a number of measurements, as displayed in Table 12.1.
The ith measurement results in the input labeled ¢; and the output labeled
y;. We would like to find a straight line given by

y=mt+c

that fits the experimental data. In other words, we wish to find two numbers,
m and ¢, such that y; = mt; + ¢, ¢ = 0,1,2. However, it is apparent that
there is no choice of m and ¢ that results in the requirement above; that is,
there is no straight line that passes through all three points simultaneously.
Therefore, we would like to find the values of m and ¢ that best fit the data.
A graphical illustration of our problem is shown in Figure 12.2.
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Figure 12.2 Fitting a straight line to experimental data.
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We can represent our problem as a system of three linear equations of the
form

2m+c¢c=3
3m+c=4
4m + c = 15.

We can write this system of equations as

Ax = b,
where
2 1 3
A=1{3 1|, b=]|4], m:[m}
41 15 ¢

Note that since
rank A < rank [A, b],

the vector b does not belong to the range of A. Thus, as we have noted before,
the system of equations above is inconsistent.
The straight line of best fit is the one that minimizes

2

|Az = b* =) (mti +c—w)*.
1=0

Therefore, our problem lies in the class of least-squares problems. Note that
the foregoing function of m and ¢ is simply the total squared vertical dis-
tance (squared error) between the straight line defined by m and ¢ and the
experimental points. The solution to our least-squares problem is

e M T =1 AT 6
z* = [C] —(ATA)1ATh = [_32/3].

Note that the error vector e = Ax* — b is orthogonal to each column of A. B

Next, we give an example of the use of least-squares in wireless communi-
cations.

Example 12.3 Attenuation Estimation. A wireless transmitter sends a
discrete-time signal {sg, s1,s2} (of duration 3) to a receiver, as shown in Fig-
ure 12.3. The real number s; is the value of the signal at time 1.

The transmitted signal takes two paths to the receiver: a direct path, with
delay 10 and attenuation factor a1, and an indirect (reflected) path, with delay
12 and attenuation factor as. The received signal is the sum of the signals
from these two paths, with their respective delays and attenuation factors.
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20.2 Find local extremizers for the following optimization problems:

a. Minimize % + 22172 + 322 + 42, + 522 + 623

subject to 1 +2x9 =3
4z, + 5x3 = 6.

b. Maximize 4z, + z3

subject to 2% 4+ z2 = 9.

C. Maximize zi22

subject to % + 423 = 1.

20.3 Find minimizers and maximizers of the function

f(z) =(a"z)(b'z), = €R?,

subject to
T +x22=0
T2 +x3 = 0$
where
0 1
a=|1| and b=
0 1

20.4 Consider the problem

minimize f(x)
subject to h(x) =0,

where f : R? - R, h: R? - R, and Vf(x) = [z1,z; + 4]". Suppose that =*
is an optimal solution and Vh(z*) = [1,4]T. Find Vf(z*).

20.5 Consider the problem

minimize ||z — x|

subject to ||x||® =9,

where xo = [1,V/3].

a. Find all points satisfying the Lagrange condition for the problem.



20.7 Find local extremizers of
a. f(xy1,x2,23) = 22 + 322 + x3 subject to 22 + 22 + 22 = 16.

b. f(x1,z2) = 2% + 22 subject to 3z? + 4z122 + 623 = 140.

20.8 Consider the problem

minimize 2z + 3x9 — 4, 1,22 €R
subject to xiz2 = 6.

a. Use Lagrange’s theorem to find all possible local minimizers and maxi-
mizers.

¥. Use the second-order sufficient conditions to specify which points are
strict local minimizers and which are strict local maximizers.

c. Are the points in part b global minimizers or maximizers? Explain.

20.9 Find all maximizers of the function

18.’1’7% — 8331.’172 + 12:17%
2x% + 223

f(x1,372) =

20.10 Find all solutions to the problem

maximize ' 3 4 x
0 3

subject to  [jz|* = 1.



