Practice Problems for nonlinear Optimization (Chong-Zak, 4th ed.)

6.2 Find minimizers and maximizers of the function

$$f(x_1, x_2) = \frac{1}{3}x_1^3 - 4x_1 + \frac{1}{3}x_2^3 - 16x_2.$$

6.8 Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(oldsymbol{x}) = oldsymbol{x}^ op egin{bmatrix} 1 & 2 \ 4 & 7 \end{bmatrix} oldsymbol{x} + oldsymbol{x}^ op egin{bmatrix} 3 \ 5 \end{bmatrix} + 6.$$

- **a.** Find the gradient and Hessian of f at the point $[1,1]^{\top}$.
- **b.** Find the directional derivative of f at $[1,1]^{\top}$ with respect to a unit vector in the direction of maximal rate of increase.
- c. Find a point that satisfies the FONC (interior case) for f. Does this point satisfy the SONC (for a minimizer)?

FONG: first order necessary condition:
$$\nabla f(x) = 0$$

SONG: Second order necessary condition: $\partial f(x) \ge 0$

6.10 Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\top} \begin{bmatrix} 2 & 5 \\ -1 & 1 \end{bmatrix} \boldsymbol{x} + \boldsymbol{x}^{\top} \begin{bmatrix} 3 \\ 4 \end{bmatrix} + 7.$$

- **a.** Find the directional derivative of f at $[0,1]^{\top}$ in the direction $[1,0]^{\top}$.
- **b.** Find all points that satisfy the first-order necessary condition for f. Does f have a minimizer? If it does, then find all minimizer(s); otherwise, explain why it does not.

6.30 Suppose that we are given a set of vectors $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}\}, \, \boldsymbol{x}^{(i)} \in \mathbb{R}^n, \, i=1,\ldots,p$. Find the vector $\bar{\boldsymbol{x}} \in \mathbb{R}^n$ such that the average squared distance (norm) between $\bar{\boldsymbol{x}}$ and $\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}$,

$$\frac{1}{p} \sum_{i=1}^{p} \|\bar{x} - x^{(i)}\|^2,$$

Example 12.7 Find the point closest to the origin of \mathbb{R}^3 on the line of intersection of the two planes defined by the following two equations:

$$x_1 + 2x_2 - x_3 = 1,$$

 $4x_1 + x_2 + 3x_3 = 0.$

Note that this problem is equivalent to the problem

minimize
$$\|x\|^{2}$$
 subject to $Ax = b$,

where

$$m{A} = egin{bmatrix} 1 & 2 & -1 \ 4 & 1 & 3 \end{bmatrix}, \qquad m{b} = egin{bmatrix} 1 \ 0 \end{bmatrix}.$$

Thus, the solution to the problem is

$$m{x}^* = m{A}^{ op} (m{A} m{A}^{ op})^{-1} m{b} = egin{bmatrix} 0.0952 \\ 0.3333 \\ -0.2381 \end{bmatrix}.$$

12.19 Solve the problem

minimize
$$\|oldsymbol{x} - oldsymbol{x}_0\|^2$$
 subject to $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}oldsymbol{x} = 1,$

where $\mathbf{x}_0 = [0, -3, 0]^{\top}$.

An alternative method of arriving at the least-squares solution is to proceed as follows. First, we write

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

$$= (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= \frac{1}{2}\mathbf{x}^{\top} (2\mathbf{A}^{\top}\mathbf{A})\mathbf{x} - \mathbf{x}^{\top} (2\mathbf{A}^{\top}\mathbf{b}) + \mathbf{b}^{\top}\mathbf{b}.$$

Therefore, f is a quadratic function. The quadratic term is positive definite because rank $\mathbf{A} = n$. Thus, the unique minimizer of f is obtained by solving the FONC (see Exercise 6.33); that is,

$$\nabla f(\boldsymbol{x}) = 2\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x} - 2\boldsymbol{A}^{\top} \boldsymbol{b} = \boldsymbol{0}.$$

The only solution to the equation $\nabla f(\boldsymbol{x}) = \boldsymbol{0}$ is $\boldsymbol{x}^* = (\boldsymbol{A}^{\top} \boldsymbol{A})^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.

Example 12.1 Suppose that you are given two different types of concrete. The first type contains 30% cement, 40% gravel, and 30% sand (all percentages of weight). The second type contains 10% cement, 20% gravel, and 70% sand. How many pounds of each type of concrete should you mix together so that you get a concrete mixture that has as close as possible to a total of 5 pounds of cement, 3 pounds of gravel, and 4 pounds of sand?

The problem can be formulated as a least-squares problem with

$$m{A} = egin{bmatrix} 0.3 & 0.1 \\ 0.4 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}, \qquad m{b} = egin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix},$$

where the decision variable is $\mathbf{x} = [x_1, x_2]^{\top}$ and x_1 and x_2 are the amounts of concrete of the first and second types, respectively. After some algebra, we obtain the solution:

$$\boldsymbol{x}^* = (\boldsymbol{A}^{\top} \boldsymbol{A})^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$$

$$= \frac{1}{(0.34)(0.54) - (0.32)^2} \begin{bmatrix} 0.54 & -0.32 \\ -0.32 & 0.34 \end{bmatrix} \begin{bmatrix} 3.9 \\ 3.9 \end{bmatrix}$$

$$= \begin{bmatrix} 10.6 \\ 0.961 \end{bmatrix}.$$

(For a variation of this problem solved using a different method, see Example 15.7.)

We now give an example in which least-squares analysis is used to fit measurements by a straight line.

Table 12.1 Experimental Data for Example 12.2.

\overline{i}	0	1	2
t_i	2	3	4
y_i	3	4	15

Example 12.2 Line Fitting. Suppose that a process has a single input $t \in \mathbb{R}$ and a single output $y \in \mathbb{R}$. Suppose that we perform an experiment on the process, resulting in a number of measurements, as displayed in Table 12.1. The *i*th measurement results in the input labeled t_i and the output labeled y_i . We would like to find a straight line given by

$$y = mt + c$$

that fits the experimental data. In other words, we wish to find two numbers, m and c, such that $y_i = mt_i + c$, i = 0, 1, 2. However, it is apparent that there is no choice of m and c that results in the requirement above; that is, there is no straight line that passes through all three points simultaneously. Therefore, we would like to find the values of m and c that best fit the data. A graphical illustration of our problem is shown in Figure 12.2.

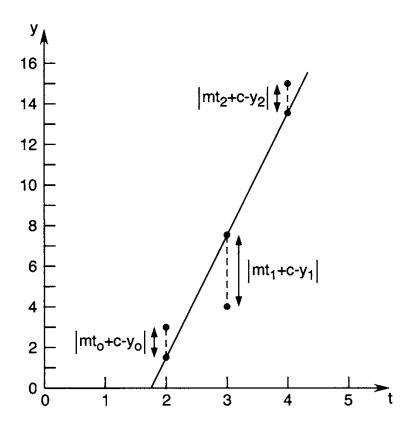


Figure 12.2 Fitting a straight line to experimental data.

We can represent our problem as a system of three linear equations of the form

$$2m + c = 3$$
$$3m + c = 4$$
$$4m + c = 15.$$

We can write this system of equations as

$$Ax = b$$

where

$$m{A} = egin{bmatrix} 2 & 1 \ 3 & 1 \ 4 & 1 \end{bmatrix}, \qquad m{b} = egin{bmatrix} 3 \ 4 \ 15 \end{bmatrix}, \qquad m{x} = egin{bmatrix} m \ c \end{bmatrix}.$$

Note that since

$$\operatorname{rank} \boldsymbol{A} < \operatorname{rank} [\boldsymbol{A}, \boldsymbol{b}],$$

the vector \boldsymbol{b} does not belong to the range of \boldsymbol{A} . Thus, as we have noted before, the system of equations above is inconsistent.

The straight line of best fit is the one that minimizes

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 = \sum_{i=0}^{2} (mt_i + c - y_i)^2.$$

Therefore, our problem lies in the class of least-squares problems. Note that the foregoing function of m and c is simply the total squared vertical distance (squared error) between the straight line defined by m and c and the experimental points. The solution to our least-squares problem is

$$\boldsymbol{x}^* = \begin{bmatrix} m^* \\ c^* \end{bmatrix} = (\boldsymbol{A}^{\top} \boldsymbol{A})^{-1} \boldsymbol{A}^{\top} \boldsymbol{b} = \begin{bmatrix} 6 \\ -32/3 \end{bmatrix}.$$

Note that the error vector $e = Ax^* - b$ is orthogonal to each column of A.

Next, we give an example of the use of least-squares in wireless communications.

Example 12.3 Attenuation Estimation. A wireless transmitter sends a discrete-time signal $\{s_0, s_1, s_2\}$ (of duration 3) to a receiver, as shown in Figure 12.3. The real number s_i is the value of the signal at time i.

The transmitted signal takes two paths to the receiver: a direct path, with delay 10 and attenuation factor a_1 , and an indirect (reflected) path, with delay 12 and attenuation factor a_2 . The received signal is the sum of the signals from these two paths, with their respective delays and attenuation factors.

20.2 Find local extremizers for the following optimization problems:

a. Minimize $x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 + 6x_3$ subject to $x_1 + 2x_2 = 3$ $4x_1 + 5x_3 = 6$.

- b. Maximize $4x_1 + x_2^2$ subject to $x_1^2 + x_2^2 = 9$.
- c. Maximize x_1x_2 subject to $x_1^2 + 4x_2^2 = 1$.

20.3 Find minimizers and maximizers of the function

$$f(\boldsymbol{x}) = (\boldsymbol{a}^{\top} \boldsymbol{x})(\boldsymbol{b}^{\top} \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^3,$$

subject to

$$x_1 + x_2 = 0$$

$$x_2 + x_3 = 0,$$

where

$$\boldsymbol{a} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

20.4 Consider the problem

minimize
$$f(\mathbf{x})$$

subject to $h(\mathbf{x}) = 0$,

where $f: \mathbb{R}^2 \to \mathbb{R}$, $h: \mathbb{R}^2 \to \mathbb{R}$, and $\nabla f(\boldsymbol{x}) = [x_1, x_1 + 4]^{\top}$. Suppose that \boldsymbol{x}^* is an optimal solution and $\nabla h(\boldsymbol{x}^*) = [1, 4]^{\top}$. Find $\nabla f(\boldsymbol{x}^*)$.

20.5 Consider the problem

minimize
$$\|\boldsymbol{x} - \boldsymbol{x}_0\|^2$$

subject to $\|\boldsymbol{x}\|^2 = 9$,

where $x_0 = [1, \sqrt{3}]^{\top}$.

a. Find all points satisfying the Lagrange condition for the problem.

20.7 Find local extremizers of

a.
$$f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + x_3$$
 subject to $x_1^2 + x_2^2 + x_3^2 = 16$.

b.
$$f(x_1, x_2) = x_1^2 + x_2^2$$
 subject to $3x_1^2 + 4x_1x_2 + 6x_2^2 = 140$.

20.8 Consider the problem

minimize
$$2x_1 + 3x_2 - 4$$
, $x_1, x_2 \in \mathbb{R}$ subject to $x_1x_2 = 6$.

- a. Use Lagrange's theorem to find all possible local minimizers and maximizers.
- Use the second-order sufficient conditions to specify which points are strict local minimizers and which are strict local maximizers.
- c. Are the points in part b global minimizers or maximizers? Explain.

20.9 Find all maximizers of the function

$$f(x_1, x_2) = \frac{18x_1^2 - 8x_1x_2 + 12x_2^2}{2x_1^2 + 2x_2^2}.$$

20.10 Find all solutions to the problem

maximize
$$\boldsymbol{x}^{\top} \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix} \boldsymbol{x}$$
 subject to $\|\boldsymbol{x}\|^2 = 1$.