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FONC firstorder necessary condition Tfx 0

SONC secondorder necessary condition Bfix 0
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LEAST-SQUARES ANALYSIS 221 

An alternative method of arriving at the least-squares solution is to proceed 
as follows. First, we write 

f(x) = \\Ax-b\\2 

= (Ax-b)T(Ax-b) 

= ]-� � {2� � � )�  - xT(2ATb) + bTb. 

Therefore, / is a quadratic function. The quadratic term is positive definite 
because rank A = n. Thus, the unique minimizer of / is obtained by solving 
the FONC (see Exercise 6.33); that is, 

V/(x) = 2ATAx - 2ATb = 0. 

The only solution to the equation V/(a?) = 0 is x* = (ATA)~1ATb. 

Example 12.1 Suppose that you are given two different types of concrete. 
The first type contains 30% cement, 40% gravel, and 30% sand (all percentages 
of weight). The second type contains 10% cement, 20% gravel, and 70% sand. 
How many pounds of each type of concrete should you mix together so that 
you get a concrete mixture that has as close as possible to a total of 5 pounds 
of cement, 3 pounds of gravel, and 4 pounds of sand? 

The problem can be formulated as a least-squares problem with 

A = 
� � .3 
0.4 

[0.3 

O.l" 
0.2 
0.7 

where the decision variable is x = [xi,^2]T and x\ and X2 are the amounts 
of concrete of the first and second types, respectively. After some algebra, we 
obtain the solution: 

x* = (ATA)-1ATb 

1 Γ 0.54 -0.32] Γ3.9 
~ (0.34)(0.54) - (0.32)2 | -0.32 0.34 | | 3.9 

10.6 
0.961 

(For a variation of this problem solved using a different method, see Exam-
ple 15.7.) ■ 

We now give an example in which least-squares analysis is used to fit mea-
surements by a straight line. 



2 2 2 SOLVING LINEAR EQUATIONS 

Table 12.1 Experimental Data for Example 12.2. 

i 
U 

Vi 

0 
2 
3 

1 
3 
4 

2 
4 
15 

Example 12.2 Line Fitting. Suppose that a process has a single input i E l 
and a single output y e R. Suppose that we perform an experiment on the 
process, resulting in a number of measurements, as displayed in Table 12.1. 
The ith. measurement results in the input labeled U and the output labeled 
t/i. We would like to find a straight line given by 

y = mt + c 

that fits the experimental data. In other words, we wish to find two numbers, 
m and c, such that yi = mti + c, i = 0,1,2. However, it is apparent that 
there is no choice of m and c that results in the requirement above; that is, 
there is no straight line that passes through all three points simultaneously. 
Therefore, we would like to find the values of m and c that best fit the data. 
A graphical illustration of our problem is shown in Figure 12.2. 
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Figure 12.2 Fitting a straight line to experimental data. 
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We can represent our problem as a system of three linear equations of the 
form 

2m + c = 3 
3m + c = 4 
4m + c = 15. 

We can write this system of equations as 

Ax = 6, 

where 

A = 

that since 

2 1 
3 1 
4 1 

6 = 
3 
4 
15 

® = 
m 

c 

rank A < rank [A, 6], 

the vector b does not belong to the range of A. Thus, as we have noted before, 
the system of equations above is inconsistent. 

The straight line of best fit is the one that minimizes 

\Ax - 6||2 = ^2 (mti + c "~ Vi)2 

2 = 0 

Therefore, our problem lies in the class of least-squares problems. Note that 
the foregoing function of m and c is simply the total squared vertical dis-
tance (squared error) between the straight line defined by m and c and the 
experimental points. The solution to our least-squares problem is 

x 
77Γ 

C* 
(ATA)-1ATb = 6 

-32/3 

Note that the error vector e = Ax* �  b is orthogonal to each column of A. I 

Next, we give an example of the use of least-squares in wireless communi-
cations. 

Example 12.3 Attenuation Estimation. A wireless transmitter sends a 
discrete-time signal {so, si , S2} (of duration 3) to a receiver, as shown in Fig-
ure 12.3. The real number s2 is the value of the signal at time i. 

The transmitted signal takes two paths to the receiver: a direct path, with 
delay 10 and attenuation factor ai , and an indirect (reflected) path, with delay 
12 and attenuation factor α2· The received signal is the sum of the signals 
from these two paths, with their respective delays and attenuation factors. 



4 8 2 PROBLEMS WITH EQUALITY CONSTRAINTS 

20.2 Find local extremizers for the following optimization problems: 

a. Minimize x\ + 2x\x<i + 3x2 + 4χχ + 5x2 + 6^3 

subject to x\+ 2x2 = 3 
4#i + 5x3 = 6. 

b . Maximize 4xi + x\ 

subject to x\ + x\ = 9. 

c. Maximize x\x2 

subject to x\ + 4#2 = 1· 

20.3 Find minimizers and maximizers of the function 

f{x) = (aTx)(bTx), x G R3, 

subject to 

xi + x2 �  0 
X2 + ^3 = 0, 

where 
� � " 
1 

L�  
and b = 

"l] 
0 
lj 

20.4 Consider the problem 

minimize f(x) 
subject to h(x) = 0, 

where / : R2 -> R, ft : R2 -> R, and V/ (» ) = [χι,Χι + 4]T . Suppose that x* 
is an optimal solution and Vft(x*) = [1,4]T. Find Vf(x*). 

20.5 Consider the problem 

minimize 11 x �  XQ \ |2 

subject to ||x||2 = 9, 

where x0 = [1, A/3]T· 

a. Find all points satisfying the Lagrange condition for the problem. 
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