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MATHEMATICAL METHODS OF ECONOMICS* 

JOEL FRANKLIN 
California Institute of Technology, Pasadena, California 91125 

When Dr. Golomb and Dr. Bergquist asked me to give a tal on economYs, my first impulse 
was to try to get out of it. 

"Sol," I said, "Irm not an economist. You know that." 
"I know," said Golomb. 
"If you want an economist, I can get you one," I said. "I know some excellent econoni'sts." 
"No," he said, "we want a mathematician to tak about the subject to other mathematicians 

from their own point of view."* 
That made sense, and I hit on this idea: I won't try to tell you what mathematics has done for 

economics. Instead, I'l do the reverse: I'll tell you some things economics has done for 
mathematics. I'll describe some mathematical discoveries that were motivated by problems in 
economics, I'll suggest to you that some of the new mathematical methods of economics 
might come into your own teaching and research. 

One of these methods is called linear programming. I learned about it in 1958. 1 had just come 
to Caltech as a junior faculty member associated with the computing center. The director and I 
made a cross-country trip to survey the most important industrial uses of computers. In New 
York, we visited the Mobil Oil Company, which had just put in a multi-millon-dollar computer 
system. We found out that Mobil had paid off this huge investment in to weeks by doing linear 
programming. 

Back at Caltech, Professor Alan Sweezy in economics and Professors Bill Corcoran and Neil 
Pings in chemical engieernng urged me to teach a course in lnear programming. When I told 
them I didn't know inear programming, they said: Fine, Joel, learn it. Seeing they meant business, 
I did study the subject and give the course. The students loved it, and so did L Perhaps you will 
have a similar experience. 

One surprising thing I found was this: the mathematics was delghtful. I knew it was useful, but 
I hadn't expected it to be beautiful. I was surprised to find that linear programming wasnt just 
business mathematics or engineering mathematics; it was the general mathematics of inear 
inequalities. Later I found this mathematics coming into some of my own special fields of research 
(statistics, numerical analysis, rn-posed problems). Here again, you may have a similar experience. 

Linear programming is one of the many mathematical methods of economics. Here are a few 
others: quadratic programming, geometric programmig, general nonlinear programming; fixed- 
point theorems-especially the Kakutani theorem; calculus of variations, control theory, dy- 
namics programming; theory of convex sets-especially convex cones; probability, statistics, 
stochastic processes; finite structures (graph theory, lattice theory); matrix theory; calculus, 
ordinary differential equations; and special topics lke game theory and Arrow's theory of rational 
preference orderings. 

Plato said mathematics is the essence of reity; Willard Gibbs said mathematics is the 
language of science. If they are right, we shouldn't be surprised to find uses for any branch of 

The author is Professor of Apphed Mathematics at the California Institute of Technology. At Stanford 
University, in 1953, he received his Ph.D. in pure mathematics. His published research pertains to numerical 
analysis, t ill-posed problems to stohastic processes, and to mathematical problems in engineering, in crstallogra- 
phy, in geophysics, and in cel biology. At Caltech he has twice received the Associated Students Award for 

cellence in Teaching. He has written two textbooks for undergraduates in mathematics: Matrix Theo and 
Meth of Mathematical Economics. 

*Invited address to the Matematical Association of Ameca and to the Society for Industrial and Applied 
Mathematics, November 14t 1981 Santa Babara, California. 
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230 JOEL FRANKLIN [April 

mathematics in any science. Every branch of mathematics may have some use in the science of 
economics. Here are two bizarre examples: 

Have you heard of nonstandard analysis? I've heard of it, but know next to nothing about it. 
Nevertheless, on November 10, 1981, I heard Yale Economics Professor Donald J. Brown give a 
colloquium on the nonstandard analysis of hyper-finite economies (see [4] and [20]). 

You have heard of Bourbaki; so have I. I always thought that stuff would never be good for 
anything. Nevertheless, Bourbaki ultrafilters appear in a paper in the Journal of Economic Theory 
[17]. The authors, A. Kirman and D. Sondermann, use ultrafilters to generalize Kenneth Arrow's 
fundamental theorem of welfare economics [1]. 

Mathematics appears in all parts of economics, especially in mathematical economics and in 
econometrics. Mathematical economics is like mathematical physics: it is theoretical, nonempirical, 
sometimes speculative. For instance, Alfred Marshall hypothesized the existence of certain curves 
(supply and demand schedules) whose intersections determine commodity prices. Very pretty, but 
he didn't show how to measure or predict numerical values for specific supply-demand schedules. 

In general, measurement and prediction belong to econometrics. As you would expect, economet- 
rics uses a lot of mathematical statistics, probability theory, and numerical analysis. A Nobel prize 
was given in 1980 to Lawrence Klein for his work in building econometric models. 

In 1969 the first Nobel prize in economics was given to Ragnar Frisch and Jan Tinbergen "for 
having developed and applied dynamic models for the analysis of economic processes"; in other 
words, the prize was given for mathematics applied to economics. Later, I'll show you a list of all 
the Nobel prizes in economics, and you'll see that at least 7 of the 12 prizes given from 1969 
through 1981 were given for work that could be called applied mathematics. In fact, in 1975 a 
Nobel prize in economics was given to Leonid Kantorovich, who is a mathematician. 

In 1969 a spokesman for the Nobel foundation welcomed the new prize subject, economics, as 
"the oldest of the arts, the youngest of the sciences." It might be fair to say that economics 
became a science when it started making significant use of mathematics. When was that? I'd say 
the nineteenth century. 

In 1817 the stockbroker David Ricardo proved a theorem that establishes an astounding 
principle of international economics. Ricardo proved mathematically that free trade is (under 
certain assumptions) advantageous to consumers in all nations. 

Alfred Marshall was another great nineteenth-century economist. Marshall started out to be a 
mathematician; he was First Wrangler in mathematics at Cambridge. Although his work is seldom 
explicitly mathematical, any mathematician reading it can sense its mathematical core. Marshall 
was a teacher of John Maynard Keynes, whose work contains plenty of explicit mathematics. But, 
at least to my taste, Marshall's work shows more mathematical insight. 

As Gerard Debreu wrote in his Theory of Value [7], mathematical economics has become 
increasingly geometric and qualitative. If we want precise numerical information, we have to turn 
to econometrics. Whereas Marshall drew his supply-and-demand curves in a nonnumerical, 
qualitative way, the econometrician would have the hard problem of giving numerical values for 
these curves for specific commodities at specific times. 

An example of econometrics appears in an article [29] by the mathematician Jacob Schwartz. 
He used a Wharton econometric model for residential housing. You can see it in Fig. 1. There you 
see a typical awful equation of econometrics; please don't try to understand it. I just want you to 
see what it looks like. It predicts the rate of investment in residential housing as a function of 
various factors (the numerical subscripts refer to time lags). The coefficients (58.26, 0.0249, etc.) 
come from a numerical curve fit to data for 1948-1964; the model was published in 1967. 

There is an old Chinese proverb: It is always difficult to predict-especially the future. For that 
reason econometrics is difficult. The Wharton model of 1967 "predicts" housing starts for 
1948-1964-not for the future. In general, econometric models are not laws of nature likef = ma 
or E = mc2; they are empirical studies whose predictive value depends on the constancy of the 
underlying relationships. 
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1983] MATHEMATICAL METHODS OF ECONOMICS 231 

1967 Wharton econometric model (for 1948-1964) 

Ih= 58.26 + 0.0249Y- 45.52 (Ph) + 1.433(iL - i)-3 + 0.0851 (IA)-I 

= rate of investment ($109) in residential housing 
per quarter (3 months) 

Y = total disposable income 

Ph = average housing price 

Pr = average rental price 

iL = long-term interest rate 

is = short-term interest rate 

Ih = rate of housing starts 

Negative subscripts denote time lags. 

FIG. 1. 

What Do Economists Think of Mathematics? That question has had different answers at 
different times. Now the answer would be overwhelmingly favorable, if not unanimous. But not so 
in the old days. Adam Smith published his great book Wealth of Nations in 1776. It is readable, 
fascinating, and important; but it contains almost no mathematics. 

I told you the great nineteenth-century economist Alfred Marshall had been First Wrangler in 
mathematics at Cambridge. Later, he talked about the role mathematics played in his work: 

I had a growing feeling in the later years of my work at the subject that a good mathematical 
theorem dealing with economic hypotheses was very unlikely to be good economics: and I went 
more and more on the rules-(l) Use mathematics as a shorthand language, rather than as an 
engine of inquiry. (2) Keep to them till you have done. (3) Translate into English. (4) Then 
illustrate by examples that are important in real life. (5) Bum the mathematics. (6) If you can't 
succeed in 4, bum 3. This last I did often. -quoted in [31], p. 307. 

So Marshall practiced mathematics as a secret vice; he was a closet mathematician. His most 
famous student was John Maynard Keynes. At Cambridge, Keynes took his degree in mathe- 
matics*. In 1920 Keynes published his Treatise of Probability. Keynes's great books on economics 
contain many equations. By the time of Lord Keynes mathematics was not a secret vice but a 
public virtue. 

A living disciple of Keynes, Harvard Professor John Kenneth Galbraith, regards mathematics 
with scepticism. One of Galbraith's more entertaining books is called Economics, Peace, and 
Laughter. Commenting on the models of mathematical economics, he says this: 

Moreover, the models so constructed, though of no practical value, serve a useful academic 
function. The oldest problem in economic education is how to exclude the incompetent.... 
The requirement that there be an ability to master difficult models, including ones for which 
mathematical competence is required, is a highly useful screening device. 

Not satisfied with this comment, Galbraith adds a dour footnote: 

There can be no question, however, that prolonged commitment to mathematical exercises in 
economics can be damaging. It leads to the atrophy of judgment and intuition.... 

John Galbraith does not stand alone. He tells this story about Paul Samuelson, a superb 
applied mathematician and winner of the Nobel Prize for work in mathematical economics: 

*While studying for the Tripos, Keynes wrote to his friend B. W. Swithinbank on 18 April 1905: "I am 
soddening my brain, destroying my intellect, souring my disposition in a panic-stricken attempt to acquire the 
rudiments of the Mathematics." See R. F. Harrod [13], p. 130. 
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232 JOEL FRANKLIN [April 

Professor Samuelson, in his presidential address to the American Economic Association several 
years ago, noted that the three previous presidential addresses had been devoted to a 
denunciation of mathematical economics and that the most trenchant had encouraged the 
audience to standing applause. 

Well! And skepticism about mathematics is not confined to this continent. Galbraith says: 
Once when I was in Russia on a visit to Soviet economists, I spent a long afternoon attending a 
discussion on the use of mathematical models in plan formation. At the conclusion an elderly 
scholar, who had also found it very heavy going, asked me rather wistfully if I didn't think 
there was still a "certain place" for the old-fashioned Marxian formulation of the labor theory 
of value. 

The old Russian scholar must have sighed when a Nobel prize in economics was given to 
Leonid Kantorovich, a mathematician. Kantorovich got the prize for developing the mathematical 
theory of linear programming and for applying it to the economic problem of optimum allocation 
of resources. He would have gone a lot farther with linear programming if he hadn't run into 
trouble from the orthodox Marxians, who objected to the use of the idea of prices. Dantzig tells 
the story in his book [6], p. 23. 

Among the Nobel Laureates in economics, some, like Kantorovich, solved problems in 
economics by inventing new mathematics; others made much use of known mathematics. Look at 
the list of Nobel prizes in economics, Fig. 2. I've put asterisks by seven of the twelve prize years to 
indicate work that is heavily mathematical. 

Nobel Prizes in Economics 

1969* Frisch, Ragnar and Tinbergen, Jan-"for having developed and applied dynamic models for the 
analysis of economic processes." 

1970* Samuelson, Paul-"for the scientific work through which he has developed static and dynamic 
economic theory and actively contributed to raising the level of analysis in economic science." 

1971 Kuznets, Simon-"for his empirically founded interpretation of economic growth which has led to 
new and deepened insight into the economic and social structure and process of development." 

1972* Hicks, Sir John R. and Arrow, Kenneth J.-"for their pioneering contributions to general economic 
equilibrium theory and welfare theory." 

1973 Leontief, Wassily-"for the development of the input-output method and for its application to 
important economic problems." 

1974 Myrdal, Gunnar and Von Hayek, Friedrich August-"for their pioneering work in the theory of 
money and economic fluctuations and for their penetrating analysis of the interdependence of 
economic, social and institutional phenomena." 

1975* Kantorovich, Leonid and Koopmans, Tjalling-"for their contributions to the theory of optimum 
allocation of resources." 

1976* Friedman, Milton-"for his achievements in the fields of consumption analysis, monetary history and 
theory and for his demonstration of the complexity of stabilization policy." 

1977 Ohlin, Bertil and Meade, James-" for their pathbreaking contributions to the theory of international 
trade and international capital movements." 

1978 Simon, Herbert A.-"for his pioneering research into the decision-making process within economic 
organizations." 

1979 Lewis, Arthur and Shultz, Theodore-for studies of human capital. 

1980* Klein, Lawrence-for computer models designed to forecast economic changes. 

1981 * Tobin, James-for mathematical models of investment decisions. 

*Asterisks indicate very mathematical work. 

FIG. 2. 
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1983] MATHEMATICAL METHODS OF ECONOMICS 233 

Seven out of twelve Nobel prizes-not a bad score for mathematics. And some of this 
mathematics has freshness and charm. For example, let me show you a theorem that won a Nobel 
prize: the Possibility Theorem of Kenneth Arrow. 

In 1957 Kenneth Arrow published a little book called Social Choice and Individual Values. He 
was thinking about a problem of welfare economics: Confronted by numerous conflicting special 
interests, how should the government make decisions? 

Use old-fashioned majority rule, you say. That's the democratic way, isn't it? That's the rational 
way. 

Lets see. Suppose we have 3 alternatives: vanilla (V), chocolate (C), and strawberry (S). And 
suppose we have 9 voters, each with his own individual values. For example, one individual may 
like vanilla better than chocolate (V> C), and he may like chocolate better than strawberry 
(C > S); then, by the way, he must like vanilla better than strawberry (V > S) if his individual 
values are rational. Another individual may prefer strawberry to vanilla (S > V), vanilla to 
chocolate (V > C), and therefore strawberry to chocolate (S > C). And so on. 

If all of our nine voters have definite flavor preferences, the voters constitute 6 special-interest 
groups, corresponding to the six ways of ranking 3 flavors. For example, we might have the 
following tabulation: 

Individual values Number of individuals 

V>C>S 2 
S> V>C 2 
C>S> V 2 
V S> C 1 
C > V S 1 
S>C>V 1 

Now comes the general election. Here are the results: 
V> Cbyamajorityof 5to4 
C > S by a majority of 5 to 4 

and-what's this? 
S > Vby a majority of 5 to 4. 

But that's crazy: V > C and C > S should imply V > S, not S > V. (This is an example of 
Concordet's paradox.) 

No wonder Congress is confused. You see the problem. So did Arrow, and he wondered if 
there was any way out. 

There is one way out: Hitler's way. Pick one individual, call him der Fiihrer, and do what he 
says. Then all the government's preferences can be nice and transitive, and too bad for you if you 
don't like it. 

Is there any rational way to make social choices besides dictatorship? To this basic question of 
welfare economics, Kenneth Arrow gave an astonishing answer: No. 

ARROW'S THEOREM. Suppose we have a function that makes rational (transitive) social choices as 
a function of rational individual values that rank (by preference or indifference) three or more 
alternatives. Assume that the social-choice function has two properties: 

(i) If all individuals prefer alternative a to alternative b, then society shall prefer a to b. 
(ii) The social choice between any two alternatives a and b shall depend only on the individual 

values between a and b (and should not depend on any third alternative c). 

Then Arrow's theorem says there exists a dictator-a single individual whose preferences 
become social choices. 
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In a minute I'll write this theorem symbolically, in terms of matrices. But first I want to explain 
the two assumptions. The first is a principle of unanimity: If everyone prefers vanilla to chocolate, 
so should society. The second is a principle of relevance: Society's choice between vanilla and 
chocolate should depend on how people feel about vanilla and chocolate, not on how they feel 
about strawberry. 

If you wish, you can write Arrow's theorem in terms of matrices. Let aij = 1 if i is preferred to 
j; let aij = - 1 if j is preferred to i; let aij = 0 if neither is preferred to the other. If there are m 
alternatives (flavors), then the numbers aij constitute an m X m skew-symmetric matrix, A. In a 
rational preference ordering, if i is preferred to j, and if j is preferred to k, then i must be 
preferred to k. For the matrix A this says: If aij = 1 and ajk = 1, then aik = 1. We shall also 
require aik = 1 if aij = O and ak = 1 or if aij1= and ajk=O. If this is so, then we'll call A a 
rational preference matrix. 

EXAMPLE. Suppose we prefer flavor 3 to flavor 1 and flavor 2, which we like equally. Then this 
is our rational preference matrix: 

10 0 - 
A= 0 g -1 

1 1 0 

EXAMPLE. Suppose we prefer flavor 1 to flavor 2, flavor 2 to flavor 3, and flavor 3 to flavor 1. 
That is irrational, and so the preference matrix is irrational: 

0 1 ). 
A= -1 0 1. 

I -1 0 

Look: a12 = 1 and a23 = 1, but a13 + 1. 
Individual values and social choice: Suppose there are n individuals and m alternatives. The 

individual values are expressed by n rational preference matrices A (1), . . ., A (n). A social choice is 
a rational preference matrix A. We're looking for a function F mapping P,n into Pm, where Pm is 
the set of m X m rational preference matrices and P,n is the n-fold Cartesian product: 

A = F(A(1),. , A(n))- 

EXAMPLE. For majority rule, the function F is defined as follows: 

aij = sign[ai(1) + *-* + aij(n)] (i, j= 1,..., m). 

If m > 2, majority rule may give irrational social choices, as we saw in the example of vanilla, 
chocolate, and strawberry. So this F takes values outside Pm; but this F does satisfy the 
assumption of unanimity and relevance: 

(1) aij= 1 if aij(k)= IVk= 1,..., n 

(2) aij = a function of aij(1),..., aij(n). 
Arrow's theorem now takes this form: Let F be a function mapping Pm, into Pm. Suppose m > 2, 

and suppose the function F satisfies equations (1) and (2). Then there exists an integer d such that 
aij = 1 if aij(d) = 1. (The integer d depends on F but not on the matrices A(1), ..., A(n).) 

By the way, there are no restrictions on the number of individuals, n. In marriage, n = 2. Then 
Arrow's theorem says: Either the husband or the wife must be a dictator, or there must be 
irrational choices. Experience seems to bear this out. 

Arrow's theorem talks about rational (transitive) preference orderings. This raises a question in 
combinatoric analysis: How many rational preferences orderings of m alternatives are there? The 
answer has appeared in [12]. For large m the number of rational preference orderings behaves like 
(1/2) m!(log2)m -i 
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The mathematics of Arrow's theorem is very different from mathematics like linear program- 
ming. Here we have a rather ordinary looking problem: 

For i = 1,. . ., m andj = 1,.. ., n we are given the real numbers aij, bi, cj. We wish to find 
numbers xi > 0 such that 

n 

cjxj = minimum 
j=1 

over all solutions of the linear equations 
n 

aijxj = b (i = 1,..., m). 
j=1 

That is the canonical form of linear programming. In terms of matrices and vectors, it looks 
like this: 

Ax=b, x > O, cTx = min. 
The problem is interesting only if the linear system Ax = b has more than one solution, so we 
usually suppose rank A = m < n. Then the crucial assumption is the sign constraint x > 0 (all 
components of x must be nonnegative). 

Kantorovich in Russia and Dantzig in the United States independently developed linear 
programming to solve economic logistical problems. The history of their work appears in 
Dantzig's book [6]. 

The most famous early problem of linear programming, the diet problem, first appeared in the 
Journal of Farm Economics [33]. The problem is to design a nutritionally adequate diet at 
minimum cost. The author, George Stigler, won the 1982 Nobel Prize in Economics. 

Suppose aij is the amount of nutrient i in one unit of food j. (For instance, a37 might be the 
amount of vitamin B1 in one gram of wheat bread.) Let bi be the minimum daily requirement of 
nutrient i, and let cj be the cost of one unit of food j. Let xj be the amount of food j in a daily 
diet. Then we require 

n n 

?aijxj > bi(i = 1,... , m) xj >, O F cj xj = minimum. 
i= 1 j=1 

This is a linear program in standard form. To put it in canonical form, we must replace the m 
linear inequalities by equations. We do that by introducing m new unknowns zi > 0: 

n 

?aijxj - Zi = bi. 
j=1 

The problem is now easy to solve by Dantzig's simplex method. 
Linear programming has many uses in industry and banking. In 1981, a good popular article 

[2] appeared in Scientific American; I recommend its example on beer. An introduction to the use 
of linear programming for the optimization of bank investment portfolios appeared in the Monthly 
Review of the Federal Reserve Bank of Richmond (see [3] and [10], p. 3). Banks and oil companies 
make a lot of money with linear programming. 

But you and I are mathematicians; money means nothing to us. So let us speak of something 
more important-let's talk about Chebyshev approximation. 

Suppose we are given a system of real linear equations, Ax = b, and suppose the system has no 
solution x. Typically, this occurs when we have more equations than unknowns. If we have m 
equations in n unknowns, the error in equation i is a function of the vector x: 

n 

ei= aijxj - bi (i = ,...,). 
j=1 
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The problem of Chebyshev approximation is to find a vector x that minimizes the maximum 
absolute error: 

Minimize ( maxleil). 

That is a beautiful and important problem of approximation theory. Many things were known 
about Chebyshev approximation before 1959, but no one knew a good way to do it. Then Edward 
Stiefel discovered how to do it by linear programming (see [32] and [10], p. 8). Here's how: 

Define a new unknown: xo = maxlejI for i = 1,..., m. Then we shall have the uniform error 
bracket 

n 

-xO SE aijxj - bi xo (i = 1,..., m). 
j=1 

The problem of Chebyshev is to choose xo,..., xn so as to minimize the maximum absolute error: 
Minimize xo. 

That's all there is to it-a finite number of linear inequalities in a finite number of unknowns, 
with a linear form to be minimized. That is a linear program in general form. It's trivial to restate 
it in canonical form, and it's routine to solve it numerically by the simplex method. 

The simplex method is perhaps the most important numerical method invented in the twentieth 
century. Experience with enormous industrial problems shows that the simplex method works fast. 
In problems with m equations in n unknowns, the computation time seems to be proportional 
to n. 

Why does the simplex method usually work so fast? No one knows, and this is one of the great 
unsolved problems of numerical analysis. At first glance, the computation time would seem to be 
proportional to the binomial coefficient (), which is the possible number of basic solutions 
of Ax = b. For m - n/2, the binomial coefficient is almost as big as 2n, and this suggests the 
computing time could grow exponentially with n. Indeed, Victor Klee and George Minty [18] have 
constructed pathological cases for which that happens. But it never seems to happen in practice. 

A Russian mathematician named Khachian got around this problem by analyzing a quite 
different algorithm [16]. Khachian proved that his algorithm has computing time bounded by a 
constant, K, times n6 which becomes smaller than 2n. Khachian's proof is a triumph of 
theoretical computer science. But Khachian's algorithm, in its present form, has little practical 
value: the constant K is enormous and so is the computing time. 

You can become famous by doing one of these two things: (1) show why the simplex method 
usually works as well as it does; (2) show how Khachian's method can be made to work better 
than the simplex method in practice. [A persistent rumor says Stephen Smale has done (1).] 

Linear programming is important because it is the general mathematics of finite systems of 
linear inequalities. Linear programming is more general than real linear algebra, for this reason: 
Any real linear equation 2aixi = b can be restated as a pair of linear inequalities: 

Y.aixi S b and 2aixi > b. 

But the converse is false: You can't restate a linear inequality as a finite number of linear 
equations. 

No mathematician doubts the importance of linear algebra. So linear programming must also 
be important, and perhaps you will agree that linear programming should be part of the basic 
undergraduate mathematics curriculum. Why should mathematics students have to pick up their 
linear programming from economists and chemical engineers and people like that? They should 
learn it from us, and they should learn it right. 

Marshall Hall has a section on linear programming in his book Combinatoric Analysis. There's 
nothing odd about that; linear programming has many applications to combinatorics. For 
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instance, look at this problem: 
We are given an n x n matrix of real numbers aij. We seek a permutation j1,... ,jn that 

maximizes the sum 
s = alj + a2i2 + + anj,- 

This problem is called the optimal-assignment problem. 

EXAMPLE. Suppose we're given the matrix 

7 26 
3 9 . 
8 4 5 

The sum s has six possible values. The largest is 
maxs = a13 + a22 + a31 = 6 + 9 + 8 = 23, 

achieved for the permutation (jl, j2, j3) = (3,2, 1). 
In general, we could solve the problem by calculating all the n! possible values for s, but that 

takes too long if n is large. A much faster algorithm is given by linear programming. 
We define the unknowns xij as 1 if j = ji, or 0 if j * ji. Thus, xij will tell us which component 

to pick from each row. For the preceding numerical example, we would have ( 
001 

(Xij)= 0 10. 
1 0 0 

In general, the integer unknowns xij must satisfy the constraints 

Xi, + ***+ Xin =I1 (i = 1S ... n) 
Xl + + Xnj = 1 (j = 1,..., n) 

xij>0 (i,j= l,..., n). 
Then we wish to maximize a linear form: 

s = , ajx- = maximum. 
i,j 

This is a problem in linear programming. H. W. Kuhn [19] has shown that it can be solved in 
0(n3) steps. 

You are right if you object that linear programming provides the optimal real solution xij, and 
these numbers might not be integers (we need all xij = 0 or 1). But for the optimal-assignment 
problem the optimal solution over the integers xij is also optimal over the real numbers xij. That's 
not obvious, but it's easy to prove. In general, however, linear programming over the integers is 
difficult. The optimal solution over integers is usually not optimal over real numbers. 

So much for combinatorics. Now let's look at geometry. I'd like to show you how quadratic 
programming solves a problem stated in 1857 by J. J. Sylvester [34]: "It is required to find the 
least circle which shall contain a given set of points in the plane." 

Suppose the given points are al,. . ., an. We're looking for a circle with the unknown center x 
and radius p. The given points are required to lie inside the circle: 

Ilai -xl , p2 (=1,.,m). 

Then we want to choose x and p so as to minimize p. 
We can replace the m quadratic inequalities by linear inequalities as follows. Introduce the 

unknown 

Xo= (p2 - 11x112). 
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Then the m inequalities become 

XO + ai - x >_ bi (i = 19,...,9 m) 

where b1 = llaiI12. Then we want to minimize p2: 

2xo + 11xI12 = minimum. 

Sylvester's problem now has this form: First we require m linear inequalities: 

x0 + ailxl + ai2x2 > bi (i = 1,..., im). 

Then we want 

2xo + x2 + x2 = minimum, 

in which the quadratic terms constitute a positive definite form. This is a routine problem of 
quadratic programming. It can be solved numerically by an ingenious variant of the simplex 
method. This algorithm was discovered by a mathematician, Philip Wolfe, but it was published in 
an economics journal, Econometrica [36]. 

Why in an economics journal? Because Wolfe's paper extended the work of some economists 
who were interested in the use of quadratic programming to make optimal investment decisions. 
Wolfe's mathematical discovery solved a problem in economics. 

The theoretical basis of linear and nonlinear programming was published in 1902 by a 
mathematician named Julius Farkas. He gave a long, cumbersome proof of the following 
proposition, which you might call the alternative of linear inequalities (generalizing the Fredholm 
alternative of linear equations): 

THE FARKAS THEOREM. Let A be a given m X n real matrix, and let b be a given vector with m 
real components. Then one, and only one, of the following alternatives is true: 

(i) the system Ax = b has a solution x > 0 (all components > 0); 
(ii) the system of inequalities yTA > 0 has a solution y satisfying yTb < 0. 

Indeed, both alternatives can't be true, for then we could deduce 

0 < (yTA)x =yT(Ax) = yTb < 0. 

That's easy; the hard part is to show that one of the alternatives must be true. A modern 
straightforward proof of the Farkas theorem relies on the separating-plane theorem for convex 
sets (see, e.g., [10], p. 56). 

The Farkas alternative has many uses outside mathematical economics. I hope to convince you 
that every mathematician should know the Farkas theorem and should know how to use it. For 
example, let me show how to use the Farkas theorem to prove the fundamental theorem of finite 
Markov processes. 

THEOREM (Markov). Suppose pij > 0, and suppose 
n 

?Piyl (j= 1,...,n). 
i=lI 

Then there exist numbers xj > 0 satisfying 
n 

E2pijx=x1 (i=1,...,n) 
j=1 

Exj=1. 
j=1 
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The proof of a special case of this theorem occupies several pages in Feller's book on 
probability ([8], pp. 428-432). The general case is usually proved by using the Perron-Frobenius 
maximum principle for positive matrices or by using the Brouwer fixed-point theorem. Instead, we 
can give an elementary proof using the Farkas theorem ([10], p. 58): 

First, we state Markov's assertion as one Farkas alternative: 
(i) There exists a vector x > 0 satisfying the n + 1 linear equations 

n 

? (Pij - aij) xi = O (i = 1,... , n) 
j=1 

n 

xi = =1, 
j=1 

where 8ij is the Kronecker delta. 
Second, we state the other Farkas alternative: 
(ii) There exist numbers ,. .., yn' Yn+ l satisfying the inequalities 

n 

? Yi(Pij- ij) +Yn+I 0 (j= 1,... n) 

Yn+1 < 0. 

Alternative (ii) implies the strict inequalities 
n 

5?yipij > yj for allj. 
i=lI 

But 
n 

maxy, > Yi p1 
i=lI 

because we assumed pij > 0 and Yi pij = 1, so we find 

maxyi > y1 for alli. 

That is impossible, so alternative (ii) is false. 
Now Farkas tells us that alternative (i) is true: Markov's theorem is proved. That was easy, 

wasn't it? 
Now let me tell you about the theory of games and economic behavior. A book with that title 

was published in 1944 by the mathematician John von Neumann and the economist Oskar 
Morgenstern [25]. Economists consider this book an epoch-making contribution to economics. 

Fine, you say, but what has it done for mathematics? 
This book, along with von Neumann's earlier work [24] on game theory, has given us some 

stimulating problems and some important results. For example, look at this theorem on matrices: 

THEOREM (VON NEUMANN). Let A be a real m X n matrix. Let vectors x and y range over the 
sets 

m n 

Exi = 1, xi > ; F,yi = I1 yi > 0 
i=l1j=l 

Then 

min max xTAy = max min xTAy. 
y x x y 

This theorem is no platitude. As a rule, mixed extrema are not equal, as the following example 
shows. Suppose x and y range over the sets 0 < x < 1, 0 < y < 1. Then 
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min max (x _Y)2 =-4, 
y x 

but 

maxmin(x -y)2 = 0. 
x y 

Von Neumann's minimax theorem is the fundamental result in the theory of zero-sum 
two-person games. But that's not the point; the point is, it's good mathematics. Von Neumann 
proved the minimax theorem by using the Brouwer fixed-point theorem. His proof is nonelemen- 
tary and nonconstructive. Later, the mathematician George Dantzig gave an elementary, construc- 
tive proof by using the dual simplex method of linear programming. 

Following von Neumann, mathematical economists make much use of the fixed-point theo- 
rems. Their favorite seems to be the fixed-point theorem of Kakutani [15]. 

As a young mathematician at the Institute of Advanced Study, Shizuo Kakutani discovered a 
generalization of the Brouwer fixed-point theorem. Kakutani's work was motivated by problems 
in economic game theory. His theorem has great mathematical novelty. It speaks of point-to-set 
mappings: 

THEOREM (Kakutani). Let X be a closed, bounded, convex set in R n. For every point x in X, let 
F(x) equal a nonempty convex subset of X. Assume that the graph 

{x, y: y E F(x)) is closed. 

Then some point in X satisfies x* E F(x*). 

The image of each point x is a convex set F(x) C X. The theorem says some point x* lies in its 
image F(x*). Figure 3 illustrates this. Kakutani's theorem is novel because it talks about 
set-valued functions. 

FIG. 3. 

If every set F(x) contains just one point, the closed-graph assumption is equivalent to the 
continuity of the function F(x), and then Kakutani's theorem reduces to the Brouwer fixed-point 
theorem. Kakutani proved his theorem by using the Brouwer theorem. 

A private survey indicates that 96% of all mathematicians can state the Brouwer fixed-point 
theorem, but only 5% can prove it. Among mathematical economists, 95% can state it, but only 2% 
can prove it (and these are all ex-topologists). This dangerous situation will soon be remedied. 
Within the last two years, John Milnor [22] and C. A. Rogers [27] have produced elementary 
proofs, using nothing more advanced than calculus. These proofs are so easy that I can 
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understand them [10], and certainly you can. 
While 96% of mathematicians can state the Brouwer fixed-point theorem, only 7% can state the 

Kakutani theorem. This situation is also dangerous or, at least, wasteful. The Kakutani theorem 
has many potential applications outside economics; these applications should be made. Now that 
we can all understand the Brouwer theorem, we can also understand the Kakutani theorem, so 
nothing can stop us. 

In the application of Kakutani's theorem to many-person game theory, the point x denotes a 
collection of mixed strategies and the set-valued function denotes the sets of optimal mixed 
strategies. The inclusion x E F(x) characterizes an equilibrium solution of the game. The 
Kakutani theorem is thus the perfect tool for proving J. F. Nash's fundamental theorem [23] on 
n-person games. 

Professor H. F. Bohnenblust once told me something about research. He had supervised many 
successful Ph.D. thesis projects-and a few unsuccessful ones. He said this: The unsuccessful 
projects start with some famous old problem (prove the Riemann hypothesis) and then look for a 
method to solve it. The successful projects start with some new method and then look for a problem. 

Let's take Bohnenblust's advice. Let's start with linear programming and look for a problem. 
Here's a good one: the problem of moments in probability theory. 

Suppose we are given a collection of real-valued continuous functions ai(t) for t E-1 R P. We are 
given a closed set 2 c: R P, and we're given a collection of real numbers bi. The problem is to find 
a probability distribution function x(t) satisfying the moment equations 

ai (t) dx (t) = bi for all i 

where we require dx(t) > 0 and 

fdx(t) = 1. 

This problem has many applications in geophysics and in other sciences. It has an extensive 
mathematical theory (see, for instance, Shohat and Tamarkin [30]). So what is left for you and me 
to do here? Well, for one thing, we could devise a good numerical method. At least, that will 
please our colleagues in geophysics. 

Suppose we're given a finite number of moments, which is the usual case in applications. And 
suppose we use some numerical scheme to approximate the integrals by finite sums. Then we get a 
finite set of linear equations in a finite set of unknowns: 

n 

Y, aijxj = bj (i = 19...,9 m) 
j=l 

Now we're looking for the numbers xi,..., xn; they will constitute a finite set of probabilities, 
satisfying 

n 

i x= 1, Xi > 0. 
j=1 

So we want to solve m + 1 linear equations in n unknowns xj > 0. Ah! We recognize a 
problem in linear programming. For this we have an existence theorem, the Farkas theorem, and a 
numerical method, the simplex method. 

The simplex method will tell us if no solution exists, or it will compute a solution x if solutions 
do exist. For n > m + 1 we can't expect the solution x to be unique. We are free to impose any 
minimum condition of the form 

n 

E cjxj = minimum. 
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We note that the original problem with a finite number of moments usually doesn't have a unique 
solution x(t), so the freedom to impose an extra condition is physically natural and mathemati- 
cally necessary. 

Fine, you say. All right for some people but not for you. You are a pure mathematician, and 
numerical methods bore you. What you'd like is a little solid theory-something you can get your 
teeth into. 

OK, I'm with you. Let's prove a great theorem together. Let's give a new, elementary proof of a 
famous theorem of F. Hausdorff [14]. The proof will use a method of mathematical economics, the 
Farkas theorem. 

Hausdorff studied the moment problem 

(3) j'tkdX(t) = bk (k= 0,,...). 

He asked this question: Which infinite sequences (bk} are the moments of a probability distribution 
x(t) on the interval 0 S t S 1? He called those sequences moment sequences. 

Certainly bo = 1, since we require J dx(t) = 1. Also, we must have 

If (t) dx(t) > 0 

for all continuous functions f(t) > 0. Setting f(t) = t'(l - t)k, we get the necessary condition 

|El ( _ ) ̂ k )tj+Y dx( t) >O, 
0=O 

which says this about the moments: 
k 

E (- (kbj+V - 0 (j, k > 0). 
i'=0 

A sequence (bi} with this property is called completely monotone. If we define the difference 
operator A by A bi = bi I - bi, the last formula says 

(_)kAkbj> (k > 0). 

Hausdorffs theorem says: If bo = 1, the sequence bo, b1, b2,... is a moment sequence if and only 
if it is completely monotone. 

We've already proved the only if part. To prove the if part, let's assume the sequence (bi} is 
completely monotone, with bo = 1. Now we must find a p.d.f. (probability distribution function) 
x(t) satisfying the moment equations (3). 

Suppose we can solve the system of moment equations 

(i) tk dxn(t) = bk (k = 05,..., n) 

for eachfinite n. Then the p.d.f.'s xn(t) have a subsequence that converges to a p.d.f. x(t) at all 
points of continuity of the limit x(t). Then x(t) satisfies all the moment equations (3), and we're 
done. 

So the required p.d.f. x(t) exists unless some finite system (i) is unsolvable. But the system (i) is 
a finite linear system for an unknown dxn(t) > 0. A simple extension of the Farkas theorem says 
this: The system (i) is unsolvable for a p.d.f. Xn(t) if and only if there exist numbers yo.. . ,Yn 
satisfying 

n 

E Yk tk > ? (? < t < 1 
.. ~~~~~~k=0 

(11) n 
E Ykbk < 0. 
k=0 
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We must show that this is impossible. 
Suppose (ii) is true. Define the polynomialf(t) = Yktk. Then Taylor's theorem says 

Yk = f k(O)lk! 
As a limit of difference quotients, this equals 

Yk = lim kf (?)/(ekk!), 

where Aef(t) = f(t + e) - f(t). Setting e = 1/N, we deduce 

Yk =N- oo k 

The second part of (ii) says E Yk bk < 0, and so for large N we must have 

k J )(vk(0)) * bk < O- 

The upper limit, n, may be replaced by a larger integer, N, since an nth degree polynomial f(t) 
satisfies Akef(t) = 0 for k > n. Now we rearrange the last sum to obtain the inequality 

Ef - .NJAN 
Jbj 

< 0. 
j= o N i 

But (ii) saysf > 0, and the completely monotone sequence (bi} satisfies (-)kkbj > 0, so all terms 
in the last sum are nonnegative, and we have a contradiction. The Farkas alternative (ii) is 
impossible. 

Therefore, the alternative (i) is true: every finite system of moment equations (i) is solvable. It 
follows that the infinite system (3) is solvable, and so we have proved Hausdorff's theorem. 

This theorem is important in probability theory. As William Feller said, "Its discovery has 
been justly celebrated as a deep and powerful result." (See [9], p. 226.) 

As you've just seen, the mathematical methods of economics have striking applications to the 
rest of mathematics. As you might have feared, I could go on talking to you forever. I could tell 
you about applications to ill-posed boundary-value problems of partial differential equations. But 
I manfully refrain; you have already heard enough. By now, I hope you will agree with me: these 
problems and methods of economics are valuable, and they are fascinating. 
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MISCELLANEA 

99. Bolzano-Weierstrass for ornithologists. 

We came... to a heavy thicket of bramble and stones, rising like a dinosaur out of which was 
an extraordinary contrivance of wire fences, wood, and ropes, of doors and pulleys moaning in the 
breeze. This, Miss Whittaker said cheerfully, was a Heligoland bird trap, the most serviceable kind 
there is. I stared astonishedly at the Heligoland bird trap, estimating it one hundred feet long, 
thirty feet wide, and eight feet high-roughly one million times as large as the average bird. 
Presently, Miss Whittaker saw my dismay, and observed that a Heligoland bird trap... is 
superior to any [other device] because of the sheer intricacy of its mechanism, which only the most 
erudite of birds could hope to grasp. Its proper utilization begins, she continued, when she 
thrashes about in the brambles and frightens a bird into the trap, shutting a screen door behind it. 
The bird flies about in consternation, and more and more screen doors are closed by Miss 
Whittaker, who-did I say? -is also inside the Heligoland bird trap; the woebegone bird finds 
itself in smaller andtsmaller quarters, and finally, when the last door closes, in a small, accessible, 
wooden box. 

-John Sack, Report from Practically Nowhere, 
Harper, New York, 1959, p. 23. Suggested 
by H. P. Boas. 
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