MA 421 Fall 2025 (Aaron N. K. Yip)

Homework 4, due on Thursday, Sept 25th, 11:59pm, in Gradescope

- 1. [V] (Linear Programming, Foundations and Extensions, **5th edition**) p.81: #5.1, #5.6¹
- 2. Redo problems [V] #2.10, #3.4, [C] #1.2 by considering their dual problems.
- 3. [C] p.69, #5.3.
- 4. In class², we have verified that for the LP problem in [C], p.67, the suggested solution $(x_1^* = 25, x_2^* = 75)$ is indeed optimal.
 - (a) Without solving the original LP problem, write down the optimal dictionary for this problem.
 - (b) From (a), write down the optimal solution of the dual problem.
- 5. Consider the following system of inequalities:

$$x_1 + x_2 \le 2;$$

 $x_2 \ge x_1 + 1;$
 $x_2 \le 2x_1 - 6;$
 $x_1, x_2 \ge 0.$

Prove that the above system has no solution, i.e. there is no point (x_1, x_2) satisfying the above equalities, by means of the following three methods:

- (a) Graphical illustration;
- (b) Phase I simplex using the auxiliary variable x_0 [V, p.17];
- (c) Dual based Phase I [V, p.71].

(You can convert the above problem into an LP problem by introducing an arbitrary (but convenient) objective function.)

¹I keep finding more and more "similarities" between [V] and [C]. Among others, [V] #5.6 is the same as [C] p.69 #5.2. I should make a tally of these...

²See p.19-20 of the posted note "Complementary slackness" in Week 4.