MA 421 Fall 2025 (Aaron N. K. Yip) Homework 6, due on Thursday, Oct 9th, 11:59pm, in Gradescope

- 1. [C], p.116, $\#7.5^1$. Of course, try to solve this without multiplying out $E_1E_2E_3E_4$.
- 2. (This question explores the so-called "Big-M" method.) Consider the following problem:

$$\max -2x_1 - x_2$$
s.t.
$$3x_1 + 4x_2 = 12,$$

$$-x_1 + 2x_2 \le 2,$$

$$x_1 + 4x_2 \ge 6,$$

$$x_1, x_2 \ge 0.$$

Note that the origin is not feasible (and it is not immediately clear if the problem has any feasible solution at all). Instead of going through the usual Phases I and II, the Big-M method considers the following one single problem:

$$\max -2x_1 - x_2 - My_1 - My_2$$
s.t.
$$3x_1 + 4x_2 + y_1 = 12,$$

$$-x_1 + 2x_2 + w_1 = 2,$$

$$x_1 + 4x_2 - w_2 + y_2 = 6,$$

$$x_1, x_2, w_1, w_2, y_1, y_2 \ge 0,$$

where M is some "very large number". Note that w_1, w_2 are slack variables and y_1, y_2 are auxiliary variables. The idea behind this method is that the original problem is feasible if and only if $y_1 = y_2 = 0$ is feasible and that happens if and only if for (any) large enough M, the new objective function is not " $-\infty$ ". With this in mind, proceed to solve this problem by first choosing y_1, w_1, y_2 as basic variables so as to have an initial feasible dictionary².

3. Consider the following multi-objective minimization problem³:

min
$$\{\zeta_1(X), \zeta_2(X), \zeta_3(X), \ldots\}$$

s.t. $AX \ge b$.

¹Note that in [C], y is a row vector.

²Either you perform simplex symbolically by hand or substitute M by some "very large" number such as 1000. Of course, how "large" is sufficient depends on the actual problem (and numbers).

³The minimization problem is just for convenience.

A feasible point X_* is called a *Pareto (efficient) solution* if there is no other feasible point X such that

$$\zeta_i(X) \le \zeta_i(X_*), \text{ for } i = 1, 2, \dots$$

and for at least one i,

$$\zeta_i(X) < \zeta_i(X_*).$$

The above is also equivalent to the following two (and maybe other) characterizations:

- (a) X_* is a Pareto solution if there is no other feasible point X that would decrease some objectives without increase at least one other objective.
- (b) X_* is a Pareto solution if for any other feasible point X, suppose one objective decreases, then at least one other objective must increase.

Find (all) the Pareto solution(s) for the following problems.

- (a) $\min\{\zeta_1(x) = x, \ \zeta_2(x) = -x\}$ s.t. $1 \le x \le 2$. (This is a one-dimensional problem!)
- (b) $\min\{\zeta_1(x_1, x_2) = x_1 + 2x_2, \ \zeta_2(x_1, x_2) = 2x_1 + x_2\}$ s.t. $1 \le x_1 \le 2, \ 1 \le x_2 \le 2.$
- (c) $\min\{\zeta_1(x_1, x_2) = x_1 + x_2, \ \zeta_2(x_1, x_2) = -x_1 + x_2\}$ s.t. $1 \le x_1 \le 2, \ 1 \le x_2 \le 2.$
- (d) $\min\{\zeta_1(x_1, x_2) = x_1 + x_2, \ \zeta_2(x_1, x_2) = -x_1 + x_2, \ \zeta_3(x_1, x_2) = -x_2\}$ s.t. $1 \le x_1 \le 2, \ 1 \le x_2 \le 2.$

Note: instead of going over the general theory of multi-objective problems, simply solve the above problems by graphical methods, a.k.a. try to "visualize" the objective functions and "move around inside" the feasible sets.