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Abstract:
As demonstratedby thesuccessof JamesGleick’s recentbook [19871,thereis considerableinterestin thescientificcommunityand amongthe

generalpublic in “chaos” andthe“newscience”which is supposedto accompanyit. However, asusual, it is noteasyto separatehyperbolefrom
fact. In an attempt to do this, I will offer a precisedefinitionof chaosin thecontextof differential equations:mathematicalmodelswhich, since
Newton,haveplayedavital role in scientificdiscovery. I will showhowtheclassicalproblemsof celestialmechanicsledPoincaréto askfundamental
questionson thequalitative behaviorof differential equations,and to realizethat chaotic orbits would provide obstructionsto the conventional
methodsof solvingthem.

In a majorpaperwhich appearedalmostexactlyonehundredyearsago,Poincaréstudiedmechanicalsystemswith two degreesof freedomand
identifiedanimportantclassof solutions,now called transversehomoclinic orbits,theexistenceof which implies thesystemhasno analytic integrals
of motionotherthanthetotal (Hamiltonian)energy.I will explainthesetermsandoutlinethehistory of subsequentdevelopmentsof theseideasby
Birkhoff, Cartwright, Littlewood, LevinsonandSmale, anddescribehow theideasof Melnikov havemadepossiblean“analytical algorithm” for
thedetectionof chaosandproofof nonintegrabilityin wide classesof perturbedHamitoniansystems. I will discussthephysicalimplicationsof the
malhematicalstatementsthat thesemethodsafford. In theprocess,I will point out that, while thereis aprecisevocabularyandgrammarof chaos,
developedlargely by mathematiciansand stemmingfrom Poincaré’swork, it is not always easy to use it in speakingof the realworld.

* An earlierversionofthis paperwasdeliveredat a specialA.A.A.S. sessionon themathematicalfoundationsof chaosat theAnnual Meeting

in SanFrancisco,January15, 1989. The presentversionwasdeliveredasthefirst part of theMark Kac Memorial Lecturesat Los AlamosNational
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“To doubt everythingand to believe everythingare two equallyconvenientsolutions;eachsavesus from thinking.”

H. Poincaré,Scienceand Hypothesis[Poincaré1921]

1. Introduction

There is currentlygreatexcitementandmuchspeculationaboutthe “new science”of “chaostheory”
andits potentialrole in ourattemptsto understandthe world; yea,eventhe universe.The excitementis
reflectedin well over 5000 technical papers (cf. Shiraiwa [1985]), scoresof reviews, monographs,
proceedings,new journalsand textbooksandnow in the popularliterature(cf. Gleick [1987],Stewart
[1989]).In addinganotherpieceof flotsam to thisflood, I havetakena differentviewpoint from many.
Hereyou will find no computersimulations,not evenin blackandwhite, nor speculationsaboutlife,
theuniverseandeverything[Adams1979]. Instead,whatfollows includesa brief (and biased)history of
the mathematicalfoundationsof the subject,a theoremof fundamentalimportance(with an outline of
its proof), an analyticalmethodwhich enablesone to check the theorem’shypotheses,a simple but
pretty example, and a discussionof someof the difficulties of extendingthe ideasto the study of
mathematicalmodelsof physical interest.

For dynamical-systemstheory,as it is more correctly if less spectacularlycalled, deals with the
behaviorof mathematicalobjects: primarily differential equationsand their close relatives, iterated
mappings.As such,it haslittle to saydirectly aboutthe “real” world. Its ideasandmethodshelpbridge
the gulf betweenequationandsolution, but they do not immediately helpusbuild the equationsfrom
physicalprinciples. Of course,theymay suggestgeneralstrategiesfor the formulation of models: for
example,the morewe know aboutnonlinearanalysis,the lesswe aretemptedto linearizeatthe outset.
It is usuallybetter to be honestas long aspossible,so that whenwe cometo tell lies, theyremainfresh
in our memories.At the sametime, we shouldbewareof the tyrannyof techniquewhich afflicts many
scientists:havingignoredthe work describedbelowfor 90 years,a certaintypeof researchernowsees
chaosand strangeattractorswherever(s)he looks.

Before we can import the insights of dynamical systemsinto model building and analysis, it is
necessaryto know what they are. Here I shall focus on a small but centralpart of the theory and
initially I shall take a historicalviewpoint. It is a good story.

Onehundredyearsago, Poincarépublisheda memoir [1890]describingthe work for which he had
beenawardedoneof the severalmathematicalprizesofferedby King OscarII of Sweden.This work
addressedthe stability of the solar system.Like a good scientist,he focusedon a simplified model
situation: the (restricted) three-bodyproblem.His 270 pagepaperconstitutesthe first textbookin the
qualitativetheory of dynamicalsystemsand, as I hopeto show, severalareasof currentresearchhave
their origins in it. Poincaré’sthree-volumetreatise[1899]and someof his earlierpapers[1880—1890]
contain more information and background.In particular, Poincarédescribesthe role that transverse
hômoclinicpoints play in obstructingthe existenceof “second” integralsof motion and in preventing
the convergenceof formal asymptoticmethods,suchas that of Linstedt.

Although we will be morespecific later, we remarkthatapoint q in the phasespaceof a dynamical
systemis calledhomoclinicto afixed pointp if the orbit is asymptotictop as t—~+cc andas t—+ —cc. (It
is called heteroclinic if the orbit is asymptotic to distinct points p~~ p as t—~+cc and t—÷—cc,

respectively.)The point is transverseif the manifoldsof initial conditionsasymptoticto p as t—~+cc and
as t—~ — cc, which necessarilyintersectat q, do so transversely:that is, their tangentspacesspan the
whole phasespaceat q. (That thesesetsof initial conditionsform smoothmanifolds is the contentof
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the fundamentalstablemanifold theorem,which I discussin the secondsection).Transversehomoclinic
points imply that “chaotic motions” existnearby. One may wonder why it hastakenthe computer
revolution for the majority of applied mathematiciansand other scientiststo wake up to thesefacts.

In the secondand third sectionsof this paper,I outlinethe problemfrom celestialmechanicswhich
Poincaréaddressedand sketch his approachto it. Everythinghere is containedin Poincaré’spaper,
althoughmy presentationtakesamore“modern” viewpoint,especiallyin the treatmentof perturbation
and“Melnikov’s method”.

In section4, I describethe centraltheoremandtouchon the interestinghistory of this idea,which
began when Poincarérealizedthat transversehomoclinic pointswould lead to complicatedbehavior,
partsof which weresubsequentlycharacterizedby Birkhoff, beforeSmalecompletedthe description.In
the process, detailed studies of a specific second-orderdifferential equation due to Cartwright,
Littlewood and Levinson,played an importantrole.

I then return to applicationsin sections5 and 6, indicating first the sort of rigorous resultswhich
follow fairly easily from theSmale—Birkhofftheoremandperturbationmethods,andthen(someof) the
difficulties which arisewhen onewishesto extendthe ideas to describethe behavior of almost all
solutionsin a dissipativemodelwhich appearsto possessa “strangeattractor”. In section7 I conclude
with a generaldiscussionin which I permitmyselfsomemodestspeculation.

This is far from a completetreatmentof dynamical-systemstheory.Although I naturally hopethat it
will generateinterestand modestlyinform the reader, this article cannotpretendto be a textbook.
Alas, thereareno shortcutsto masteryof all the techniques.For thosewishing to embarkon aproper
study, the books by Lefschetz[1957],Arnold [1973],Andronovet al. [1966],Hirsch and Smale[1974]
or Wiggins [1990]providegood introductorymaterial,while thoseof Arnold [1982],Palisandde Melo
[1982],Irwin [1980],and (succumbingto chauvinism)Guckenheimerand Holmes[1983]containmore
advancedmaterial.Devaney[1986]hasa treatmentof iteratedmappings(including complexanalytic
dynamics),startingat an elementarylevel. Readerswith a backgroundin classicalmechanicswill find
thatLichtenbergandLieberman[1983]andArnold [1978]provide good routesto someof the recent
ideas.Fundamentalas well as moreadvancedmathematicalmaterialcan befoundin ODEtextssuch as
Coddingtonand Levinson[1955],Hartman[1964]or Hale [1969].

Here I only dealwith ordinarydifferentialequationsandI concentrateon Hamiltoniansystemsuntil
section6. Many of the ideasand resultsdo, however,generalizeto partial differentialequations,see,
e.g.,Henry [1981],Temam[1988]and Constantinet al. [1989].

2. Two bodies,threebodies,reductionand Poincarémaps

In courseson classicalmechanics(cf. Percival andRichards[1982],Goldstein[1980])we learnthat
Newton’sfamoussecondlaw, F= ma, is equivalentto the elegantformulationof Hamiltonin casesthat
the total energyis conserved.The equationsof motion arethen deriveddirectly from the Hamiltonian,
a real valuedfunction H( q, p) definedon the 2n-dimensionalphasespace,(locally) coordinatisedby n
configurationvariablesq = (q1, q2,. . . , q~)and their conjugatemomentap = (p1, p2,. . . , p,,),

= aHIap1, j~= —äHIt3q1 . (2.1)

If H(q, p) doesnot dependexplicitly on time, thena simplecalculationusing the chain rule confirms
that
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dH “ /3H . 3H .\ “ (aH aH aH 3H\
~ =j=1 ~ q. + — P) = ~ — — as0, (2.2)

and thusthe Hamiltonian (energy) is conserved.
As Newtonshowed,in thecaseof two bodiesmoving undertheir mutualgravitationalattraction,use

of the principlesof conservationof linear andangularmomentumpermits oneto reducethe study to a
single degreeof freedom:thusn = 1, and eqs. (2.1) and (2.2) take the simple forms

q = aHiap, ji = —~9HIaq, (2.3)

H(q,p)=h, aconstant. (2.4)

The level setsof H arethereforecurvesin the two-dimensionalphasespacewhich areinvariant under
the evolution of (2.3); a solution started in a particular level h remainson that level for all time,
positive and negative,(unlessit runs off to infinity). Rangingthrough the values of h we cover the
whole phasespace,which is saidto befoliated by aone(h) parameterfamily of suchlevel curves.This
implies that the single degreeof freedomsystemis completelyintegrable,both in theclassicalsensethat
(2.4) can be inverted to solve for p in termsof q (and h) and the resulting relation integratedby
quadratures[Goldstein1980], and in the geometricsenseimplicit in Poincaré[1890]that the foliation of
two-dimensionalphasespaceby one-dimensionalenergylevelsgives acompletequalitativedescription
of all the solutions.A key point here is that the one-dimensionalsolution curvescannotintersector
crossone anotherin the two-dimensionalphasespace,otherwiseuniquenessof solutionswould fail.
Thus a greatorder reigns: for the mostpart solutionswhich do not escapeto infinity run aroundand
aroundon closed,periodic orbits, as the following exampleillustrates.

Rather than considering the two-body problem itself (cf. Marion [1970], Goldstein [1980]), in
anticipationof the examplesto follow we take the simple pendulum,with Hamiltonian

H=p212+(1—cosq), (2.5)

andequationsof motion

q=p, p=—sinq. (2.6)

The geometricstructureof the phasespace,with threefamilies of periodic solutionsseparatedby the
level setH = 2, is well known (fig. 1), as is the quadrature

p = [2(h — 1 + cosq)]”2 = dqldt

or
q(t)

dq
.1 [2(h—1+cosq)]112—t to, (2.7)

which can be evaluatedexplicitly in termsof elliptic functions.Note that the separatricesH = 2 are
composedof homoclinicpoints;solutionswhich arefoward-andbackward-asymptoticto the fixed point
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CLOCKWISE ROTATIONS

Fig. 1. The phasespaceof the simple pendulum.

(q,p) = (±ir,0). The figure shows two distinct equilibria, but since they both correspondto the
“upsidedown” pendulum,weshouldreally identify all pointsq = ±IT andwrapthe phasespaceonto a
cylinder. The separatriceswill be of greatimportancelater.

The restrictedthree-bodyproblemcomesin variousflavors, oneof which, the planarcase,involves
two massivebodiesmoving in circular Keplerianorbits on a planewith a third, small body moving
underthe influenceof the resultinggravitationalpotential.If it is sufficiently small, the third massdoes
not influencethe primariesandonemaymoveto a rotating framein which thetwo degreesof freedom
aredescribedby the positioncoordinatesq1, q2 of the third body andtheir conjugatemomenta,fig. 2.
In this rotating coordinatesystemthe Hamiltonian is no longer the total mechanicalenergy,but is
ratherthe Jacobi integralwhich is time-independentfor circular primaryorbits.

(P1, ~2)

m (Apollo)

MASS CENTER M

(Earth) (Moon)

Fig. 2. The restrictedplanar,circular three-bodyproblem.
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The Hamiltonianis now a functionof four variables(q1, q2,p1~p2)sothat, while it is still conserved,
its level setsare three-dimensional,allowing the solutionsmuchgreaterfreedom;see fig. 3. However,
we maystill solve for p2, say, in termsof the remainingvariablesto obtain

(2.8)

upon inversionof

H(q1, q2,p1, p2)= h. (2.9)

Differentiation of (2.9) yields

dH - - aH 8H
3Ph dH — - aH 3H aPh

dq
1 0 + 3p2 äq, ‘ dp1 —0— ap, + ap2 ap, (2.10)

and if the coordinatesarechosenso that the quantity

dq2ldt= aHIap2~ 0 (2.11)

does not vanish on (some subsetof) the energy surfaceH = h, then we may eliminate explicit
t-dependencein Hamilton’s equationsand write, using eq. (2.10),

dq1 . . aHiap, aP~ dp1 . . aH!aq1 aPh
~ dq2P1I~2a~/ap2+aq~ (2.12)

Finally, letting ( )‘ denote d I dq2, we obtain the reducedequations

q’, = —aPhlapl , p’, = aP~Iaq,, (2.13)

Fig. 3. In thethree-dimensionalmanifoldH = h, solutionscan tie themselvesin knots.
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which are again Hamiltonianwith the one-parameterfamily of functions — ~h ( q1,p,; q2) as the new
“energy”.

If q2 (andp2) areclassicalangle(andaction)variables,thendq2ldtin (2.11)is generallypositive and
~ is, moreover,2IT-periodicin q2. It is thenclear that (2.13) takesthe form of a periodicallyforced
single degreeof freedomsystemin which the anglevariable q2 plays the role of a timelike coordinate.
In fact one can think of reduction as removing one “oscillator” and replacing it with a “time”

(q2-)periodicexternaldriver. Periodicallyforced systemslike (2.13) are sometimessaid to haveone
and a half degreesof freedom[Chirikov 1979]. A nice descriptionof this proceduremaybe found in
Birkhoff [1927];see also Whittaker [1959],chapter12, and, for the generalizationto n degreesof
freedom,Arnold [1978],section45. More recently,Marsdenandhis colleagueshavegreatlyextended
andgeneralizedthe notion of reduction, seeMarsdenand Ratiu [1990]for example.

At this point note that the “physical” coordinatesq1, q2 of the planar,circular problemof fig. 2 do
not satisfy (2.11) and specifically that q2 is not an angle variable. However, a suitable canonical
transformationyields the required coordinates.Since this is not our main point, we omit the
formulation and details.

Observethat the phasespaceof the reducedsystem(2.13),on eachlevel seth, is three-dimensional.
It is convenientto write the equationsin the form

q=—-~-~(q,,p1q2), p~~(q,,p,;q2), q=1, (2.14)
p1 q,

andto considerwhat is nowcalled the Poincarémapinducedby the flow of (2.14)on the crosssection
D given by q2 = 0. Picking an initial point (q?,p~)on D, the image(q~,p~)= P(q~,p~)under P is
then the point at which the solution next intersectsD, in other words, we integrate(2.14) until q2
reaches27r; seefig. 4. It is clear thata 2IT-periodicorbit of (2.14) correspondsto a fixed point of P and
a 2‘7Tk-periodic orbit to a cycle of period k. Moreover, if ~h is smooth,P is an orientationpreserving
diffeomorphism:a smoothmappingwith a smoothinversesuchthat the imageof a region retainsits
original orientation.In addition,sinceeq. (2.14) is Hamiltonianandthe flow preservesvolume in (q,,
i’1~~i~)-spa~(Liouville’s theorem),P preservesarea.Also, stability typesof fixed pointsandcyclesof

2~t PERIODICORBIT

Fig. 4. The Poincarémap for (q1,p,;q2)EDxS’.
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P andperiodic orbits of (2.14)correspond.If y is aperiodic orbit of period 2IT for (2.14) thenthepoint
(q~,p~’)at which it intersectsD is a fixed point or equilibrium for the mapP: if y hasperiod 2ITk then
it intersectsD in a k-periodiccycle of pointswhicharemappedone into anotherby P. The readermay
like to sketch two and threeperiodic cycles in the mannerof fig. 4. The two-dimensionalmap P
thereforecapturescrucial aspectsof the solutionsof the ordinary differentialequation(2.14).

Of course,in generalwe cannotcomputeP explicitly (if we could we would haveintegratedthe
original equations),but as Poincarérealized,useful qualitative information can be drawn from the
geometricalpicture. In particular, Poincaréconcentratedon periodic orbits of (2.14) and the corre-
spondingfixed pointsof P andon the existenceandcharacteristicsof “asymptoticsurfaces”belonging
to saddlepointsof P, now called stableand unstablemanifolds.This requiresa brief review.

Let P: R2—~R2 be a (smooth) mapandp a fixed point [p = P(p)]. We call the linear system

xi—*DP(p)x (2.15)

the linearizationof P atp. DP( p) is a 2 x 2 matrix; denoteits eigenvaluesA
1,A2. Oneeasilyseesthatp

is stableif both eigenvaluesof DP(p) lie within the unit circle (~A1~<1,] = 1,2). If this is the case,we
callp asink.When A11<1< A21pis an (unstable)saddlepoint andwhen1A11 > 1,j = 1, 2p is asource.
If ~ ~ 1 for j = 1, 2, we call p hyperbolic andthe Hartman—Grobmantheorem(cf. Devaney[1986],
Guckenheimerand Holmes [1983])guaranteesthat the dynamicalbehaviorof the linearization(2.1)
holdsin a neighborhoodU of p for the fully nonlinearmapP. The namesof the fixed pointsderive from
fluid mechanics,in fact oneof the key ideasof the moderntheory of dynamicalsystemsis to view the
phase spacegeometrically, and to see the totality of solutions of the differential equationas an
evolutionoperatorwhich transportsthe “phasefluid”.

For our exampleof eq. (2.6), the fixed point(s) (q, p) = (±ir,0) of the map P = P0 are clearly
saddle points. In fact the linearized map can be obtainedby integrating the linearized differential
equationlinearizedat (q, p) = (±IT,0),

= ~2’ 42 = cos(±IT)~ = . (2.16)

Elementaryanalysisshowsthat the fundamentalsolutionmatrix to this systemmaybe written

Icosht sinhtl 217

L sinh t cosh t ~ ( . )

andhencethat the time T map, which gives DP0, is

[cosh T sinh Ti (~~\

DP0(±ir,0)~~= L sinh T coshTi ~ (2.18)

The matrix DP0 haseigenvalues

A12=coshT±sinhT=el~,eT, (2.19)

andsincee_T< 1 <er, the point(s)(±ir, 0) are, as expected,saddlepoints. As notedearlier,since 6 is
measuredmodulo 2ir, and both equilibria correspondto the pendulumstanding straight up, these
points should be identified and the phasespace“wrappedup” into a cylinder.
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It is reasonableto believe, and possible to prove by a simple applicationof the implicit function
theorem,that, for small perturbationsinvolving (time-dependent)termsof 0(e), P0 perturbsto a
nearbymapP~= P0 + 0(e), which has a fixed point pE = (IT, 0) + 0(e) with eigenvaluese_T+ 0(e)<

eT + 0(e). We use this fact in perturbationcalculationsin the next section.
The linear system(2.15) canbe put into a convenientform by a suitablesimilarity transformation.In

particular,if the eigenvaluesare real and satisfy A1 <1 < A2, DP maybe diagonalized,so that the
linearizationuncouples

u’—~A1u, v—~A2v, (2.20)

andthetwo axesv = 0, u = 0 arethenthe invariantstableand unstablesubspaces,Es, Eu (fig. 5a). The
stablemanifold theorem(cf. Guckenheimerand Holmes[1983],Devaney[1986])assertsthat, locally,
the structurefor the nonlinearsystem

x’—*P(x) (2.21)

is qualitatively similar. More precisely,in a neighborhoodU of p thereexist local stableandunstable
manifoldsW~0~(p),W~~(p),tangentto E

5, Eu atp, andas smoothas themapP. Recall that a (smooth)
manifold is aspacewhich locally looks like apiece of Euclideanspaceof thesamedimension.Herewe
can think of the local manifolds W~

0~(p), W~~(p) as graphs— curves if both are one-dimensional—
modelledon theflat stableand unstablesubspacesE

5, E” (fig. 5). Here the word local refers to a
neighborhoodU of p; a point belongsto W~~(p)[or, respectively,to W~~(p)]if it andits imagesunder
p remain in U for all futureiterations(or, respectively,backwarditerations).That all of thesepointsfit
togetherto form smooth manifolds is the key conclusionof the stablemanifold theorem.By taking
backwardand forward imagesof arcscontainedin thesemanifolds,oneconstructstheglobal stableand
unstablemanifolds,

P~1(V)

Eu .~ ~

E~E~

(a) (b)

Fig. 5a. Invariant subspacesfor the linear map; b. invariantmanifolds for the nonlinear map,showinga homoclinicpoint, q.
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W5(p)= U P”(W’
0~(p)), W”(p) = U P~(W~~(p)), (2.22)

n�O

which contain all pointsx E R
2 which areforward (or backward)asymptoticto p underiterationof P.

While the local structureis nice, theglobal structureneednot be, andhereinlies muchof the reason
for “chaotic motions”, as we shall see. We call a point q E W”(p) ~ Ws(p) a homoclinic point,
following the terminologyof Poincaré[1899].By definition, the orbit {pfl(q)}~_

00of q is both forward
andbackwardasymptoticto p. At first it mayseemodd that one point can belongto both stableand
unstablemanifolds,but viewing it as an“initial condition” whichhasspecific behaviorin the futureand
the pastmay help. As I havealreadyremarked,pointson the separatricesof fig. 1 provideexamples:in
fact theseseparatricesare simultaneouslystableand unstablemanifolds for the saddlepoint (±IT, 0).
For a two-dimensionaldifferential equationlike (2.6), suchmanifolds areone-dimensionalcurvesand
theymust thereforeeither miss altogether,or coincide. Fora map,however,theycan intersectin other
ways. In particular,if the manifoldsW’(p), W

t’(p) intersecttransverselyat q, then iterationof a small
region V containingq causesP~(V)andP”(V) to “pile up” on W’~(p),W5(p) respectivelyas ni—~cc.
The map P transportsthe imagesP’(V) around“astride” the stableand unstablemanifolds for j >0
andj <0, respectively:onceP~(V)is close to the saddlepoint p the linear contractionandexpansion
takescontrol [e.g., eq. (2.20)] andstretchesthe imagesas indicatedin fig. Sb. (That thisoccursin the
controlled fashion of C1-convergenceof transversalsto W”, W5 at q is the contentof the Lambda
lemma[Newhouse1980; Guckenheimerand Holmes 1983]; one doesnot needarea preservationto
prove it.) In such asituationthe Smale—Birkhoffhomoclinictheorem,describedin section4, showsthat
V and its imagescontain a rich and wonderful invariant set.

To anticipatea little, let me givea foretasteof this set in termsof thependulumexampleof eq. (2.6)
and fig. 1. When a time-periodicperturbation(external forcing, perhapsby a variable torque) is
applied, the coincident manifolds forming the separatrix level set typically break up, but some
homoclinic points may persist, and with them small neighborhoodsof initial conditionswhich are
repeatedlymappedaroundin the region formerly occupiedby the separatrices.As fig. 5b indicates,
suchregionscan now fall “on bothsides”of the saddlepoint, so that two solutionsstartingnearbymay
find themselvesseparated— one correspondingto a rotation and the other to a libration. As theyare
repeatedlymappedpast the saddlepoint, such solutionsmust againand again“decide” which routeto
take. Physically, a gentle tickling of the pendulum has dramaticconsequenceswhen it is nearits
unstable, inverted equilibrium. The global structure of the stable and unstablemanifolds in this
situationis whatPoincaré,in a famouspassage,would “not evenattempt.. . to draw” [Poincaré1899,
chap. 33]. The remainderof this paperis mainly concernedwith Poincaré’sown, and subsequent,
attemptsto analyze this phenomenon.

Returning to our main theme,we ask what the structureof the Poincarémap P of the reduced
system (2.14) will be in the eventthat the original two-degreeof freedomHamiltonian possessesan
independentsecondintegral, a function F(q

1, q2, p1, p2) which is constanton solutionsand indepen-
dent of H in the sensethat VF~VH ~ 0 almost everywhere. (The first property is equivalentto
vanishingof the Poissonbracket

{F,H}=.~(~-~i~ ~ (2.23)

and such functionsare called integralsin involution [Goldstein 1980].)
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Since the level sets of F and H are each three-dimensional,and intersect transverselyalmost
everywhere,the level setsof F foliate the reducedthree-dimensionalspaceH -

1(h) ((q
1,p1 q2)-space)

with a family of two-dimensionalsurfacesF = f. Thesein turn slice the crosssectionD( q2 = 0) in a
family of curves,partitioning it in muchthe sameway as the levelsH = h partition (q, p)-spacein the
single degreeof freedomexampleof fig. 1. In this integrablecase,the orbitsof P, sequencesof discrete
pointsx. = P(x1_1),simply march aroundthe “reduced” level curves.

Anotherway to seethis is to recall that, if H(q1, q2, p1, p2) is completelyintegrable,thenit must
(in suitablecoordinates)possessacyclic coordinate.Selectingthis to be q2, H is independentof q2 and
the conjugatemomentum,p2, is the secondintegral. In thiscasethereducedHamiltonian — ~h(q1, p1)
is likewise independentof q2 andthe reducedsystem(2.13), (2.14) is an (integrable)single degreeof
freedomsystemsinceaPhlapl andaP~Iaq1areindependentof q2. Orbits of the PoincarémapP march
aroundthe level sets~h = constantof the analogueof fig. 1, for they areobtainedby integratingthis
autonomousequation.Thus, if any homoclinic points exist for such a completely integrablesystem,
theymust lie on separatricesformedof smooth,coincidentstableandunstablemanifolds,muchlike the
level setH = 2 of the pendulum.

In his memoir of 1890,Poincaréshowedthat, after useof perturbationmethodsand truncationof
certainhigher-orderterms, the Hamiltonianfor the restrictedthree-bodyproblembecomescomletely
integrable. Moreover, the reducedsystem (and henceits Poincarémap) possesseshyperbolic saddle
pointswhosestableandunstablemanifolds,beinglevel setsof the secondintegral,coincide,as theydo
for the integrablependulumexampleof fig. 1. He then askeda questionof the type that hasbecome
centralto the dynamical-systemsapproach(I paraphrase):“Should I expectthis pictureto persistif I
restorethe higher-orderterms?” The importantnotion of structural stability refersto the situationin
which small perturbationsto a systemof differential equations,or a map, do not causequalitative
changesin the structure of solutions. It is now known that integrable n � 2 degree of freedom
Hamiltonian systemsare not structurally stable in this sense.However, to answerthe question in
specific cases,suchas the three-bodyproblems,we needa little perturbationtheory.

3. Perturbationof integrablecases

Here I shall briefly reviewthe methodof Melnikov [1963]which permits oneto prove theexistence
of transversehomoclinic points in the Poincarémaps arising from specific examplesof periodically
perturbeddifferential equations.I concentrateon the Hamiltonian case,althoughHamiltonian struc-
ture is not essentialto the method.A ratherdifferent approachto the sameproblemcan be found in
Poincaré’s[1890]paperon the three-bodyproblem,andArnold [1964]appliedthe ideato Hamiltonian
systemsaroundthe sametime as Melnikov. Thus, asJerryMarsdenhasremarked,the methodshould
probably be called the Poincaré—Arnold—Melnikovmethod.

I outline the simplestversion of the methodhere.SeeHolmes andMarsden [1981,1982a,b, 1983]
and Wiggins [1988]for extensionsto many (even infinitely many) dimensions.Considera planar
ordinarydifferential equationsubject to a small time-periodicperturbation,

x=f(x)+eg(x,t), g(x,t)=g(x,t+T), xER
2. (3.1)

Supposethatf andg are sufficiently smoothandboundedon boundedsetsandthat the unperturbed
systemis Hamiltonian,so thereexists a function F(x): A2 ~-+ A such that
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x~=f1(x1, x2) = aF(x1, x2)Iax2 ~ =f~(x1,x2) = —öF(x1,x2)Iöx1 . (3.2)

Furthermore,assumethat this unperturbedvectorfield containsahyperbolicsaddlepointp0 lying in a
closed set of F; thus thereis a (degenerate,nontransversal)loop of homoclinic points, fig. 6a. The
orbits on this looparedenotedby x = x0(t — t0), wheret0 denotesa shift in the initial conditionor base
point. For precisetechnicalhypothesessee Guckenheimerand Holmes [1983],section4.5.

While the unperturbed(e = 0) equation(3.1) hasa two-dimensionalphasespaceandsolutionsare
orderedby the distinctlevel setsF = constant,as soonas the perturbationis applied (s~ 0) this simple
picture dissolves. The vector field is now time dependent,solutions can passthe samepoint x in
different directionsat different times (or “phases”) and so it is betterto extendthe phasespaceby
including t asa third variable,preciselyaswasdone in eq. (2.14). In fact the attentivereaderwill notice
that the setup under developmentin this section is perfectly designedfor applicationto the reduced
Hamiltoniansof section2.

Now considerthe unperturbedandperturbedPoincarémapsP1,Pe correspondingto (3.1) with s = 0
ande � 0. The hyperbolicfixed pointp0 of P0 perturbsto a nearbyhyperbolicfixed pointp~,= p0 + 0(e)
for Pe andits stableand unstablemanifolds remainclose, as indicatedin the sketchof fig. 6b. In fact
thepowerseriesrepresentationsof solutionsx~ lying in the perturbedstableandunstablemanifoldsof
the small periodic orbit ‘y~ p0 + 0(e)of eq. (3.1),e ~ 0, are valid in the following semi-infinitetime
intervals:

x~(t,t0) = x0(t — t0) + ex~(t,t0) + 0(e
2) , t E [t

0, cc)

x~(t,t0) = x0(t — t0) + ex~(t,t0) + 0(e
2) , t E (—cc, t

0] . (3.3)

This follows from the usual finite-time Gronwall estimates(e.g., Hartman [1964])and the fact that
thesespecial solutionsare “trapped” in the local stableandunstablemanifolds and thus havewell
controlledasymptoticbehavioras t—÷±cc,respectively.Onecan thereforeseekthe leadingorder terms
x~~u(t,t0) as solutions of the first variational equationobtainedby substituting(3.3) into (3.1) and
expandingin powersof e,

~s.u = Df(x0(t — t0))x~”+ g(x0(t— ta), t). (3.4)

~ ~X2 ~/~fi((~))

(a) (b)

Fig. 6a. The unperturbedloop; b. theperturbedPoincarémap, showing stableand unstablemanifoldson a crosssectionD (x,.x,)-space.
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Now, while (3.4) is linear, it is usually ratherhard to solve, since Df(x0(t— t0)) is a time-varying
2 x 2 matrix andis not evenperiodic. HereMelnikov comesto our rescue.He realizedthat, to estimate
the distanced(t0) betweenthe perturbedstable and unstablemanifolds at a basepoint t0 of the
unperturbedsolution, one neednot solve (3.4) explicitly. His methodgoesas follows.

From (3.3) and fig. 6b, we have

d(t0) = x~(t0,t0) - x~(t0,t0) = s(x~(to,t~)-x~(t0,t0)). f~(x~(0))+ 0(s2), (3.5)

where f~(x0(0))denotesthe normal to the unperturbedsolutionvectorf(x0(0)).Sincea = b X a for
vectorsin R

2, we can rewrite (3.5) as

f(x
0(0)) X (x~(t0,t0) — x~(t0,t0)) 2 def 4”(t0, t0) — z~

5(t
0, t0) 2

d(t0) = e flf(’~(°)) + 0(e ) = C If((0))II +0(s). (3.6)

If the quantity z~u — 4S hassimplezeros as t0 varies, it follows form the implicit function theorem
that, for e~ 0 smallenough,the distanced(t0) passesthrough zero as t0 variesand consequentlythat
theperturbedmanifolds intersecttransversely.To compute~ — we introducetime-varyingfunctions

4us(t t0) —f(x0(t— t0)) x x~’
5(t,t

0)

andcompute

= Df(x0)x0X x~+ f(x~)X = Df(x0)f(x0)x x~+f(x~)x [Df(x0)x~+ g(x0, t)]

= trace Df(x0)f(x0)x x~+1(x0) x g(x~,t) —f(x0(t — t0)) x g(x0(t — t0), t) . (3.7)

Here we substitutefor x’ from (3.4) and use x,,~= f(x0), a matrix cross product identity, and finally
appealto the fact that

af1 af2 a
2F a2F

traceDf= — + — = ______ — as0, (3.8)
OX

1 OX2 OX1 OX2 OX2 OX1

since I is Hamiltonian. Integrating(3.7) we have

~s(t t0) — ~S(~ t0) f(x0(s — t0)) x g(x0(s— t0), s) ds

and,takingthe limit t—+ +cc andusingthe fact thatf(x0(t))—s~f(p0)= 0 ast—* cc, so that4
5(t, t

0)—s~Owe
obtain

—~‘(t, t0) =J (f x g)(x0(s— t0), s) ds. (3.9)
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Note that we have used the validity of (3.3) on the semi-infinite interval [t0,cc) in this computation.
With a similar computation for 4U (3.9) yields

~js(~ t0) — z~
5(t

0,t0)’~M(t0)= J (f x g)(x~(s— t0), s) ds,

or, translating the variable s,

M(t0)= f (fXg)(x0(s),s+t0)ds. (3.10)

We havecompletedour sketch of the proof of

Melnikov’s theorem.Under the hypothesesstatedon (3.1), if M(t0) hassimple zeros,then for e~ 0
sufficiently small, the manifoldsW

5(p~),W”(p~)intersecttransversely.If M(t
0) is boundedaway from

zero then W
5(p~)fl Wu(p~)= 0.

Although it is basedon a simple perturbationmethod, this result is of considerableimportance.
M(t

0) is an explicitly computable function which allows us to check in specific exampleswhetherthe
stable andunstablemanifolds intersect transverselyor not, essentiallyby a direct calculationof the
approximatedistancebetweenthesemanifolds from the viewpoint of an observerwho follows the
unperturbedseparatrixon a fixed crosssection.We will performa specific computation,relatedto the
pendulumproblem, in section5.

In order to showthat stableandunstablemanifolds split and intersecttransversely,Poincaré[1890,
section 19] performed a computation which is equivalent to (3.10), but his derivationinvolved power
series approximations to solutionsof the Hamilton—Jacobiequation.A good modern accountof this
can be found in Arnold et al. [1988,chap. 6.2]. We observethat, if the perturbationg is Hamiltonian
with Hamiltonian G [as it will be if (3.1) takesthe form (2.13)], then (3.10) can be rewritten in the
elegant form

M(t0) = f {F, G}(x0(s),s+ t0)ds, (3.11)

where{~,} is the Poissonbracket,cf. Arnold [1964].This formulationis usefulin higher-dimensional
generalizations [Holmesand Marsden 1981, 1982a, b, 1983; Wiggins 1988].

Next we will see why the transversehomoclinicpoints are so interesting.

4. The Smale—Birkhoff homocimic theorem

As Poincaré [1890] realized, the presence of homoclinic points can vastly complicatedynamical
behavior. However, the very fact that their existenceimplies recurrentmotions makesthe situation
amenableto at least a partial analysis. Considerthe effect of the map P of fig. 5b, containing a
transverse homoclinic point q to a hyperbolic saddle p, on a “rectangular” strip S containing p andq and
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segmentsof the stableand unstablemanifolds in its boundary.As n increases,P”(S) is contracted
horizontally andexpandedvertically until the imageP”(S) loops aroundand intersectsS and P in a
“horseshoe”shape(fig. 7).

To prove that the ratesof contractionandexpansionareuniformly bounded,one shrinksthe width
of S until many iterates occur for which Pd(S) lies in a neighborhoodU of p and the dynamicsis
thereforedominatedby the linear mapDP(p) cf. eq: (2.20)].

A model for the situationwas providedby Smale [1963],whointroducedthe map F: S~ R2 of the
square[0, 1] x [0, 1] c A2 sketched in fig. 8a. The map is linear on the two horizontal strips H,. whose
imagesarethe vertical strips V~,i = 0, 1, the linearizationsbeing

DF(x)~XEH= [~~],DF(x)~XEH=[_A ], (4.1)

with 0< A < 1 < y. Thus F~H
1 contractshorizontally andexpandsvertically in a uniform manner.Smale

Fig. 7. pN has a horseshoe.

GRAPH OF f

_ _ H
_

V00 V01 ‘~‘~ ~ ~ Io’N\Ic I.

(a) (b)

Fig. 8a. The two-dimensionalhorseshoeand b, its one-dimensionalanalogue.
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studiedthe structureof the set of points A which never leave S underiteration of F. By definition,
A = fl ~ F~(S);the intersectionof all imagesand preimagesof S. Now

F~(S)flS=H1uH2, SflF(S)=V1UV~

so F~(S)is the union of four rectanglesof height ~~ andwidth A (fig. 8a). Similarly fl ~ F~(S)is
the union of 16 rectanglesof heightA

2 andwidth A2, fl ~ F~(S)is the union of
22k rectanglesand,

passingto the limit, A turns out to be a Cantorset: anuncountablepointset,everymemberof which is
a limit point. (Ian Stewart[1989]points out that the Cantorsetwas appropriatedby Cantorfrom H.
Smith, who constructedthe first example some years before Cantor. For that matter “Newton’s”
equation F= ma, of section2, was first explicitly written down by Euler in 1747 [Truesdell1968].)

To see this more easily, consider the set of points which never leave I = [0, 1] C R under iteration of
the one-dimensional mapf of fig. 8b. After oneiteratethe “middle” intervalI~is lost, after two iterates
its preimages ‘Oc’ ‘Ic are lost, etc. Removing middle intervals of fixed proportional size (a, say)
producesthe classic “middle a” Cantorset A’, the one-dimensionalanalogueof the constructionof A.
We remarkthat the mapf is qualitatively like the famousquadraticmapx‘-~ ax(1 — x) or x ‘—* c — x

2.
The setsA andA’ can becodedin a way whichdescribestheir dynamics.To eachx EA we assign a

bi-inuinite sequenceof the symbols 0, 1, 4)(x) = {4~(x)}7~~~,by the rule 4’~(x)= i if F’(x) E H
1

(i = 0, 1). Thus 4)1(F(x)) = 4)1~1(x)andthe actionof FonA correspondsto the actionof the shift 0-on
the spaceof symbol sequences.~.Moreover,everysymbolsequencecorrespondsto an orbit realizedby
F, sincethe imagesV~lie fully across their preimages H1. In fact, the map 4): A ‘—~ .~ is a homeomorph-
ism and the diagram

ALA
4.4) .1.4)

commutes.A homeomorphismis a continuousmap with a continuousinverse, and that the diagram
commutesmeansthat 4)(F(x)) = o-(4)(x)). We saythatF~A is topologicallyconjugateto a (full) shift on
two symbols.This meansthat the dynamicsof pointsxEA under F is equivalent,in a strongsense,to
the behaviorcodedin the correspondingsequence4)(x). Moreover,everyoneof the enormousvariety
of such binary sequences,which are as uncountableas the real numbersthemselves,correspondsto a
particular orbit of F which weaves its way through A.

To prove continuity of 4) and its inverse, oneneedsa metric on .~. The usual choice is

~
d(a, b) = ~ 21)1 ‘ (4.2)

thustwo sequencesa, b areclose if their entriesa, b1 agreeon a long centralblock (a1 = b1, j � K,
large). Oneprovescontinuity of 4) and 4)_i by showingthat closepointsin A map to closesequencesin
.~ and vice versa; seeGuckenheimerand Holmes [1983],section5.1.

For xE A’ one does the samebut using only semi-infinite (positive going) sequencessincef is
non-invertible. The main advantage of this method of symbolic dynamics is thatonecan studythe orbits
of F~ (or f~A’) comb~it~atorially, by examining symbol sequences.For instance,the “constant”
sequences- - . 000 . . . ~ (0)’ and - . .111 . . . = (1)’ correspondto fixed points and the periodic
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sequences(01)’, (011)’, (0001)’, etc. to orbits of periods 2, 3, 4, etc. [here ( )‘ denotesperiodic

extension].In this way one provesthe following:
Proposition. The invariant setA of the horseshoecontains:(1) a countableinfinity of periodic orbits,
including orbits of arbitrarily highperiod (—‘~2”Ykorbits of eachperiod k); (2) anuncountableinfinity of
nonperiodicorbits, including countablymanyhomoclinicand heteroclinicorbits,and (3) a denseorbit.

The denseorbit is obtainedby concatenatingall possiblefinite sequencesof 0, 1; thus, asonecan see
from (4.2), by shifting one comes as close as one wishes to any other sequence. Since Fl H, uH

2 contracts
uniformly by A horizontally and expands by ‘y vertically, the eigenvalues I-’~1,2of DFk for any k-periodic
orbit satisfy I i-~= Ak < 1 < = 7k and thusall orbits are (unstable)saddles.In fact, all orbits in A
haveassociatedwith them exponentiallystrong unstablemanifoldsandthusalmost all pairsof pointsA
separateexponentiallyfastunderF~[their symbolsequencesdiffer for some(large?)N: a~~ bNJ. This
sensitivedependenceon initial conditionsleads to what we popularlycall “chaos.” [Li andYorke 1975].
Specifically, suppose that we know the initial conditions of some systemwith accuracysufficient to
determineonly the first 50 binary “places”. If the initial point lies in A then after 50 iterations we do
not knowwhetherthe imagelies in H0 or H1. And evenmorestrikingly, sinceeverybi-infinite sequence
in ~ correspondsto an orbit of F~,there are uncountablymany orbits which behavein a manner
indistinguishablefrom the outcomeof repeatedtossing of a (probabilistic) coin; a quintessentially
random process.

Perhapsmost important is the fact that A is a structurally stable set; small perturbationsF of F
possessa topologically conjugateset A-~A; both areconjugateto the sameshift on two symbols. In
fact to prove the existenceof suchsetsonedoesnot needlinearity of F or f, as in theexamplehere;it is
sufficient to establishuniform boundson contractionandexpansion.SeeSmale[1963],Moser [1973],
and Guckenheimerand Holmes [1983] for more details. Wiggins [1988]does a nice job on the
n-dimensionalcaseand generalizationsthereof. Infinite-dimensionalversionsof the theoremare also
available.

The constructionswe havesketchedaboveandin figs. 7 and 8 leadone to the fundamental

Smale-Birkhoffhomoclinic theorem.Let P: R
2 ‘~—~R2 be a diffeomorphism possessing a transversal

homoclinicpointq to a hyperbolicsaddlepointp. Then, for someN < cc, P as ahyperbolicinvariant set
A on which the Nth iteratep” is topologicallyconjugateto a shift on two symbols.

Birkhoff [1927]had already proved the existenceof countably many periodic points in any
neighborhoodof a homoclinicpoint, but Smale’sconstructionprovidedamorecompletepictureand he
extendedit to R~.

It is worth reflecting on how striking this result is. Relatively simple hypotheses,which can be
checkedin specific examplesby explicit calculationssuch as thoseof section3, leadnot only to the
remarkableconclusionthat an infinite collection of “chaotic” and unstableperiodic orbits exists,all
gloriously mixed together,but a completequalitative descriptionof them is provided by their symbol
sequences.Is it not perhapsfoolish to call this “chaos”?

In a delightful essay, Smale [1980]describeshow hewas led to the horseshoeconstructionwhenhis
attention was drawn to a paper of Levinson [1949].Levinson in turn was trying to simplify the
complicatedanalysisof Cartwright and Littlewood [1945]who had studiedVan der Pol equationfor
“relaxation oscillations”,
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9—k(1—y2)9+y=bAkcos(At+a), (4.3)

with k large, in connectionwith problemsarising in the British effort to develop radarduring the
SecondWorld War. Note that eq. (4.3) is a periodically forced,single degreeof freedomoscillator,
althoughit is of coursenot Hamiltonian.Nonetheless,mostof the remarkson three-dimensionalphase
spaceof sections 2 and 3 hold good. In particular, for certain ranges of (b, A), Cartwright and
Littlewood wereableto prove the existenceof an infinite set “of (unstableperiodicmotions) of agreat
variety of structures”, as well as a set “of the power of the continuum, of nonperiodic limiting
trajectories”andto show that eachpoint of the former is a limit point for both points of itself andof
the latter. This was essentiallythe horseshoe,the geometricstructureof which Smale revealedand
generalized.It is interestingto observetheir footnoteon this “very bizare.. . behavior.”:

“Our faith in our resultswas at one time sustainedonly by the experimentalevidencethat stable
subharmonicsof two different ordersdid occur [Vander Pol and Van der Mark 1927]. It is this that
leadsto the startling consequences;the consequencesthemselvesrelateto nonstablemotions(which the
experimentsnaturally did not reveal).” The last sentencewill return to hauntusbelow.

For a geometricalstudy, in the spirit of Smale,of the Van derPol problem,seeLevi [1981].As this
problemwas successivelystudiedand “simplified” the lengthof the papersincreasedin the interesting
series1, 9, 26, 147, - . . (pages).

To closethis sectionwe briefly indicatewhy the existenceof a transversehomoclinicpoint precludes
the existenceof an analyticintegralof motion independentof the total energyH, in the two degreeof
freedomcase.We paraphraseMoser’s [1973]argument.Recall thatany such function is constanton
solutionsof the reducedproblemand so is constanton orbits of its Poincarémap. Consequentlyit is
constanton orbits containedin the horseshoeA, and in particularit is constanton thedenseorbit. Such
an analyticfunction must thereforebe constanton A andhenceon a neighborhoodof A, such as the
“square”S of fig. 8a. But thenit can only be, trivially, constanton the wholephasespace(q

1,p1 q2)
of the reducedsystem.The fact that a single denseorbit stitchesthe whole setA togetheris crucial to
this argument. In the integrablecase(cf. fig. 1) the completeset of periodic orbits themselvesis
generallydense,but this doesnot rule out the existenceof furtheranalyticconstantsof motion. Using
different argumentsinvolving periodic solutions and power seriesapproximations,Poincaré [1890,
section22] also showedthat no analytic integralsindependentof energyexisted in the presenceof
transversehomoclinic points.

5. Chaoticswinging

To illustratehowthe Melnikov methodand Smale—Birkhofftheoremapply in a particularexample,
we borrowthe two degreeof freedomHamiltonian

H(q1,q2,p1,p2)=—p2—p~+2~L.sin
2(q

1I2)+~esinq1cosq2 (5.1)

from Poincaré’smemoir [1890,section 19]. His variableshavebeen renamedto conform with the
discussionof sectiontwo, above.Note thatheretherearetwo parameters,~ ande. We think of j.~as
fixed andconsiderthe effect of increasinge on the integrablesystemcorrespondingto e = 0, in which
limit q2 is a cyclic coordinateandp2 a secondintegral.

Hamilton’s equationscorrespondingto (5.1) are
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= —2p
1, q2 = —1; ~ = —~sin q1 — ~iscosq1 cosq2, p2 = sesin q1 sin q2.

(5.2)
Thus, j2 <0 andwe can invert (5.1) to obtain

= P~(q~,p1 q2) = h —p~+2~sin
2(q

1/2)+ issin q1 cosq2, (5.3)

and, via the reductionprocedureof sectiontwo,

q’1=—aP~Iap1=2p1, p’~=aP~/aq1=j.tsinq1+~ecosq1cosq2. (5.4)

Observethat, for s = 0 andaftersomerescaling,(5.4) is simply our old friend the pendulumof (2.6).
In particular,it possessesa pair of homoclinic orbits connectingthe saddlepointsat (q1, p1) = (0, 0),
(2ir, 0). Theseorbits lie in the level set ~h = 0, or

p1 = ~ sin(q112), (5.5)

andthus the region enclosedby them is of width O(-~’~i).This will becomesignificant later.
Applying the formula (3.10) to the exampleof (5.4),we find that the Melnikov function is

M(q20)= f 2~p1(q2)cosq1(q2)cos(q2+q20)dq2, (5.6)

wherep1(q2) and q1(q2) arethe componentsof the unperturbedhomoclinic motion. Using (5.5) we
mayre-expresscosq1 = 1 — p~Ip..,so that (5.6) becomes

M(q20)= J ~p1 (1_~)cos(q2+q2o)dq2, (5.7)

where, as the readercan check, the unperturbed(upper, +) solution is given by

p1(q2)= \/~T~sech(\/~iq2). (5.8)

Since p1 is even, the integralof (5.7) reducesto

M(q20)=2~ilcos(q20), I=\/T.ii f S(1—25
2)cosq

2dq2, S=sech(~~iq2), (5.9)

and, to verify that transversehomoclinic points exist for s~ 0, small, we needonly show that the
integral II~O.

Letting \/~iq2= r, we have

~=J S(1—2S
2)coswrdr, S=sechT, w=ç,4= . (5.10)
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Integratingtwice by parts and using the fact that the boundaryterms vanish, since sechr —*0 as

T—*±cc,(5.10) becomes

i=—~2f Scoswrdr,

which is easyto evaluateby the methodof residuesto yield

1= —(IT/2~)sech(IT/2\/~~). (5.11)

Note that this is nonzerofor all ~ ~ 0, but that as j.t —~0

M(q
20)= — IT sech(ITI2V~)cos(q20)-~ ~ (5.12)

approacheszero fasterthan anyalgebraicorder in ~ Thus, without special care, we cannot treat ~ and
e as independentparameters;j.t must be fixed ~0 as e is takensufficiently small (dependingon ~) for
the implicit function argumentsof section3 to work.

It is worth comparingthis computationwith that of Poincaré,who obtainspreciselythe sameanswer
for his integralJ (upto a multiplicative factorof i/2~,p. 223) or wouldhaveif he hadnot mysteriously
dropped a factor of 2 in his calculation [1890,p. 222, third equation]. It is alsoworth remarkingthat,
while explicit computationssuch as those aboveare not always possible,it is often easy to estimate
Melnikov integralsandshow that they arenonzero.

Poincaréalsopointsout (p. 224)that the “splitting distance”(BB’, fig. 9, p. 220) is of exponentially
small order in ~ cf. eq. (5.12). Since the model problem(5.1) representsthe leading terms in a
perturbationexpansionclose to a “resonant layer” of width O(v71) [cf. eq. (5.5)], in the original
three-bodyproblem as e—*0, p~—*0 also. The two small parametersare not independentand the
validity of thesimple perturbationtechnique,which dependsupon fixing p~~ 0 andtaking esufficiently
small, is questionable[terms0(s

2) are largerthan termsof 0(ee~’~) for p. small!]. Arnold [1964]
and Melnikov [1963]also brushedagainst this problembut did not really come to grips with it. The
presentauthor at first failed to recognizeit [Holmes1980] (cf. Sanders[1982]),but recentlyNeishtadt
[1984]and Holmes et a!. [1988]haveobtaineduniform exponentiallysmall splitting estimates(upper
and lower boundsin the latter case)for someproblemsof this type. Kruskal and Segur[1987],Segur
and Kruskal [1987],and Amick andMcLeod [1990]have also recentlystudied problemsin which
manifolds are separatedby distances“beyond all orders” in a small parameter.However, in many
multiparametercases,limits may be takenin such a way that the difficulty doesnot arise.This is a
subtle and difficult problem,relatedto the removalof “tails” in normal form theory [Sternberg1958]
and yet anotherinstanceof Poincaré’sprescience.

We concludethis sectionby showingthat remarkablephysical conclusionsfollow from the analysis
above. Recall that the Poincaréexample(5.1) is essentiallya simple pendulumweakly coupledto a
linearoscillator.In fig. 9 we indicatehow a modestgeneralizationof the horseshoeconstructionrisesin
the Poincarémapof this perturbedpendulum.The “horizontal” stripsHR, HL arecarriedby pN into
“vertical” strips P”(HR) < pN(HL) as indicated. Since the saddle points near (q

1, p1) = (0,0) and
(2ir, 0) areidentified, theseimagesintersectHR, HL much as in the canonicalSmaleexampleof fig. 7
(cf. fig. 5).
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Fig. 9. Poincarémapfor theperturbedpendulum.

As in sectionfour, one obtainsa homeomorphismbetweenthe shift on the two symbolsR, L and
someiteratep” of the Poincarémaprestrictedto a suitable(Cantor)setA” = fl ~ P”(HR U HL).
Note that our construction guarantees that a point lying in HR will bemappedaroundnearthe stable
andunstablemanifoldswith q’1 = p1 >0 while apoint lying in HL is mappedaroundwith p1 <0. Thus,
an R in the symbol sequencecorrespondsto apassageof the pendulumbob past (q1,p1)= (0, 0) with
p1 >0 and an L to a passage with p1 <0. Since we have a full shift [P”(HL) and P”(HR) both lie across
HL U HRJ we conclude that any “random” sequenceof thesymbolsL, R correspondsto anorbit of the
pendulum,rotating“chaotically” to the left andto the right. If the readerfinds fig. 9 confusingthen
(s)hewill appreciatePoincaré’sreluctanceto draw it!

This conclusion is perhaps not too surprising, if we consider the effect of a small periodic
perturbationof the undamped,Hamiltonian pendulum of fig. 1 swinging nearits seperatrixorbit
H(q, p) = 2. Each time the pendulum reachesthe top of its swing, neartheinverted,unstablestate,the
oscillation suppliesa small pusheither to the left or right dependingon the phase(time). Thus the
precise time at which the bob arrives near this position is crucial andthis, in turn, is determinedby the
time at which it left the samepositionafterthe precedingswing. Here is the physical interpretation of
sensitive dependence upon initial conditions.

6. How attractive is chaos?

The analysiswe havesketechedabove leadsto the rigorousproof of an infinite set of “chaotic”
motions in a particular equation. The same ideas can be generalized and applied to a wide range of
problems(cf. Wiggins [1988]).This seemslike a satisfyingstateof affairs. But at this point honesty
compels us to point that all is not rosy in the study of chaoticdynamics. Although this analysis
establishes that a specific deterministic differential equation possesses chaotic orbits and provides an
estimate for the parameterrange(s)in which they exist, it does not necessarily imply that we have a
strange or chaoticattractor. An attractor for a flow or map in an indecomposable,closed,invariant set
for the flow or map,which attractsall orbits startingat pointsin someneighborhood.The maximalsuch
neighborhoodis the domainofattraction or basin. Wecall an attractor strange if it containsa transverse
homoclinic orbit [Guckenheimerand Holmes 1983, chap. 5]. Here indecomposablemeans thatthe set
cannot be separated into smaller, “basic” pieces: the existenceof a denseorbit, as in the horseshoe,
implies indecomposability. Invariant means that orbits starting in the set remain in it for all forwardand
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backwardtime. The main physicalconsequenceof indecomposabilityis that typical orbits attractedto
the set continually wanderabout, exploring its entirety, and not settling down to some “simpler”
subset. A strange attractor is therefore one in which almost all orbits exhibit the chaotic dynamics
typical of the horseshoeorbits which correspondto the nonperiodicsymbol sequencesdescribedin
sectionfour.

Since their flows preservevolume, the Hamiltoniansystemswe haveconsideredherecannotpossess
attractors,but one can easily incorporate (small) damping terms into the Melnikov analysis and
concludethat horseshoesexist in the weakly dampled,driven pendulum,for example,

q=p, ji=—sinq+ecost—6p. (6.1)

It is easy to see that all orbits of (6.1) remain trapped in a band B = {(q, ~)I~I~ F} in the
(cylindrical) phasespace.If we chooseF> (1 + e)/8, then the second component of (6.1) admits the
bounds

~ p>O, (6.2a)

~�6~p~—(1+e),p<O, (6.2b)

and thusthe vectorfield points into B for all t. B is thereforea forward invariant region or trapping
region for the PoincarémapP; the forward imagesof B all lie in the interior of B. At the same time,
the readercan modestlyextendthe computationsof section5 to include the dissipation term andto
concludethat, for (6.1),

M(t0) = —88 + 2eir sech(IT/2)cos t0, (6.3)

and hencethat thereare transversehomoclinic orbits for e, 8 smallprovided that

sir >46 cosh(irI2). (6.4)

Intuitively, if the force amplitude (e) sufficiently exceedsthe dissipation(6), thenmotions which
repeatedlypassthe unstable,invertedequilibrium can be sustained.Theseenablethe chaoticmotions
and the Melnikov calculation allows us to compute an approximate“stability boundary” for the
existence of such motions.

In this case,the attractingsetA can be definedas the intersectionof all forward imagesof B and,
sincedet DP = exp(—

2ir8) < 1 (a nice exercise),P contractsareasby a constantfactorand the set

A = fl P~(B) (6.5)
n=O

haszero area.The attractingset is thereforevery “thin”, but it need not be a topologically simple
curve. In fact, in this case,A certainly containsthe homoclinicpoints andtheir attendanthorseshoes
displayedabove,and anyattractorsarecertainly containedin A, but A itself neednot be indecompos-
able. To display parametervalues for which A as a whole and not just A, which is only part of A,
containsa denseorbit seemsto be very difficult. In fact, work of Newhouse[19801on wild hyperbolic
setsandthe presenceof infinitely manystableperiodic orbits atcertainparametervaluesfor mapslike
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P showsthat thereare a lot of values for which A cannot be indecomposable.(Any candidatefor a
dense orbit, once trapped in the basin of a sink, would be out of the running!)Thusa “typical” solution
approaching A might eventually settle down to stable periodic behavior, perhapsafter a chaotic
transientplayedout nearA. (Recallthat, in the horseshoeconstruction,almost all pointsstartingin S
lie in somepreimageof the “middle a” strip andthereforeleave5; theydo not approachA.) In spiteof
the suggestivenatureof numericalsimulations,this issuestill awaits clarification. It is better to saythat
P hasa strange attracting set.

However, the canonicalexampleof the iteratedone-domensionalmap

def

x,,÷
1 = Ax~(1— x~)=f5(xn) (6.6)

is relevanthere.In almosteverypopularor introductory article on chaosthis exampleis usedand it is
pointed out that, as A increasesfrom 3 to 3.58... a “universal” sequenceof period doubling
bifurcationsoccursafter which “chaossetsin”, punctuatedby windows(in A) of “periodic behavior”.
However,the questionof the relativemeasureof periodic andchaoticA, valuesin the range3.58. . . to
4 was not settleduntil Jakobsen[1978,1981] proved that thereis a Cantorset A~of strictly positive
Legesguemeasureof “chaotic” A values.Thismeansthat, picking a parametervaluebetween3.58...
and 4 at random,one hasa finite probability of picking a map with a strangeattractor,eventhrough
every such “chaotic” A is surrounded by a (tiny) open set of periodic A, for which fA hasa simple
periodic attractor. More precisely, for each A EA~,f~possessesan absolutelycontinuousinvariant
measure supported on a collectionof intervals.Almost all orbits thereforedisplay“statistical” behavior
andwe haveagenuinestrangeattractor,denseorbit andall. It is almostprovedthatthe complementof
A~,clearly open, is also dense.But A — A~containssomeratherpathologicalcasesas well as thoseA
valuesfor which f5 hasa stableperiodic orbit (cf. Johnson[1987],GuckenheimerandJohnson[19901).
Evenfor this examplethe completestory is surprisinglycomplicated.

It nowappearsthatpart of the strangeattractorproblemfor two-dimensionaldiffeomorphismssuch
as the Poincarémap of the damped,driven pendulumhasalso beensolved. Benedicksand Carleson
[1988]have recently announced a theorem implying that the Hénon map

x~~1= y~, y~÷1= —e; + p. — y~ (6.7)

does possess genuine strange attractorsfor a set of (p., e) valuesof strictly positivemeasure,with e~ 0
and small. More precisely,they showthat (6.7) has a strictly positive Lyapunovexponentfor (p., e)
containedin sucha set; the existenceof smoothinvariantmeasuresis still open.Mora andViana [1990]
havenowextendedthis result. (For e= 0, (6.7) collapsesto (6.6), cf. HolmesandWhitley [1984]).This
is an essentialstepin the studyof mapswhichfold ratherthanthose,like the Lorenzmodel,whichcut.
Moreover, Hénon-like maps appearnearhomoclinic points as the latter are createdin (quadratic)
tangenciesof stableandunstablemanifolds;consider,for example,what happensin (6.1) as e increases
for fixed 6 >0 (cf. Guckenheimerand Holmes [1983],sections6.6, 6.7). When theseresults are put
together,we maybe closeto a satisfactoryresolution of the strangeattractorproblem.

7. Discussion

In the precedingpageswe have seenhow a simple perturbationcalculation, together with the
Smale—Birkhoff theorem, can provide proof of the existence of “chaos” in specific differential
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equations.We have seenhow the resulting “unpredictability”, or sensitive dependenceon initial
conditions, follows naturally from the existenceof a topological conjugacybetweenorbits in phase
spaceandthe shift mapon symbolsequences.However, we have also learned that this is not sufficient
to concludethe existenceof a strangeattractor: that almost all orbits behaveunpredictably.What
moralscan be drawnfrom this type of analysis?

The first is that the paradigms of abstractdynamical-systemstheory,with its stresson structural
stability and genericproperties(cf. Smale[1967]),provide invaluableguidancein the studyof specific
problems.This sort of theory tells us what to look for. It is commonplacein physicsthat theoretical
biasesand expectationsinfluenceour interpretationof the data. Before applied scientistswoke up to
the possibility of strangeattractorsand chaos,they tendedto ignore a lot of “anomolousnumerical
results”. Of course,now thereis a tendencyto over-react;I doubt that strangeattractorsare quite as
prevalent,or important,as the manyannouncementsin Phys. Rev. Lett., Phys. Lett. A, etc.,suggest.
However, the general theory does provide us with lists of certain speciesand hunting licenses.This
brings me to my second point.

Methodsare nowbecomingavailablefor the detectionof solutionswith interestingglobalproperties
in specific nonlinearmodels.That discussedin the presentpaperis only oneexample;the readerwill
find manymorein the references.Numerical simulationsplay an importantpart here,althoughI have
not consideredthem in this paper.There is also a very nice interplay betweennumericalexperiment
andrigorousresults,clearestperhapsin the carefulsimulationsof Jim Yorke and his colleaguesandthe
results on numericalapproximationof “true” orbits which they haveobtained(e.g., Hammel et al.
[1988],Nusseand Yorke [1989a,b]). A further importantstrandis the increasingquantityand quality
of experimentalevidencewhichdemonstratesthat chaoticmotionsandstrangeattractorsdo appearin a
diverse range of physical systems, including apparently simple electrical circuits andmechanicaldevices
(Berge, et a!. 1987, Moon 1987]. (The evidence in turbulence, with respect to which the relevanceof
strangeattractorswas suggestedalmost twenty yearsago [Ruelle and Takens1971], is more prob-
lematic,especiallyin openflows andfully developedturbulence.SeeHolmes[1990],for example.)The
ideasof dynamical-systemstheory hasalsoled to a numberof new methodsof dataanalysis;dimension
computations, Lyapunov exponents, phase-space reconstruction, spectra of dimensions, etc., although
much remainsto be learnedabout the applicability andvalidity of such methods.

The “paradigm” modehasits dangers.Attemptsto understand(piecesof) the world oftenstartwith
metaphor:onestudiesa simplersystemwhich“looks like” the real objectof interest,but onedoesnot
insist on fundamentalconnectionsor derivations“from first principles”. The fact that small setsof
differential equationsand iteratedmapscan exhibit complicatedbehaviorhasstimulateda lot of such
metaphoricalstudies.Dynamical-systemstheory haspotentiallydangerousside effectsin this resepct.
Certainpersonsseemto prefer to abandonhardwon, detailedknowledgeof problemslike turbulence
in boundaryor shearlayers in favor of metaphors,such as coupled map lattices,which havelittle
obvious connection with the underlying physics. In most casesit still remains to relate these to
fundamentalprinciples,andso in turnthe metaphorsinto models.However,it is certainly true that the
notion of universality— topologicaland metric behaviorwhich is, to someextent, independentof the
precise system— confers respectabilityon somesuch metaphorsand revealsunderlyingsimilarities of
structure across fields of application. Unfortunately, none of the famous “bifurcation to chaos”
scenarios— period doubling, quasiperiodic, etc. — are sufficiently generalthat we can entirely dispense
with analysesto determinewhat actuallyoccursin specific models.The fact that we havemethodsas
well as paradigmsis centralto this enterprise.(In the biological sciences,wherethe problemsaremore
difficult and less clearly defined,the metaphoricalapproachis of considerablevalue, e.g., Glassand
Mackey [1988]).
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The third moral is that mathematicsandphysicsarecoming closeragain.Dynamicalsystemstheory
is just one instanceof a generalmovement.In The Value ofScience,Poincaré[1921]observes,

“The mathematicianshouldnot be for the physicista merepurveyorof formula; thereshouldbe
betweenthem a more intimate collaboration.Mathematicalphysics and pure analysisare not
merely adjacentpowers,maintaininggood neighborlyrelations;they mutually interpenetrateand
their spirit is the same.”

In spiteof this, I do not really seea “new science”here,in particularI do not seethat “chaostheory”
evenexistsas a coherentobject,for examplelike the quantumandrelativity theories.I would certainly
hesitateto label it SUPERB, as Penrose[1989]labels thesetwo theoriesin his recentcritique of
anothernew science: artifical intelligence. However, we do have a loose collection of ideas and
methods,manyof the latter inheritedfrom “classical” applied mathematics,which we can add to the
scientist’stoolbox. Thereis a greatfermentof excitementandactivity. The artificial distinctionbetween
pure and applied mathematicsis weakening. Mathematiciansand scientistsfrom different fields are
talking to one another.Someare evenlistening.
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