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Abstract:

As demonstrated by the success of James Gleick’s recent book [1987], there is considerable interest in the scientific community and among the
general public in “chaos” and the “new science” which is supposed to accompany it. However, as usual, it is not easy to separate hyperbole from
fact. In an attempt to do this, I will offer a precise definition of chaos in the context of differential equations: mathematical models which, since
Newton, have played a vital role in scientific discovery. I will show how the classical problems of celestial mechanics led Poincaré to ask fundamental
questions on the qualitative behavior of differential equations, and to realize that chaotic orbits would provide obstructions to the conventional
methods of solving them.

In a major paper which appeared almost exactly one hundred years ago, Poincaré studied mechanical systems with two degrees of freedom and
identified an important class of solutions, now called transverse homoclinic orbits, the existence of which implies the system has no analytic integrals
of motion other than the total (Hamiltonian) energy. I will explain these terms and outline the history of subsequent developments of these ideas by
Birkhoff, Cartwright, Littlewood, Levinson and Smale, and describe how the ideas of Melnikov have made possible an “analytical algorithm” for
the detection of chaos and proof of nonintegrability in wide classes of perturbed Hamitonian systems. I will discuss the physical implications of the
mathematical statements that these methods afford. In the process, I will point out that, while there is a precise vocabulary and grammar of chaos,
developed largely by mathematicians and stemming from Poincaré’s work, it is not always easy to use it in speaking of the real world.
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“To doubt everything and to believe everything are two equally convenient solutions; each saves us from thinking.”

H. Poincaré, Science and Hypothesis [Poincaré 1921]

1. Introduction

There is currently great excitement and much speculation about the ‘““new science” of “chaos theory”
and its potential role in our attempts to understand the world; yea, even the universe. The excitement is
reflected in well over 5000 technical papers (cf. Shiraiwa [1985]), scores of reviews, monographs,
proceedings, new journals and textbooks and now in the popular literature (cf. Gleick [1987], Stewart
[1989]). In adding another piece of flotsam to this flood, I have taken a different viewpoint from many.
Here you will find no computer simulations, not even in black and white, nor speculations about life,
the universe and everything [Adams 1979). Instead, what follows includes a brief (and biased) history of
the mathematical foundations of the subject, a theorem of fundamental importance (with an outline of
its proof), an analytical method which enables one to check the theorem’s hypotheses, a simple but
pretty example, and a discussion of some of the difficulties of extending the ideas to the study of
mathematical models of physical interest.

For dynamical-systems theory, as it is more correctly if less spectacularly called, deals with the
behavior of mathematical objects: primarily differential equations and their close relatives, iterated
mappings. As such, it has little to say directly about the “real’” world. Its ideas and methods help bridge
the gulf between equation and solution, but they do not immediately help us build the equations from
physical principles. Of course, they may suggest general strategies for the formulation of models: for
example, the more we know about nonlinear analysis, the less we are tempted to linearize at the outset.
It is usually better to be honest as long as possible, so that when we come to tell lies, they remain fresh
in our memories. At the same time, we should beware of the tyranny of technique which afflicts many
scientists: having ignored the work described below for 90 years, a certain type of researcher now sees
chaos and strange attractors wherever (s)he looks.

Before we can import the insights of dynamical systems into model building and analysis, it is
necessary to know what they are. Here I shall focus on a small but central part of the theory and
initially I shall take a historical viewpoint. It is a good story.

One hundred years ago, Poincaré published a memoir [1890] describing the work for which he had
been awarded one of the several mathematical prizes offered by King Oscar II of Sweden. This work
addressed the stability of the solar system. Like a good scientist, he focused on a simplified model
situation: the (restricted) three-body problem. His 270 page paper constitutes the first textbook in the
qualitative theory of dynamical systems and, as I hope to show, several areas of current research have
their origins in it. Poincaré’s three-volume treatise [1899] and some of his earlier papers [1880-1890]
contain more information and background. In particular, Poincaré describes the role that transverse
homoclinic points play in obstructing the existence of “second” integrals of motion and in preventing
the convergence of formal asymptotic methods, such as that of Linstedt.

Although we will be more specific later, we remark that a point ¢ in the phase space of a dynamical
system is called homoclinic to a fixed point p if the orbit is asymptotic to p as t— + and as t— —oo, (It
is called heteroclinic if the orbit is asymptotic to distinct points p, #p_ as t— +» and t— -,
respectively.) The point is transverse if the manifolds of initial conditions asymptotic to p as t— + and
as t— —o, which necessarily intersect at g, do so transversely: that is, their tangent spaces span the
whole phase space at ¢. (That these sets of initial conditions form smooth manifolds is the content of
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the fundamental stable manifold theorem, which I discuss in the second section). Transverse homoclinic
points imply that “chaotic motions” exist nearby. One may wonder why it has taken the computer
revolution for the majority of applied mathematicians and other scientists to wake up to these facts.

In the second and third sections of this paper, I outline the problem from celestial mechanics which
Poincaré addressed and sketch his approach to it. Everything here is contained in Poincaré’s paper,
although my presentation takes a more “modern” viewpoint, especially in the treatment of perturbation
and “Melnikov’s method”.

In section 4, I describe the central theorem and touch on the interesting history of this idea, which
began when Poincaré realized that transverse homoclinic points would lead to complicated behavior,
parts of which were subsequently characterized by Birkhoff, before Smale completed the description. In
the process, detailed studies of a specific second-order differential equation due to Cartwright,
Littlewood and Levinson, played an important role.

I then return to applications in sections 5 and 6, indicating first the sort of rigorous resuits which
follow fairly easily from the Smale-Birkhoff theorem and perturbation methods, and then (some of) the
difficulties which arise when one wishes to extend the ideas to describe the behavior of almost all
solutions in a dissipative model which appears to possess a ‘““strange attractor”. In section 7 I conclude
with a general discussion in which I permit myself some modest speculation.

This is far from a complete treatment of dynamical-systems theory. Although I naturally hope that it
will generate interest and modestly inform the reader, this article cannot pretend to be a textbook.
Alas, there are no short cuts to mastery of all the techniques. For those wishing to embark on a proper
study, the books by Lefschetz [1957], Arnold [1973], Andronov et al. [1966], Hirsch and Smale [1974)
or Wiggins [1990] provide good introductory material, while those of Arnold [1982], Palis and de Melo
[1982], Irwin [1980], and (succumbing to chauvinism) Guckenheimer and Holmes [1983] contain more
advanced material. Devaney [1986] has a treatment of iterated mappings (including complex analytic
dynamics), starting at an elementary level. Readers with a background in classical mechanics will find
that Lichtenberg and Lieberman [1983] and Arnold [1978] provide good routes to some of the recent
ideas. Fundamental as well as more advanced mathematical material can be found in ODE texts such as
Coddington and Levinson [1955], Hartman [1964] or Hale [1969].

Here I only deal with ordinary differential equations and I concentrate on Hamiltonian systems until
section 6. Many of the ideas and results do, however, generalize to partial differential equations, see,
e.g., Henry [1981], Temam [1988] and Constantin et al. [1989].

2. Two bodies, three bodies, reduction and Poincaré maps

In courses on classical mechanics (cf. Percival and Richards [1982], Goldstein [1980]) we learn that
Newton’s famous second law, F = ma, is equivalent to the elegant formulation of Hamilton in cases that
the total energy is conserved. The equations of motion are then derived directly from the Hamiltonian,
a real valued function H(gq, p) defined on the 2n-dimensional phase space, (locally) coordinatised by n
configuration variables ¢ = (¢q,, q,, . - . , 4,) and their conjugate momenta p=(p,, p,,..., p,),

§;=0H/dp,,  p;=—aHldq,. 2.1)

If H(q, p) does not depend explicitly on time, then a simple calculation using the chain rule confirms
that
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dH=§":<aH . oH ) i(aH oH oH aH)
t - aqj apj Bpj aq].

a7 \ag 4 ap, P

,- o Pi)= =0, (2.2)
]

j=1

and thus the Hamiltonian (energy) is conserved.

As Newton showed, in the case of two bodies moving under their mutual gravitational attraction, use
of the principles of conservation of linear and angular momentum permits one to reduce the study to a
single degree of freedom: thus n =1, and eqgs. (2.1) and (2.2) take the simple forms

g=0H/3p, p=-0Hlaq, (2.3)
H(q, p)=h, aconstant. (2.4)

The level sets of H are therefore curves in the two-dimensional phase space which are invariant under
the evolution of (2.3); a solution started in a particular level 4 remains on that level for all time,
positive and negative, (unless it runs off to infinity). Ranging through the values of & we cover the
whole phase space, which is said to be foliated by a one (h) parameter family of such level curves. This
implies that the single degree of freedom system is completely integrable, both in the classical sense that
(2.4) can be inverted to solve for p in terms of g (and k) and the resulting relation integrated by
quadratures [Goldstein 1980], and in the geometric sense implicit in Poincaré [1890] that the foliation of
two-dimensional phase space by one-dimensional energy levels gives a complete qualitative description
of all the solutions. A key point here is that the one-dimensional solution curves cannot intersect or
cross one another in the two-dimensional phase space, otherwise uniqueness of solutions would fail.
Thus a great order reigns: for the most part solutions which do not escape to infinity run around and
around on closed, periodic orbits, as the following example illustrates.

Rather than considering the two-body problem itself (cf. Marion [1970], Goldstein [1980]), in
anticipation of the examples to follow we take the simple pendulum, with Hamiltonian

H=p"2+(1-cos q), (2.5)
and equations of motion
g=p, p=-sing. (2.6)

The geometric structure of the phase space, with three families of periodic solutions separated by the
level set H=2, is well known (fig. 1), as is the quadrature

p=[2(h—1+cos ¢)]'* =dq/d¢

or
q()

dg L
J R(h—1tcosq” ' @7

q0

which can be evaluated explicitly in terms of elliptic functions. Note that the separatrices H =2 are
composed of homoclinic points; solutions which are foward- and backward-asymptotic to the fixed point
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Fig. 1. The phase space of the simple pendulum.

(g, p) =(x7,0). The figure shows two distinct equilibria, but since they both correspond to the
“upside down” pendulum, we should really identify all points g = = 7 and wrap the phase space onto a
cylinder. The separatrices will be of great importance later.

The restricted three-body problem comes in various flavors, one of which, the planar case, involves
two massive bodies moving in circular Keplerian orbits on a plane with a third, small body moving
under the influence of the resulting gravitational potential. If it is sufficiently small, the third mass does
not influence the primaries and one may move to a rotating frame in which the two degrees of freedom
are described by the position coordinates q,, g, of the third body and their conjugate momenta, fig. 2.
In this rotating coordinate system the Hamiltonian is no longer the total mechanical energy, but is
rather the Jacobi integral which is time-independent for circular primary orbits.

(P1, Py)

m (Apollo)

MASS CENTER M,
M,
(Earth)

Fig. 2. The restricted planar, circular three-body problem.
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The Hamiltonian is now a function of four variables (g, q,, p,, p,) so that, while it is still conserved,

its level sets are three-dimensional, allowing the solutions much greater freedom; see fig. 3. However,
we may still solve for p,, say, in terms of the remaining variables to obtain

P.= P4, P15 45) (2.8)

upon inversion of

H(q,, q,, p1» py)=h. (2.9)

Differentiation of (2.9) yields

dH 0H  oH 0P, dH OH oH 9P,

— =0=—+——, — =0=—+——, 2.10

dg, 9q, 9p, 9q, dp, p,  9p, 9p, (2.10)
and if the coordinates are chosen so that the quantity

dq,/dt=0H/dp,#0 (2.11)

does not vanish on (some subset of) the energy surface H=h, then we may eliminate explicit
t-dependence in Hamilton’s equations and write, using eq. (2.10),

dg, . ,. _dH/ap, _ 4P, dp, _ . -__m_ abp,
dqz_ql qz—aH/apz_ op,’ d‘b_pl & 6H/8p2_+6q1' (212)

Finally, letting ( )’ denote d/dq,, we obtain the reduced equations

q,=-9P,/dp,, py=9P,/dq,, - (213)

Fig. 3. In the three-dimensional manifold H = h, solutions can tie themselves in knots.
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which are again Hamiltonian with the one-parameter family of functions —P,(q,, p;; g,) as the new
“energy”’.

If g, (and p,) are classical angle (and action) variables, then dg,/dt in (2.11) is generally positive and
P, is, moreover, 2m-periodic in ¢,. It is then clear that (2.13) takes the form of a periodically forced
single degree of freedom system in which the angle variable g, plays the role of a timelike coordinate.
In fact one can think of reduction as removing one “oscillator” and replacing it with a “time”
(g,-)periodic external driver. Periodically forced systems like (2.13) are sometimes said to have one
and a half degrees of freedom [Chirikov 1979]. A nice description of this procedure may be found in
Birkhoff [1927]; see also Whittaker [1959], chapter 12, and, for the generalization to n degrees of
freedom, Arnold [1978], section 45. More recently, Marsden and his colleagues have greatly extended
and generalized the notion of reduction, see Marsden and Ratiu [1990] for example.

At this point note that the “physical” coordinates q,, g, of the planar, circular problem of fig. 2 do
not satisfy (2.11) and specifically that g, is not an angle variable. However, a suitable canonical
transformation yields the required coordinates. Since this is not our main point, we omit the
formulation and details.

Observe that the phase space of the reduced system (2.13), on each level set A, is three-dimensional.
It is convenient to write the equations in the form

, P,

’ aPh ’
= —_ —21 , ’ , = e s ; , =1, 2.14
q, ap, (91, Py 42) P 3q, (91> P15 92) q, ( )

and to consider what is now called the Poincaré map induced by the flow of (2.14) on the cross section
D given by ¢, =0. Picking an initial point (g}, p;) on D, the image (q;, p}) = P(q}, p}) under P is
then the point at which the solution next intersects D, in other words, we integrate (2.14) until g,
reaches 27; see fig. 4. It is clear that a 2#-periodic orbit of (2.14) corresponds to a fixed point of P and
a 2mk-periodic orbit to a cycle of period k. Moreover, if P, is smooth, P is an orientation preserving
diffeomorphism: a smooth mapping with a smooth inverse such that the image of a region retains its
original orientation. In addition, since eq. (2.14) is Hamiltonian and the flow preserves volume in (g,
P1» 4,)-space (Liouville’s theorem), P preserves area. Also, stability types of fixed points and cycles of

P,

2n PERIODIC ORBIT
= FIXED POINT

Fig. 4. The Poincaré map for (g, p,; ¢,)€ D x §".
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P and periodic orbits of (2.14) correspond. If vy is a periodic orbit of period 27 for (2.14) then the point
(g7, p}) at which it intersects D is a fixed point or equilibrium for the map P: if y has period 27k then
it intersects D in a k-periodic cycle of points which are mapped one into another by P. The reader may
like to sketch two and three periodic cycles in the manner of fig. 4. The two-dimensional map P
therefore captures crucial aspects of the solutions of the ordinary differential equation (2.14).

Of course, in general we cannot compute P explicitly (if we could we would have integrated the
original equations), but as Poincaré realized, useful qualitative information can be drawn from the
geometrical picture. In particular, Poincaré concentrated on periodic orbits of (2.14) and the corre-
sponding fixed points of P and on the existence and characteristics of “asymptotic surfaces” belonging
to saddle points of P, now called stable and unstable manifolds. This requires a brief review.

Let P: R*— R’ be a (smooth) map and p a fixed point [ p = P(p)]. We call the linear system

x— DP(p)x (2.15)

the linearization of P at p. DP(p) is a 2 X 2 matrix; denote its eigenvalues A, A,. One easily sees that p
is stable if both eigenvalues of DP( p) lie within the unit circle (|A,| <1, j=1,2). If this is the case, we
call p a sink. When |A;| <1<|A,| p is an (unstable) saddle point and when |A,| > 1,j=1,2 p is a source.
If |A,| #1 for j=1,2, we call p hyperbolic and the Hartman—-Grobman theorem (cf. Devaney [1986],
Guckenheimer and Holmes [1983]) guarantees that the dynamical behavior of the linearization (2.1)
holds in a neighborhood U of p for the fully nonlinear map P. The names of the fixed points derive from
fluid mechanics, in fact one of the key ideas of the modern theory of dynamical systems is to view the
phase space geometrically, and to see the totality of solutions of the differential equation as an
evolution operator which transports the “phase fluid”.

For our example of eq. (2.6), the fixed point(s) (g, p) = (*m,0) of the map P = P, are clearly
saddle points. In fact the linearized map can be obtained by integrating the linearized differential
equation linearized at (g, p) = (*,0),

é&=¢, £=-—cos(xm) & =¢ . (2.16)

Elementary analysis shows that the fundamental solution matrix to this system may be written

cosh ¢ sinh ¢ ]
[sinht cosht1’ (2.17)
and hence that the time T map, which gives DP,, is
_[coshT sinh T ] (fl)
DPy(xm,0)- £ = [sinh T coshTl\¢/° (2.18)
The matrix DP, has eigenvalues
A ,=cosh T +sinh T=e’, e, (2.19)

and since e " <1<e”, the point(s) (, 0) are, as expected, saddle points. As noted earlier, since 8 is
measured modulo 27, and both equilibria correspond to the pendulum standing straight up, these
points should be identified and the phase space “wrapped up” into a cylinder.
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It is reasonable to believe, and possible to prove by a simple application of the implicit function
theorem, that, for small perturbations involving (time-dependent) terms of O(z), P, perturbs to a
nearby map P, = P, + O(e), which has a fixed point p, = (7, 0) + O(e) with eigenvalues e " + O(¢) <
e’ + O(g). We use this fact in perturbation calculations in the next section.

The linear system (2.15) can be put into a convenient form by a suitable similarity transformation. In
particular, if the eigenvalues are real and satisfy |A,| <1<|A,|, DP may be diagonalized, so that the
linearization uncouples

u—Au, v AU, (2.20)

and the two axes v =0, u = 0 are then the invariant stable and unstable subspaces, E°, E" (fig. 5a). The
stable manifold theorem (cf. Guckenheimer and Holmes [1983], Devaney [1986]) asserts that, locally,
the structure for the nonlinear system

x> P(x) (2.21)

is qualitatively similar. More precisely, in a neighborhood U of p there exist local stable and unstable
manifolds W;_(p), W},.(p), tangent to E°, E" at p, and as smooth as the map P. Recall that a (smooth)
manifold is a space which locally looks like a piece of Euclidean space of the same dimension. Here we
can think of the local manifolds W; (p), W, (p) as graphs— curves if both are one-dimensional —
modelled on the flat stable and unstable subspaces E°, E* (fig. 5). Here the word local refers to a
neighborhood U of p; a point belongs to W, .( p) [or, respectively, to W, (p)] if it and its images under
p remain in U for all future iterations (or, respectively, backward iterations). That all of these points fit
together to form smooth manifolds is the key conclusion of the stable manifold theorem. By taking
backward and forward images of arcs contained in these manifolds, one constructs the global stable and

unstable manifolds,

u

(E
N

(a) (b)

Fig. 5a. Invariant subspaces for the linear map; b. invariant manifolds for the nonlinear map, showing a homoclinic point, q.



P. Holmes, Poincaré, celestial mechanics, dynamical-systems theory and *‘chaos” 147
W(p)= L>JO P (Widp), Wi(p= U P (W (p)), (2.22)

which contain all points x € R* which are forward (or backward) asymptotic to p under iteration of P.

While the local structure is nice, the global structure need not be, and herein lies much of the reason
for “chaotic motions”, as we shall see. We call a point ¢ € W"(p) N\ W*(p) a homoclinic point,
following the termmology of Poincaré [1899]. By definition, the orbit {P"(q)},__. of ¢ is both forward
and backward asymptotic to p. At first it may seem odd that one point can belong to both stable and
unstable manifolds, but viewing it as an “initial condition” which has specific behavior in the future and
the past may help. As I have already remarked, points on the separatrices of fig. 1 provide examples: in
fact these separatrices are simultaneously stable and unstable manifolds for the saddle point (*, 0).
For a two-dimensional differential equation like (2.6), such manifolds are one-dimensional curves and
they must therefore either miss altogether, or coincide. For a map, however, they can intersect in other
ways. In particular, if the manifolds W*( p), W"(p) intersect transversely at g, then iteration of a small
region V containing ¢ causes P"(V) and P "(V) to “pile up” on W"( p), W*(p) respectively as n— .
The map P transports the images P/(V) around “astride” the stable and unstable manifolds for j >0
and j <0, respectively: once P/(V) is close to the saddle point p the linear contraction and expansion
takes control [e.g., eq. (2.20)] and stretches the images as indicated in fig. 5b. (That this occurs in the
controlled fashion of C 1-convergence of transversals to W*, W* at ¢ is the content of the Lambda
lemma [Newhouse 1980; Guckenheimer and Holmes 1983]; one does not need area preservation to
prove it.) In such a situation the Smale-Birkhoff homoclinic theorem, described in section 4, shows that
V and its images contain a rich and wonderful invariant set.

To anticipate a little, let me give a foretaste of this set in terms of the pendulum example of eq. (2.6)
and fig. 1. When a time-periodic perturbation (external forcing, perhaps by a variable torque) is
applied, the coincident manifolds forming the separatrix level set typically break up, but some
homoclinic points may persist, and with them small neighborhoods of initial conditions which are
repeatedly mapped around in the region formerly occupied by the separatrices. As fig. 5b indicates,
such regions can now fall “‘on both sides” of the saddle point, so that two solutions starting nearby may
find themselves separated —one corresponding to a rotation and the other to a libration. As they are
repeatedly mapped past the saddle point, such solutions must again and again “decide”” which route to
take. Physically, a gentle tickling of the pendulum has dramatic consequences when it is near its
unstable, inverted equilibrium. The global structure of the stable and unstable manifolds in this
situation is what Poincaré, in a famous passage, would “‘not even attempt . . . to draw” [Poincaré 1899,
chap. 33]. The remainder of this paper is mainly concerned with Poincaré’s own, and subsequent,
attempts to analyze this phenomenon.

Returning to our main theme, we ask what the structure of the Poincaré map P of the reduced
system (2.14) will be in the event that the original two-degree of freedom Hamiltonian possesses an
independent second integral, a function F(q,, q,, p,, p,) which is constant on solutions and indepen-
dent of H in the sense that VF-VH #0 almost everywhere. (The first property is equivalent to
vanishing of the Poisson bracket

{F,H}—E(iﬁ—ﬁ ﬂ) (2.23)

and such functions are called integrals in involution [Goldstein 1980].)
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Since the level sets of F and H are each three-dimensional, and intersect transversely almost
everywhere, the level sets of F foliate the reduced three-dimensional space H " '(h) ((q,, p,; 4,)-space)
with a family of two-dimensional surfaces F = f. These in turn slice the cross section D(g,=0) in a
family of curves, partitioning it in much the same way as the levels H = k partition (g, p)-space in the
single degree of freedom example of fig. 1. In this integrable case, the orbits of P, sequences of discrete
points x; = P(x,_,), simply march around the “‘reduced” level curves.

Another way to see this is to recall that, if H(q,, q,, p;, p,) is completely integrable, then it must
(in suitable coordinates) possess a cyclic coordinate. Selecting this to be g,, H is independent of ¢, and
the conjugate momentum, p,, is the second integral. In this case the reduced Hamiltonian —P,(q,, p,)
is likewise independent of ¢, and the reduced system (2.13), (2.14) is an (integrable) single degree of
freedom system since 4P,/dp, and 3P,/ dq, are independent of g,. Orbits of the Poincaré map P march
around the level sets P, = constant of the analogue of fig. 1, for they are obtained by integrating this
autonomous equation. Thus, if any homoclinic points exist for such a completely integrable system,
they must lie on separatrices formed of smooth, coincident stable and unstable manifolds, much like the
level set H =2 of the pendulum.

In his memoir of 1890, Poincaré showed that, after use of perturbation methods and truncation of
certain higher-order terms, the Hamiltonian for the restricted three-body problem becomes comletely
integrable. Moreover, the reduced system (and hence its Poincaré map) possesses hyperbolic saddle
points whose stable and unstable manifolds, being level sets of the second integral, coincide, as they do
for the integrable pendulum example of fig. 1. He then asked a question of the type that has become
central to the dynamical-systems approach (I paraphrase): “Should I expect this picture to persist if I
restore the higher-order terms?” The important notion of structural stability refers to the situation in
which small perturbations to a system of differential equations, or a map, do not cause qualitative
changes in the structure of solutions. It is now known that integrable n=2 degree of freedom
Hamiltonian systems are not structurally stable in this sense. However, to answer the question in
specific cases, such as the three-body problems, we need a little perturbation theory.

3. Perturbation of integrable cases

Here I shall briefly review the method of Melnikov [1963] which permits one to prove the existence
of transverse homoclinic points in the Poincaré maps arising from specific examples of periodically
perturbed differential equations. 1 concentrate on the Hamiltonian case, although Hamiltonian struc-
ture is not essential to the method. A rather different approach to the same problem can be found in
Poincaré’s [1890] paper on the three-body problem, and Arnold [1964] applied the idea to Hamiltonian
systems around the same time as Melnikov. Thus, as Jerry Marsden has remarked, the method should
probably be called the Poincaré—Arnold—Melnikov method.

I outline the simplest version of the method here. See Holmes and Marsden [1981, 1982a, b, 1983]
and Wiggins [1988] for extensions to many (even infinitely many) dimensions. Consider a planar
ordinary differential equation subject to a small time-periodic perturbation,

x=f(x)+ eg(x, 1), gx,t)=g(x,t+T), x€ER*. (3.1)

Suppose that f and g are sufficiently smooth and bounded on bounded sets and that the unperturbed
system is Hamiltonian, so there exists a function F(x): R*— R such that
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X1 = fi(xy, x,) = 0F(xy, x,) 9x,, X, = fo(xy, %) = —9F(x;, x,)/9x, . (3.2)

Furthermore, assume that this unperturbed vector field contains a hyperbolic saddle point p, lying in a
closed set of F; thus there is a (degenerate, nontransversal) loop of homoclinic points, fig. 6a. The
orbits on this loop are denoted by x = x,(¢ — ,), where ¢, denotes a shift in the initial condition or base
point. For precise technical hypotheses see Guckenheimer and Holmes [1983], section 4.5.

While the unperturbed (¢ =0) equation (3.1) has a two-dimensional phase space and solutions are
ordered by the distinct level sets F = constant, as soon as the perturbation is applied (¢ # 0) this simple
picture dissolves. The vector field is now time dependent, solutions can pass the same point x in
different directions at different times (or “phases”) and so it is better to extend the phase space by
including ¢ as a third variable, precisely as was done in eq. (2.14). In fact the attentive reader will notice
that the setup under development in this section is perfectly designed for application to the reduced
Hamiltonians of section 2.

Now consider the unperturbed and perturbed Poincaré maps P,, P, corresponding to (3.1) with ¢ =0
and ¢ # 0. The hyperbolic fixed point p, of P, perturbs to a nearby hyperbolic fixed point p, = p, + O(¢)
for P, and its stable and unstable manifolds remain close, as indicated in the sketch of fig. 6b. In fact
the power series representations of solutions x> lying in the perturbed stable and unstable manifolds of
the small periodic orbit y, = p, + O(¢) of eq. (3.1), £ #0, are valid in the following semi-infinite time
intervals:

x5t 1) = x,(t — t,) + ex(t, t,) + O(e), tE[ty, ),
xU(t, 1) = xo(t— t) + exi(t, t,) + O(e”) , tE(-,1,]. (3.3)

This follows from the usual finite-time Gronwall estimates (e.g., Hartman [1964]) and the fact that
these special solutions are “trapped” in the local stable and unstable manifolds and thus have well
controlled asymptotic behavior as t— +o, respectively. One can therefore seek the leading order terms
x"(t,t,) as solutions of the first variational equation obtained by substituting (3.3) into (3.1) and
expanding in powers of &,

X7" = Df(xg(t = 1)) xy" + glxo(t = 1), 1) . (3.4)

x (0)
x(t-t )

(a) (b)

Fig. 6a. The unperturbed loop; b. the perturbed Poincaré map, showing stable and unstable manifolds on a cross section D (x,, x,)-space.
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Now, while (3.4) is linear, it is usually rather hard to solve, since Df(x,(t - ¢,)) is a time-varying
2 X 2 matrix and is not even periodic. Here Melnikov comes to our rescue. He realized that, to estimate
the distance d(t,) between the perturbed stable and unstable manifolds at a base point ¢, of the
unperturbed solution, one need not solve (3.4) explicitly. His method goes as follows.

From (3.3) and fig. 6b, we have

E(xlll(to’ fy) — xs1(t0, 1))* fl(xO(O))
— on

where f*(x,(0)) denotes the normal to the unperturbed solution vector f(x,(0)). Since a* b* = b X a for
vectors in' R, we can rewrite (3.5) as

Jx(0)) X (xT (20 t) — X1 (£95 1))
(e

d(ty) = x,(ty, o) — x.(tg, t,) = + 0(52) ) (3.5)

2, def Au(to’ to) — As(to’ to)
H R VX))

dit,) =« +0(e%). (3.6)

If the quantity A" — A® has simple zeros as ¢, varies, it follows form the implicit function theorem
that, for £ 0 small enough, the distance d(#,) passes through zero as ¢, varies and consequently that
the perturbed manifolds intersect transversely. To compute A" — A® we introduce time-varying functions

A1, 1) = flag(t = 1)) X x1°(2, 1)
and compute

4% = Df(x,)%, X x7 + flxy) X £} = Df(xo)f(x) X x7 + f(xg) X [Df(x) %] + g(xy, 1)]
= trace Df(x,)f(x,) X x] + f(xy) X g(x,, £) = flxo(t — £,)) X glxo(t — 1), 1) . (3.7)

Here we substitute for ] from (3.4) and use %, = f(x,), a matrix cross product identity, and finally
appeal to the fact that

o 3h _ _&E _ _¥F (3.8)

= - 0
ax, ox, 9dx;0x, 9x,0x,

trace Df =

since f is Hamiltonian. Integrating (3.7) we have
A%(t, 1) — A(tg, 1) = f S(xo(s — ) X g(xo(s — £), 5) ds
fo

and, taking the limit t— + and using the fact that f(x,(¢))— f( p,) = 0 as t— =, so that A*(t, 1,)— 0 we
obtain

~ 80, 16)= [ (X B)rls — 1), 9) s (39)
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Note that we have used the validity of (3.3) on the semi-infinite interval [¢,, ) in this computation.
With a similar computation for 4% (3.9) yields

By, 1)~ 8, 1) M) = [ (/X B)(xals 1), ) ds

or, translating the variable s,

M) = | (X D05+ 1) ds (3.10)

We have completed our sketch of the proof of

Melnikov’s theorem. Under the hypotheses stated on (3.1), if M(¢,) has simple zeros, then for ¢ #0
sufficiently small, the manifolds W*(p,), W*(p,) intersect transversely. If M(z,) is bounded away from
zero then W¥(p, )N W% p,)=0.

Although it is based on a simple perturbation method, this result is of considerable importance.
M(t,) is an explicitly computable function which allows us to check in specific examples whether the
stable and unstable manifolds intersect transversely or not, essentially by a direct calculation of the
approximate distance between these manifolds from the viewpoint of an observer who follows the
unperturbed separatrix on a fixed cross section. We will perform a specific computation, related to the
pendulum problem, in section 5.

In order to show that stable and unstable manifolds split and intersect transversely, Poincaré [1890,
section 19] performed a computation which is equivalent to (3.10), but his derivation involved power
series approximations to solutions of the Hamilton-Jacobi equation. A good modern account of this
can be found in Arnold et al. [1988, chap. 6.2]. We observe that, if the perturbation g is Hamiltonian
with Hamiltonian G [as it will be if (3.1) takes the form (2.13)], then (3.10) can be rewritten in the
elegant form

M(t,) = f {F, G}(x,(s), s + t,) ds , (3.11)

where {-, -} is the Poisson bracket, cf. Arnold [1964]. This formulation is useful in higher-dimensional
generalizations [Holmes and Marsden 1981, 1982a, b, 1983; Wiggins 1988].
Next we will see why the transverse homoclinic points are so interesting.

4. The Smale-Birkhoff homoclinic theorem

As Poincaré [1890] realized, the presence of homoclinic points can vastly complicate dynamical
behavior. However, the very fact that their existence implies recurrent motions makes the situation
amenable to at least a partial analysis. Consider the effect of the map P of fig. 5b, containing a
transverse homoclinic point ¢ to a hyperbolic saddle p, on a “rectangular” strip S containing p and ¢ and
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segments of the stable and unstable manifolds in its boundary. As n increases, P"(S) is contracted
horizontally and expanded vertically until the image P"(S) loops around and intersects S and P in a
“horseshoe” shape (fig. 7).

To prove that the rates of contraction and expansion are uniformly bounded, one shrinks the width
of § until many iterates occur for which P’/(S) lies in a neighborhood U of p and the dynamics is
therefore dominated by the linear map DP(p) cf. eq: (2.20)].

A model for the situation was provided by Smale [1963], who introduced the map F: S+ R” of the
square [0, 1] X [0, 1] C R? sketched in fig. 8a. The map is linear on the two horizontal strips H, whose
images are the vertical strips V,, i =0, 1, the linearizations being

0

PFen=[0 3], PROLen=| " L] (&)

with 0< A <1< y. Thus F| #, contracts horizontally and expands vertically in a uniform manner. Smale

PN(s)
p
Fig. 7. P" has a horseshoe.
GRAPH OF f X/\
H
R " b
9200 H,, e '
\ N [ | 1
\ [ ] 1 :
i\h S RVoy ' '
NN NI L
77777 T Hy, 4 .
%HO/ T /i P
// _L Hoo \_1_:'-_1_’14; 1
J Voo Voi Vir Vio 0 It\lc N
=~ A~ F')" Ioc I:¢
(a) (b)

Fig. 8a. The two-dimensional horseshoe and b, its one-dimensional analogue.
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studied the structure of the set of points A which never leave S under iteration of F. By definition,
A= N0 __, F'(S); the intersection of all images and preimages of S. Now

F($)NS=H,UH,, SNFS)=V,UV,

so F"(S) is the union of four rectangles of height y ' and width A (fig. 8a). Similarly NZ__, F"(S) is
the union of 16 rectangles of height A > and width A%, N*__, F*(S) is the union of 2°* rectangles and,
passing to the limit, A turns out to be a Cantor set: an uncountable point set, every member of which is
a limit point. (Ian Stewart [1989] points out that the Cantor set was appropriated by Cantor from H.
Smith, who constructed the first example some years before Cantor. For that matter “Newton’s”
equation F = ma, of section 2, was first explicitly written down by Euler in 1747 [Truesdell 1968].)

To see this more easily, consider the set of points which never leave I = [0, 1] C R under iteration of
the one-dimensional map f of fig. 8b. After one iterate the “middle” interval I_ is lost, after two iterates
its preimages I, I,. are lost, etc. Removing middle intervals of fixed proportional size (a, say)
produces the classic “‘middle a” Cantor set A’, the one-dimensional analogue of the construction of A.
We remark that the map f is qualitatively like the famous quadratic map x+ ax(1— x) or x+> ¢ — x°.

The sets A and A’ can be coded in a way which describes their dynamics. To each x € A we assign a
bi-infinite sequence of the symbols 0, 1, ¢(x)={¢(x)};-_.., by the rule ¢(x)=i if F/(x)EH,
(i=0,1). Thus ¢,(F(x)) = ¢,,,(x) and the action of F on A corresponds to the action of the shift o on
the space of symbol sequences 3. Moreover, every symbol sequence corresponds to an orbit realized by
F, since the images V, lie fully across their preimages H,. In fact, the map ¢: A~ 3 is a homeomorph-
ism and the diagram

A5A
o 1o
353

commutes. A homeomorphism is a continuous map with a continuous inverse, and that the diagram
commutes means that ¢(F(x)) = o(¢(x)). We say that F|, is topologically conjugate to a ( full) shift on
two symbols. This means that the dynamics of points x € A under F is equivalent, in a strong sense, to
the behavior coded in the corresponding sequence ¢(x). Moreover, every one of the enormous variety
of such binary sequences, which are as uncountable as the real numbers themselves, corresponds to a
particular orbit of F which weaves its way through A.

To prove continuity of ¢ and its inverse, one needs a metric on 3. The usual choice is

0

la, - b
d(a, b)= 2 ]2m 2 (4.2)
J=—

thus two sequences a, b are close if their entrles a;, b, agree on a long central block (a,=b,, | jl=
large). One proves continuity of ¢ and ¢ ' by showmg that close points in A map to close sequences 1n
3 and vice versa; see Guckenheimer and Holmes [1983], section 5.1.

For x € A’ one does the same but using only semi-infinite (positive going) sequences since f is
non-invertible. The main advantage of this method of symbolic dynamics is that one can study the orbits
of F|, (or f L) combmatorlally, by examining symbol sequences. For instance, the ‘“‘constant”
sequences ...000 ...= (0) and ...111 ...=(1)" correspond to fixed points and the periodic
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sequences (01)', (011), (0001)’, etc. to orbits of periods 2, 3, 4, etc. [here () denotes periodic
extension]. In this way one proves the following:

Proposition. The invariant set A of the horseshoe contains: (1) a countable infinity of periodic orbits,
including orbits of arbitrarily high period (=2"/k orbits of each period k); (2) an uncountable infinity of
nonperiodic orbits, including countably many homoclinic and heteroclinic orbits, and (3) a dense orbit.

The dense orbit is obtained by concatenating all possible finite sequences of 0, 1; thus, as one can see
from (4.2), by shifting one comes as close as one wishes to any other sequence. Since F | H,uH, contracts
uniformly by A horlzontally and expands by v vertically, the eigenvalues u, , of DF* for any k -periodic
orbit satisfy |u,| = A* <1< |u,| =y and thus all orbits are (unstable) saddles. In fact, all orbits in A
have associated with them exponentially strong unstable manifolds and thus almost all pairs of points A
separate exponentially fast under F” [their symbol sequences differ for some (large?) N: a,, # b,]. This
sensitive dependence on initial conditions leads to what we popularly call “chaos.” [Li and Yorke 1975].
Specifically, suppose that we know the initial conditions of some system with accuracy sufficient to
determine only the first 50 binary “places”. If the initial point lies in A then after 50 iterations we do
not know whether the image lies in H or H,. And even more strikingly, since every bi-infinite sequence
in 3 corresponds to an orbit of F|,, there are uncountably many orbits which behave in a manner
indistinguishable from the outcome of repeated tossing of a (probabilistic) coin; a quintessentially
random process.

Perhaps most important is the fact that A is a structurally stable set; small perturbations Fof F
possess a topologically conjugate set A~ A; both are conjugate to the same shift on two symbols. In
fact to prove the existence of such sets one does not need linearity of F or f, as in the example here; it is
sufficient to establish uniform bounds on contraction and expansion. See Smale [1963], Moser [1973],
and Guckenheimer and Holmes [1983] for more details. Wiggins [1988] does a nice job on the
n-dimensional case and generalizations thereof. Infinite-dimensional versions of the theorem are also
available.

The constructions we have sketched above and in figs. 7 and 8 lead one to the fundamental

Smale-Birkhoff homoclinic theorem. Let P:R*—R? be a diffeomorphism possessing a transversal
homoclinic point ¢ to a hyperbohc saddle point p. Then, for some N <, P as a hyperbolic invariant set
A on which the Nth iterate P" is topologically conjugate to a shift on two symbols.

Birkhoff [1927] had already proved the existence of countably many periodic points in any
neighborhood of a homoclinic point, but Smale’s construction provided a more complete picture and he
extended it to R".

It is worth reflecting on how striking this result is. Relatively simple hypotheses, which can be
checked in specific examples by explicit calculations such as those of section 3, lead not only to the
remarkable conclusion that an infinite collection of “‘chaotic” and unstable periodic orbits exists, all
gloriously mixed together, but a complete qualitative description of them is provided by their symbol
sequences. Is it not perhaps foolish to call this “chaos”?

In a delightful essay, Smale [1980] describes how he was led to the horseshoe construction when his
attention was drawn to a paper of Levinson [1949]. Levinson in turn was trying to simplify the
complicated analysis of Cartwright and Littlewood [1945] who had studied Van der Pol equation for
“relaxation oscillations”,
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§— k(1-y*)y +y=brkcos(At + a), (4.3)

with k large, in connection with problems arising in the British effort to develop radar during the
Second World War. Note that eq. (4.3) is a periodically forced, single degree of freedom oscillator,
although it is of course not Hamiltonian. Nonetheless, most of the remarks on three-dimensional phase
space of sections 2 and 3 hold good. In particular, for certain ranges of (b, A), Cartwright and
Littlewood were able to prove the existence of an infinite set “‘of (unstable periodic motions) of a great
variety of structures”, as well as a set “of the power of the continuum, of nonperiodic limiting
trajectories”” and to show that each point of the former is a limit point for both points of itself and of
the latter. This was essentially the horseshoe, the geometric structure of which Smale revealed and
generalized. It is interesting to observe their footnote on this “very bizare . . . behavior.”:

“QOur faith in our results was at one time sustained only by the experimental evidence that stable
subharmonics of two different orders did occur [Van der Pol and Van der Mark 1927]. It is this that
leads to the startling consequences; the consequences themselves relate to nonstable motions (which the
experiments naturally did not reveal).” The last sentence will return to haunt us below.

For a geometrical study, in the spirit of Smale, of the Van der Pol problem, see Levi [1981]. As this
problem was successively studied and “‘simplified” the length of the papers increased in the interesting
series 1, 9, 26, 147, . .. (pages).

To close this section we briefly indicate why the existence of a transverse homoclinic point precludes
the existence of an analytic integral of motion independent of the total energy H, in the two degree of
freedom case. We paraphrase Moser’s [1973] argument. Recall that any such function is constant on
solutions of the reduced problem and so is constant on orbits of its Poincaré map. Consequently it is
constant on orbits contained in the horseshoe A, and in particular it is constant on the dense orbit. Such
an analytic function must therefore be constant on A and hence on a neighborhood of A, such as the
“square” § of fig. 8a. But then it can only be, trivially, constant on the whole phase space (gq,, p,; 9,)
of the reduced system. The fact that a single dense orbit stitches the whole set A together is crucial to
this argument. In the integrable case (cf. fig. 1) the complete set of periodic orbits themselves is
generally dense, but this does not rule out the existence of further analytic constants of motion. Using
different arguments involving periodic solutions and power series approximations, Poincaré [1890,
section 22] also showed that no analytic integrals independent of energy existed in the presence of
transverse homoclinic points.

5. Chaotic swinging

To illustrate how the Melnikov method and Smale-Birkhoff theorem apply in a particular example,
we borrow the two degree of freedom Hamiltonian

H(q,, 4;, p1» P,) = =P, — P +2u sin°(q,/2) + pessin g, cos ¢, (5.1)

from Poincaré’s memoir [1890, section 19]. His variables have been renamed to conform with the
discussion of section two, above. Note that here there are two parameters, u and . We think of u as
fixed and consider the effect of increasing ¢ on the integrable system corresponding to € =0, in which
limit g, is a cyclic coordinate and p, a second integral.

Hamilton’s equations corresponding to (5.1) are
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4,=-2p,, g,=~1; p,=—pMsing, —pecos q,cos q,, p,=pesing,sing,.

(5.2
Thus, ¢, <0 and we can invert (5.1) to obtain )
p,=P,(q,, p;; 4,) = h— p} +2usin’(q,/2) + pesin q, cos g, , (5.3)
and, via the reduction procedure of section two,
q,=-0P,/ap,=2p,, p,=09P,/3q, = psin g, + pecos g, cos q, . (5.4)

Observe that, for ¢ =0 and after some rescaling, (5.4) is simply our old friend the pendulum of (2.6).
In particular, it possesses a pair of homoclinic orbits connecting the saddle points at (g,, p,) =(0,0),
(27, 0). These orbits lie in the level set P, =0, or

p,=*V2psin(q,/2), (5.5)

and thus the region enclosed by them is of width O(y/ ). This will become significant later.
Applying the formula (3.10) to the example of (5.4), we find that the Melnikov function is

M(q,) = f 2up,(q,) cos q,(q,) cos(q, + q,) dg, , (5.6)

where p,(q,) and q,(q,) are the components of the unperturbed homoclinic motion. Using (5.5) we
may re-express cos ¢, = 1 — pi/u, so that (5.6) becomes

)5 2
p
M(qy) = f 2up, (1 - j) cos(q, + gy) dq, , (5.7)
where, as the reader can check, the unperturbed (upper, +) solution is given by

pi(q)= V2p SCCh(\/—z—ﬁqz) . (5-8)

Since p, is even, the integral of (5.7) reduces to

M(q,)=2uIcos(q,), I=V2u f S(1-28%)cos q,dgq,, S=sech(\2ugq,), (5.9)

and, to verify that transverse homoclinic points exist for ¢ #0, small, we need only show that the
integral I #0.
Letting \2uq, = 7, we have

(5.10)

S
=

I=J'S(1—2S2)cosw7d'r, S=sechr, o=
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Integrating twice by parts and using the fact that the boundary terms vanish, since sech r—0 as
7— * (5.10) becomes

I= -0’ f S cos wr dr,

which is easy to evaluate by the method of residues to yield
I=—(m/2u)sech(w/2\/2u) . (5.11)
Note that this is nonzero for all 4 #0, but that as u—0

M(q,,) = — sech(7/2V/21) cos( g,y) ~ e~ ™2V (5.12)

approaches zero faster than any algebraic order in u. Thus, without special care, we cannot treat x4 and
¢ as independent parameters; x4 must be fixed #0 as ¢ is taken sufficiently small (depending on w) for
the implicit function arguments of section 3 to work.

It is worth comparing this computation with that of Poincaré, who obtains precisely the same answer
for his integral J (up to a multiplicative factor of i/2u, p. 223) or would have if he had not mysteriously
dropped a factor of 2 in his calculation [1890, p. 222, third equation]. It is also worth remarking that,
while explicit computations such as those above are not always possible, it is often easy to estimate
Melnikov integrals and show that they are nonzero.

Poincaré also points out (p. 224) that the “splitting distance” (BB’, fig. 9, p. 220) is of exponentially
small order in vz, cf. eq. (5.12). Since the model problem (5.1) represents the leading terms in a
perturbation expansion close to a “resonant layer” of width O(v/z) [cf. eq. (5.5)], in the original
three-body problem as é—0, u—0 also. The two small parameters are not independent and the
validity of the simple perturbation technique, which depends upon fixing u # 0 and taking ¢ sufficiently
small, is questionable [terms O(s”) are larger than terms of O(s e *’V*) for u small!]. Arnold [1964]
and Melnikov [1963] also brushed against this problem but did not really come to grips with it. The
present author at first failed to recognize it [Holmes 1980] (cf. Sanders [1982]), but recently Neishtadt
[1984] and Holmes et al. [1988] have obtained uniform exponentially small splitting estimates (upper
and lower bounds in the latter case) for some problems of this type. Kruskal and Segur [1987], Segur
and Kruskal [1987], and Amick and McLeod [1990] have also recently studied problems in which
manifolds are separated by distances “beyond all orders” in a small parameter. However, in many
multiparameter cases, limits may be taken in such a way that the difficulty does not arise. This is a
subtle and difficult problem, related to the removal of “tails” in normal form theory [Sternberg 1958]
and yet another instance of Poincaré’s prescience.

We conclude this section by showing that remarkable physical conclusions follow from the analysis
above. Recall that the Poincaré example (5.1) is essentially a simple pendulum weakly coupled to a
linear oscillator. In fig. 9 we indicate how a modest generalization of the horseshoe construction rises in
the Poincaré map of this perturbed pendulum. The “horizontal” strips Hy, H, are carried by P" into
“vertical” strips P"(Hy) < P"(H,) as indicated. Since the saddle points near (gq,, p,)=(0,0) and
(2w, 0) are identified, these images intersect Hy, H, much as in the canonical Smale example of fig. 7
(cf. fig. 5).
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Pn(HR),0<n<N

Fig. 9. Poincaré map for the perturbed pendulum.

As in section four, one obtains a homeomorphism between the shift on the two symbols R, L and
some iterate P" of the Poincaré map restricted to a suitable (Cantor) set A" = N L P™M(Hg U H,).
Note that our construction guarantees that a point lying in H will be mapped around near the stable
and unstable manifolds with g, = p, >0 while a point lying in H, is mapped around with p, <0. Thus,
an R in the symbol sequence corresponds to a passage of the pendulum bob past (q,, p,) = (0, 0) with
p,>0and an L to a passage with p, <0. Since we have a full shift [P"(H, ) and P"(H,) both lie across
H; U Hg] we conclude that any “random” sequence of the symbols L, R corresponds to an orbit of the
pendulum, rotating “chaotically” to the left and to the right. If the reader finds fig. 9 confusing then
(s)he will appreciate Poincaré’s reluctance to draw it!

This conclusion is perhaps not too surprising, if we consider the effect of a small periodic
perturbation of the undamped, Hamiltonian pendulum of fig. 1 swinging near its seperatrix orbit
H(gq, p)=2. Each time the pendulum reaches the top of its swing, near the inverted, unstable state, the
oscillation supplies a small push either to the left or right depending on the phase (time). Thus the
precise time at which the bob arrives near this position is crucial and this, in turn, is determined by the
time at which it left the same position after the preceding swing. Here is the physical interpretation of
sensitive dependence upon initial conditions.

6. How attractive is chaos?

The analysis we have sketeched above leads to the rigorous proof of an infinite set of “chaotic”
motions in a particular equation. The same ideas can be generalized and applied to a wide range of
problems (cf. Wiggins [1988]). This seems like a satisfying state of affairs. But at this point honesty
compels us to point that all is not rosy in the study of chaotic dynamics. Although this analysis
establishes that a specific deterministic differential equation possesses chaotic orbits and provides an
estimate for the parameter range(s) in which they exist, it does not necessarily imply that we have a
strange or chaotic attractor. An attractor for a flow or map in an indecomposable, closed, invariant set
for the flow or map, which attracts all orbits starting at points in some neighborhood. The maximal such
neighborhood is the domain of attraction or basin. We call an attractor strange if it contains a transverse
homoclinic orbit [Guckenheimer and Holmes 1983, chap. 5]. Here indecomposable means that the set
cannot be separated into smaller, “basic” pieces: the existence of a dense orbit, as in the horseshoe,
implies indecomposability. Invariant means that orbits starting in the set remain in it for all forward and
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backward time. The main physical consequence of indecomposability is that typical orbits attracted to
the set continually wander about, exploring its entirety, and not settling down to some “simpler”
subset. A strange attractor is therefore one in which almost all orbits exhibit the chaotic dynamics
typical of the horseshoe orbits which correspond to the nonperiodic symbol sequences described in
section four.

Since their flows preserve volume, the Hamiltonian systems we have considered here cannot possess
attractors, but one can easily incorporate (small) damping terms into the Melnikov analysis and
conclude that horseshoes exist in the weakly dampled, driven pendulum, for example,

i=p, p=-—sing+ecost—ép. (6.1)

It is easy to see that all orbits of (6.1) remain trapped in a band B={(q, p)||p|=T} in the
(cylindrical) phase space. If we choose I" > (1 + €)/8, then the second component of (6.1) admits the
bounds

p<|-sin g|+ ¢|cost| - 8|p|=-8|p|+1+e, p>0, (6.2a)
p=é8|p|-(1+¢), p<o0, (6.2b)

and thus the vector field points into B for all ¢. B is therefore a forward invariant region or trapping
region for the Poincaré map P; the forward images of B all lie in the interior of B. At the same time,
the reader can modestly extend the computations of section 5 to include the dissipation term and to
conclude that, for (6.1),

M(t,) = —88 + 2¢m sech(w/2) cos t, (6.3)
and hence that there are transverse homoclinic orbits for ¢, § small provided that
em > 46 cosh(m/2). (6.4)

Intuitively, if the force amplitude (&) sufficiently exceeds the dissipation (6), then motions which
repeatedly pass the unstable, inverted equilibrium can be sustained. These enable the chaotic motions
and the Melnikov calculation allows us to compute an approximate ‘‘stability boundary” for the
existence of such motions.

In this case, the attracting set A can be defined as the intersection of all forward images of B and,
since det DP = exp(—2m6) <1 (a nice exercise), P contracts areas by a constant factor and the set

A= P(B) (6.5)

has zero area. The attracting set is therefore very “thin”, but it need not be a topologically simple
curve. In fact, in this case, A certainly contains the homoclinic points and their attendant horseshoes
displayed above, and any attractors are certainly contained in A, but A itself need not be indecompos-
able. To display parameter values for which A as a whole and not just A, which is only part of A,
contains a dense orbit seems to be very difficult. In fact, work of Newhouse [1980] on wild hyperbolic
sets and the presence of infinitely many stable periodic orbits at certain parameter values for maps like
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P shows that there are a lot of values for which A cannot be indecomposable. (Any candidate for a
dense orbit, once trapped in the basin of a sink, would be out of the running!) Thus a ““typical”” solution
approaching A might eventually settle down to stable periodic behavior, perhaps after a chaotic
transient played out near A. (Recall that, in the horseshoe construction, almost all points starting in §
lie in some preimage of the “middle o strip and therefore leave S; they do not approach A.) In spite of
the suggestive nature of numerical simulations, this issue still awaits clarification. It is better to say that
P has a strange attracting set.
However, the canonical example of the iterated one-domensional map

Kooy = A, (1= x,) S, (x,) (6.6)

is relevant here. In almost every popular or introductory article on chaos this example is used and it is
pointed out that, as A increases from 3 to 3.58... a ‘“‘universal” sequence of period doubling
bifurcations occurs after which “chaos sets in”’, punctuated by windows (in A) of “periodic behavior”.
However, the question of the relative measure of periodic and chaotic A, values in the range 3.58 . . . to
4 was not settled until Jakobsen [1978, 1981] proved that there is a Cantor set A_ of strictly positive
Legesgue measure of “chaotic” A values. This means that, picking a parameter value between 3.58 . . .
and 4 at random, one has a finite probability of picking a map with a strange attractor, even through
every such ‘“chaotic” A is surrounded by a (tiny) open set of periodic A, for which f, has a simple
periodic attractor. More precisely, for each A€ A_, f, possesses an absolutely continuous invariant
measure supported on a collection of intervals. Almost all orbits therefore display “statistical”” behavior
and we have a genuine strange attractor, dense orbit and all. It is almost proved that the complement of
A,, clearly open, is also dense. But A — A_ contains some rather pathological cases as well as those A
values for which f, has a stable periodic orbit (cf. Johnson [1987], Guckenheimer and Johnson [1990]).
Even for this example the complete story is surprisingly complicated.

It now appears that part of the strange attractor problem for two-dimensional diffeomorphisms such
as the Poincaré map of the damped, driven pendulum has also been solved. Benedicks and Carleson
[1988] have recently announced a theorem implying that the Hénon map

xn+1=yn’ yn+1=—£xn+l"('_yi (67)

does possess genuine strange attractors for a set of (u, ) values of strictly positive measure, with £ #0
and smail. More precisely, they show that (6.7) has a strictly positive Lyapunov exponent for (u, €)
contained in such a set; the existence of smooth invariant measures is still open. Mora and Viana [1990]
have now extended this result. (For £ =0, (6.7) collapses to (6.6), cf. Holmes and Whitley [1984]). This
is an essential step in the study of maps which fold rather than those, like the Lorenz model, which cut.
Moreover, Hénon-like maps appear near homoclinic points as the latter are created in (quadratic)
tangencies of stable and unstable manifolds; consider, for example, what happens in (6.1) as ¢ increases
for fixed & >0 (cf. Guckenheimer and Holmes [1983], sections 6.6, 6.7). When these results are put
together, we may be close to a satisfactory resolution of the strange attractor problem.

7. Discussion

In the preceding pages we have seen how a simple perturbation calculation, together with the
Smale-Birkhoff theorem, can provide proof of the existence of ‘“chaos” in specific differential
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equations. We have seen how the resulting “unpredictability”, or sensitive dependence on initial
conditions, follows naturally from the existence of a topological conjugacy between orbits in phase
space and the shift map on symbol sequences. However, we have also learned that this is not sufficient
to conclude the existence of a strange attractor: that almost all orbits behave unpredictably. What
morals can be drawn from this type of analysis?

The first is that the paradigms of abstract dynamical-systems theory, with its stress on structural
stability and generic properties (cf. Smale [1967]), provide invaluable guidance in the study of specific
problems. This sort of theory tells us what to look for. It is commonplace in physics that theoretical
biases and expectations influence our interpretation of the data. Before applied scientists woke up to
the possibility of strange attractors and chaos, they tended to ignore a lot of “anomolous numerical
results”. Of course, now there is a tendency to over-react; I doubt that strange attractors are quite as
prevalent, or important, as the many announcements in Phys. Rev. Lett., Phys. Lett. A, etc., suggest.
However, the general theory does provide us with lists of certain species and hunting licenses. This
brings me to my second point.

Methods are now becoming available for the detection of solutions with interesting global properties
in specific nonlinear models. That discussed in the present paper is only one example; the reader will
find many more in the references. Numerical simulations play an important part here, although I have
not considered them in this paper. There is also a very nice interplay between numerical experiment
and rigorous results, clearest perhaps in the careful simulations of Jim Yorke and his colleagues and the
results on numerical approximation of “true” orbits which they have obtained (e.g., Hammel et al.
[1988], Nusse and Yorke [1989a, b]). A further important strand is the increasing quantity and quality
of experimental evidence which demonstrates that chaotic motions and strange attractors do appear in a
diverse range of physical systems, including apparently simple electrical circuits and mechanical devices
(Bergé, et al. 1987, Moon 1987]. (The evidence in turbulence, with respect to which the relevance of
strange attractors was suggested almost twenty years ago [Ruelle and Takens 1971}, is more prob-
lematic, especially in open flows and fully developed turbulence. See Holmes [1990], for example.) The
ideas of dynamical-systems theory has also led to a number of new methods of data analysis; dimension
computations, Lyapunov exponents, phase-space reconstruction, spectra of dimensions, etc., although
much remains to be learned about the applicability and validity of such methods.

The “paradigm’ mode has its dangers. Attempts to understand (pieces of) the world often start with
metaphor: one studies a simpler system which “looks like” the real object of interest, but one does not
insist on fundamental connections or derivations ‘“‘from first principles”. The fact that small sets of
differential equations and iterated maps can exhibit complicated behavior has stimulated a lot of such
metaphorical studies. Dynamical-systems theory has potentially dangerous side effects in this resepct.
Certain persons seem to prefer to abandon hard won, detailed knowledge of problems like turbulence
in boundary or shear layers in favor of metaphors, such as coupled map lattices, which have little
obvious connection with the underlying physics. In most cases it still remains to relate these to
fundamental principles, and so in turn the metaphors into models. However, it is certainly true that the
notion of universality — topological and metric behavior which is, to some extent, independent of the
precise system —confers respectability on some such metaphors and reveals underlying similarities of
structure across fields of application. Unfortunately, none of the famous ‘“bifurcation to chaos”
scenarios — period doubling, quasiperiodic, etc. —are sufficiently general that we can entirely dispense
with analyses to determine what actually occurs in specific models. The fact that we have methods as
well as paradigms is central to this enterprise. (In the biological sciences, where the problems are more
difficult and less clearly defined, the metaphorical approach is of considerable value, e.g., Glass and
Mackey [1988]).
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The third moral is that mathematics and physics are coming closer again. Dynamical systems theory
is just one instance of a general movement. In The Value of Science, Poincaré [1921] observes,

“The mathematician should not be for the physicist a mere purveyor of formula; there should be

between them a more intimate collaboration. Mathematical physics and pure analysis are not

merely adjacent powers, maintaining good neighborly relations; they mutually interpenetrate and

their spirit is the same.”
In spite of this, I do not really see a “new science” here, in particular I do not see that “chaos theory”
even exists as a coherent object, for example like the quantum and relativity theories. I would certainly
hesitate to label it SUPERB, as Penrose [1989] labels these two theories in his recent critique of
another new science: artifical intelligence. However, we do have a loose collection of ideas and
methods, many of the latter inherited from “classical”” applied mathematics, which we can add to the
scientist’s toolbox. There is a great ferment of excitement and activity. The artificial distinction between
pure and applied mathematics is weakening. Mathematicians and scientists from different fields are
talking to one another. Some are even listening.
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