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ABSTRACT

It is shown that for two square matrices A and B with algebraic elements,

e%eP =ePe” if and only if AB= BA. Moreover, the in some sense best possible

perturbation inequality
lle® = ePlls < lle?llg( e~ — 1)

for a normal matrix A is proven.

1. NONCOMMUTING AND COMMUTING EXPONENTIALS

It is a plain and well-known fact that if AB = BA holds for two square
matrices A and B, we also have e% B =¢Bed =4 *E

In this note we want to prove a partial converse; we shall show that under
certain circumstances e“e® = ePe4 implies AB = BA. Of course, no general

conclusion of this type is possible, as can be seen by simple examples: If

N _{0 1 _{0 1
Al_(o —m')’ B, (0 —2m’)’ B, (o 0)’

we have
AB,#BA;, but etePi=ebleti=pMB
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and
eAeBr = gBapAl 4 oA+ By
If now
a O .
A2=(0 b) with a#b,
we get
b
e?—e
a a b
Ay By _ | € e By, Ay — e’ e Ao+ By _ e’
e e 0 bl e e 0 s’ 4 a—b
e e
0 e?

Since e* — z assumes every complex value infinitely often (Picard’s theorem
and the periodicity of e*), we see, taking b — a = z, that for a lot of values a
and b

eBepAs o pA2pBy — pAc+ By

On the other hand, for all but a countable number of values a — b there holds
no equality between any two of the three expressions eB2e2, g4z B2 gA2+ Bz

In SIAM Rev. D. S. Bernstein (1988) posed a problem that refers to an
article of M. Fréchet’s (1952). Fréchet assumed (see p. 12 and p. 18 of his
paper) that e“e®=¢e4%8 always entails e“e®=eB42. This is seen to be
incorrect by one of the examples given here. Restriction to real matrices does
not change the situation, since our complex two by two examples can be read
as real four by four examples using the identification of a complex number
x + iy with the real matrix

x -y
v <)

Bernstein’s problem of proving or disproving Fréchet’s assumption for real
matrices is thus solved negatively. An explicit example: If z=a +ib is a
solution of ¢* — 2z =1, e.g. a = 2.088843... and b =7.461489..., then for

0 0 0 0 0 0 1 0
o o 0o o _[0 0 o 1
A=1o 0 « -b| ™ B=|g 0 0 o

0 0 b a 0 0 0 0
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we get
1 O 1 0 1 0 a+1 -b
A B_ A+B _ 0 1 0 1 B A _ 0 1 b a+1
ee =e¢ 0 0 a+1 -b| % Tlo 0 a+1 —b
0 0 b a+1 0 0 b a+1l

It should be mentioned® that Fréchet corrected his error (which also was
detected by W. Givens in a review of Fréchet’s paper) in a subsequent note
(1953), and several other authors published studies on the solutions of
eeV=¢e""Y.

For noncommuting exponents thus almost everything being possible, we
nevertheless have the following

THEOREM 1 If A and B are square matrices with algebraic elements,
then e®e® = ePe? if and only if AB = BA.

Proof. Only one direction needs to be proven, the other one being
obvious.

Let m(A) = Hk (A —A)* be the minimum polynomial of A.
Lindeman’s theorem on the transcendence of 7 implies that no two zeros of
m differ by an integral multiple of 27i. Hence, using Hermite’s interpolation
formula, we can choose a polynomial f such that for g f o exp the relations
g(>\)—>\ (A<j<k), gA)=1for p;>1 (1<j<k), and g¥(Ap=0
(1< k 1<w < #;) hold. By well-known propertles of matrix functlons we
conclude that g(A) = A = f(e?), whence A is representable as a polynomial
in e?. Since this is true for B and e%, too, we see that in the case of
e%e® = e¢Be the relation AB = BA necessarily follows. [ |

The theorem implies that every pair of noncommuting algebraic (in
particular rational) matrices A and B violates the functional equation of the
exponential, since at least one of the products e?e® or e®e? differs from
e+ B, As is obvious from the proof, the equivalence stated in the theorem
also holds for nonalgebraic matrices A and B if, e.g.,

lim VA" <7 and lim {[B"] <.
n— o0 n—o0

! Communicated to the author by Professor M. S. Klamkin.
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2. A PERTURBATION INEQUALITY FOR NORMAL EXPONENTIALS

In connection with the case of noncommuting matrices the classical Lie
product formula

n
hm (eA/neB/n) =eA+B
n— oo

deserves more popularity in linear algebra courses; it is strange that for a
proof, simple and elementary as it is, we have to refer to quite advanced
textbooks like Reed and Simon (1972) or Varadarajan (1984). We use it here
to derive a best possible perturbation inequality for normal matrix exponen-
tials which is slightly better than the estimate mentioned in van Loan (1977),
Moler and van Loan (1978), and Golub and van Loan (1983). Since the
argument is not restricted to the finite dimensional case, we have chosen a
Hilbert space formulation. Thus in the matrix case the norm has to be
understood as being Euclidean or unitary.

TuEOREM 2. If A is a normal bounded linear operator on a Hilbert space
and B is another bounded linear operator on that space, then

lle® = ePli<lle?|(e" P - 1).
Proof. Observing
d
E(eA(lft)eBt)___ _AeA(1~t)eBt+eA(1At)BeBz

=eAM-O(B — A)eB‘,

we conclude
1
e*—e® =f e "O(A - B)eBdt.
0
Hence we get the estimate

1
A(l —
IleA—eBIISIIA—BIIL lle* =0 11e ™| de.
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Since for normal operators A we have ||A"|| =||A||", by a straightforward
continuity argument we see |le?!|| = ||e4||! for every ¢ > 0.
Now we use the Lie product formula to get

“eBz“= lim H(e(BVA)t/neAt/n)"”
n—oo

<|le||‘limsup e ® =4/
n — oo

< “eA“teHA—BHt’

and hence by the former estimate we have
1
lle* — Bl <I1A = Billle4|| [ €M~ 5Wdt = le||(eh 51— 1). u
0

If A and B are arbitrary commuting operators on a Banach space, then
the same estimate trivially follows from

1
et —ef = eAf (A—B)e®Mds.
0

The inequality is best possible in the sense that a relation |le® — e®||/|le?| <
f(|A — Bj}) holding for a given normal operator A and an arbitrary B implies
fx)=e*—1 (x> 0); in the abovementioned literature f(x) = xe* is used
instead.

ADDENDUM

The papers by Morinaga and Néno (pointed out to the author by
Professor J. L. Brenner after completion of the present paper) contain a very
thorough discussion of the solutions of e*e¥=e**Y, especially of those of
orders two and three. Among other things, the authors prove that there are
no real order two counterexamples to Fréchet’s false claim. The 1950 paper
also contains a result similar to the one mentioned here at the end of Section
1. However, the way of derivation is more complicated than a proof based on
that of Theorem 1 in the present note.
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