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ABSTRACT 

It is shown that for two square matrices A and B with algebraic elements, 
e*ea = eae” if and only if AB = BA. Moreover, the in some sense best possible 
perturbation inequality 

for a normal matrix A is proven. 

1. NONCOMMUTING AND COMMUTING EXPONENTIALS 

It is a plain and well-known fact that if AB = BA holds for two square 
matrices A and B, we also have eAeB = eBeA = eA+B. 

In this note we want to prove a partial converse; we shall show that under 
certain circumstances e *e B = e Be * implies AB = BA. Of course, no general 
conclusion of this type is possible, as can be seen by simple examples: If 

we have 

A,B, f B,A,, but e*~eB~ = e4e*, = e*~+B~, 
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If now 

with a+b, 

we get 

Since e” - z assumes every complex value infinitely often (Picard’s theorem 
and the periodicity of e*), we see, taking b - a = z, that for lot of values a 

and b 

eB2eA 2 + eAzeBz = eAz+B, 

On the other hand, for all but a countable number of values a - b there holds 
no equality between any two of the three expressions e Bze Ap, e Aze Bz, e Az+ B2. 

In SZAM Rev. D. S. Bernstein (1988) posed a problem that refers to an 
article of M. Frechet’s (1952). Frechet assumed (see p. 12 and p. 18 of his 
paper) that e Ae B = e A+B always entails e Ae B = e Be A. This is seen to be 
incorrect by one of the examples given here. Restriction to real matrices does 
not change the situation, since our complex two by two examples can be read 
as real four by four examples using the identification of a complex number 
x + iy with the real matrix 

Bernstein’s problem of proving or disproving Frechet’s assumption for real 
matrices is thus solved negatively. An explicit example: If z = a + ib is a 
solution of et - z = 1, e.g. a = 2.088843... and b = 7.461489 . . . . then for 
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we get 

It should be mentioned’ that Frtchet corrected his error (which also was 
detected by W. Givens in a review of Frechet’s paper) in a subsequent note 
(1953), and several other authors published studies on the solutions of 
e”eY = g+y* 

For noncommuting exponents thus almost everything being possible, we 
nevertheless have the following 

THEOREM 1. lf A and B are square matrices with algebraic elements, 
then eAeB = eBeA if and only if AB = BA. 

Proof. Only one direction needs to be proven, the other one being 
obvious. 

Let m(X) = n!=i(h - h j)pj be the minimum polynomial of A. 
Lindeman’s theorem on the transcendence of r implies that no two zeros of 
m differ by an integral multiple of 2ni. Hence, using Hermite’s interpolation 
formula, we can choose a polynomial f such that for g = f 0 exp the relations 
g(Xj)=Xj (1~ j<k), g’(Xj)=l for pj>l (1~ j<k), and g(“)(Aj)=O 
(1 < j < k, 1 < Y < ~1 j) hold. By well-known properties of matrix functions we 
conclude that g(A)= A= f(e*), w h ence A is representable as a polynomial 
in e A. Since this is true for B and e B, too, we see that in the case of 
e Ae B = e Be A the relation AB = BA necessarily follows. n 

The theorem implies that every pair of noncommuting algebraic (in 
particular rational) matrices A and B violates the functional equation of the 
exponential, since at least one of the products eAeB or e Be A differs from 
e A+B. As is obvious from the proof, the equivalence stated in the theorem 
also holds for nonalgebraic matrices A and B if, e.g., 

‘Communicated to the author by Professor M. S. Klamkin 
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2. A PERTURBATION INEQUALITY FOR NORMAL EXPONENTIALS 

In connection with the case of noncommuting matrices the classical Lie 
product formula 

lim (e A/@n)” = @+B 
n+cC 

deserves more popularity in linear algebra courses; it is strange that for a 
proof, simple and elementary as it is, we have to refer to quite advanced 
textbooks like Reed and Simon (1972) or Varadarajan (1984). We use it here 
to derive a best possible perturbation inequality for normal matrix exponen- 
tials which is slightly better than the estimate mentioned in van Loan (1977) 
Moler and van Loan (1978), and Golub and van Loan (1983). Since the 
argument is not restricted to the finite dimensional case, we have chosen a 
Hilbert space formulation. Thus in the matrix case the norm has to be 
understood as being Euclidean or unitary. 

THEOREM 2. Zf A is a nmmul bounded linear operator on a Hilbert space 
and B is another bounded linear operator on that space, then 

lb A - eBll < IIeAII(eIIA-BII - 1). 

Proof. Observing 

$(e A(lbt)eBt) = _ ~~A(l-f)~Bf + eA(l-t)~eBt 

= eA(‘-‘)( B _ A)eB’, 

we conclude 

eA-e - B- J ‘eA(lp’J(A - B)eB1dt. 
0 

Hence we get the estimate 

lleA - eBll < (IA - Bll~ljleAC1~“ll IleB’II dt. 
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Since for normal operators A we have lIA”Il = l\Al\“, by a straightforward 
continuity argument we see lleAfll = lIeAlIt for every t > 0. 

Now we use the Lie product formula to get 

(JeBtJ( = nli_mm (l(e(B-A)t/neAt/n)“I/ 

< I~eA~ltlimsup~le(B-A”‘“~J” 
n+m 

and hence by the former estimate we have 

lIeA - eBIl < (IA - BII lleAIl&leiiAeBlirdt = IIeAll(ei~ApB1~ - 1). 

If A and B are arbitrary commuting operators on a Banach space, then 
the same estimate trivially follows from 

e*-eB=e* - B)etBpA)‘dt. 

The inequality is best possible in the sense that a relation (1 e * - e BI I/ 11 e * 11 < 
f( 11 A - Bll) holding for a given normal operator A and an arbitrary B implies 
f(x) >, er - 1 (r > 0); in the abovementioned literature f(x) = xex is used 
instead. 

ADDENDUM 

The papers by Morinaga and N8no (pointed out to the author by 
Professor J. L. Brenner after completion of the present paper) contain a very 
thorough discussion of the solutions of e”ey = e’+Y, especially of those of 
orders two and three. Among other things, the authors prove that there are 
no real order two counterexamples to Fritchet’s false claim. The 1950 paper 
also contains a result similar to the one mentioned here at the end of Section 
1. However, the way of derivation is more complicated than a proof based on 
that of Theorem 1 in the present note. 
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