
Chapter 9
Weakly-Nonlinear Oscillators

Many systems function through repeated cycles of operation—from the spinning of
gears in a machine, the physiology of heartbeats, biological behaviour on the 24h
circadian cycle, to seasonal climate changes during the motion of the earth around
the sun each year. The most basic models for such systems take the form of oscillator
equations, having regular predictable periodic solutions; the simplest such model is
the linear oscillator equation,

d2x

dt2
+ ω2

0x = 0, (9.1)

with natural frequency ω0. It has the general solution x(t) = A sin(ω0t) +
B cos(ω0t), with the constants A and B being determined by the initial conditions
imposed on the system.

More detailedmodels of oscillatory systems include additional terms that describe
other influences that modify the solutions. If these effects are weak, as indicated by
a dimensionless system parameter being small, then the model can be written as

d2x

dt2
+ ω2

0x = ε f
(
x, dx

dt , t
)
, ε → 0. (9.2)

Such models are called weakly-nonlinear oscillators since they reduce to the linear
oscillator (9.1) when the perturbation terms (potentially including nonlinearities) are
suppressed. In the context of mechanical systems, Eq. (9.2) can describe the small-
amplitude motion of a pendulum, or a mass attached to a nonlinear spring.

In the framework of the earlier chapters on perturbationmethods, (9.2)may appear
to be a straightforward regular perturbation problem, but we will see that regular
perturbation expansions will not be able to address the question of greatest interest
for oscillating systems, which is,

If we understand the behaviour of the system for a single cycle of the oscillation, can we
determine how the perturbation forcing terms cumulatively affect the problem over long
times and many oscillation periods?

© Springer International Publishing Switzerland 2015
T. Witelski and M. Bowen, Methods of Mathematical Modelling,
Springer Undergraduate Mathematics Series, DOI 10.1007/978-3-319-23042-9_9

185



186 9 Weakly-Nonlinear Oscillators

Two perturbation methods will be described to illustrate how weak influences can
be incorporated into the leading order solution to obtain more accurate long-time
predictions of oscillatory behaviour.

9.1 Review of Solutions of the Linear Problem

We begin by briefly reviewing the essential results for the linear oscillator equation
that form the basis for the perturbation methods for (9.2). As discussed above, the
unforced linear oscillator equation is characterised by a natural frequency ω0 > 0
and has the general homogeneous periodic solution xh(t),

d2x

dt2
+ ω2

0x = 0 =⇒ xh(t) = A sin(ω0t) + B cos(ω0t). (9.3)

Now consider the inhomogeneous version of this equation, driven by a periodic
forcing function f (t),

x ′′ + ω2
0x = f (t).

The function f canbedirectly replacedby its Fourier series, f (t) = ∑
k Ck sin(γk t)+

Dk cos(γk t), and then by the linearity of the equation, the overall solution will be
the sum of the contributions from each of the terms in the series for f , yielding
x(t) = xh(t) + ∑

k xk(t). Each Fourier term yields a problem of the form

x ′′
k + ω2

0xk = Ck sin(γk t) + Dk cos(γk t). (9.4)

If γk �= ω0 then the general solution is given as a combination of homogeneous and
particular solutions as

xk(t) = A sin(ω0t) + B cos(ω0t)︸ ︷︷ ︸
Homogeneous solution

+ Ck

ω2
0 − γ 2

k

sin(γk t) + Dk

ω2
0 − γ 2

k

cos(γk t)

︸ ︷︷ ︸
Particular solution

.

The particular solution can be obtained from themethod of undetermined coefficients
or other elementary approaches. This solution is not valid for γk = ω0, which is
called the case of resonant forcing (forcing at a natural frequency of the system).
For resonant forcing, the method of undetermined coefficients suggests a different
form for the particular solution, x p(t) = c1t sin(ω0t) + c2t cos(ω0t). Substituting
this into (9.4) and matching coefficients of corresponding terms yields the general
solution as

xω0(t) = A sin(ω0t) + B cos(ω0t)︸ ︷︷ ︸
Homogeneous solution

+ C

2ω0
t cos(ω0t) + D

2ω0
t sin(ω0t)

︸ ︷︷ ︸
Resonant forced response

.
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Fig. 9.1 Solutions of the
forced linear oscillator
equation (9.4) with ω0 = 1:
the non-resonant solution for
γk = 2 and resonant solution
for γk = 1

The resonant response, while being oscillatory with period 2π/ω0, is notable for
having an amplitude that exhibits unbounded growth with increasing time. The terms
t cosω0t and t sinω0t are commonly called secular growth terms (see Fig. 9.1). We
will see that the occurrence of such terms is the central issue that must be addressed
in constructing accurate long-time asymptotic solutions for perturbed oscillators.

9.2 The Failure of Direct Regular Expansions

In order to illustrate the shortcomings of the standard regular perturbation expansion
approach, we consider two simple perturbed linear oscillator problems in the limit
ε → 0, namely

x ′′ + x = −εx, x(0) = 1, x ′(0) = 0, (9.5)

and
x ′′ + x = −εx ′, x(0) = 1, x ′(0) = − 1

2ε. (9.6)

Assuming the solutions to be perturbation expansions of the form

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · , (9.7)

yields an ordered sequence of initial value problems for each xn(t) with the leading
order for both (9.5) and (9.6) reducing to (9.3) with ω0 = 1. Solving these sequences
of sub-problems up to O(ε2), yields the solution of (9.5) as

x(t) ∼ cos t − 1
2εt sin t + 1

8ε
2
(

t sin t − t2 cos t
)

, (9.8)

while the solution of (9.6) is given by

x(t) ∼ cos t − 1
2εt cos t + 1

8ε
2
(

t sin t + t2 cos t
)

. (9.9)
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While these two expansions appear quite similar in form, this masks the fact that
they come from problems predicting very different behaviours. Problem (9.5) can be
re-written in the form (9.3) as x ′′ + (1 + ε)x = 0 and it is straight forward to show
that its exact solution is

xexact(t) = cos(
√
1 + ε t). (9.10)

In other words, the exact solution has a slightly perturbed natural frequency, ω0 =√
1 + ε, compared toω0 = 1 for the leading order problem, x ′′

0 +x0 = 0. In contrast,
(9.6) is a weakly damped linear oscillator of the form x ′′ +εx ′ + x = 0, and its exact
solution is given by

xexact(t) = e−εt/2 cos
(√

1 − 1
4ε

2 t
)
. (9.11)

The respective periodic and decaying oscillatory behaviours of these two solutions
are shown in Fig. 9.2 along with plots of the expansions (9.8) and (9.9). While the
expansions match their corresponding solutions for early times, both dramatically
diverge when their later time behaviours become dominated by the secular growth
terms.

While these results might suggest that the perturbation expansions have produced
incorrect descriptions, we should not dismiss them too soon. In fact, taking the Taylor
series expansions of (9.10) and (9.11) for ε → 0 at fixed finite times (t = O(1))
directly reproduces (9.8) and (9.9). Equations (9.8) and (9.9) are indeed correct, but
they must be used with caution.

Applying the fundamental assumption of asymptotic ordering to the terms in (9.7),
the expansions are valid only when

|x0(t)| � |εx1(t)| � |ε2x2(t)| � · · · , ε → 0. (9.12)

Fig. 9.2 Exact solutions and regular expansions for problem (9.5): (9.10) and (9.8) (Left) and for
problem (9.6): (9.11) and (9.9) (Right), both with ε = 1/5
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Considering the first two terms from (9.8), | cos t | � | 12εt sin t | holds only if 1 � εt .
In otherwords, the expansions can only be expected to holdwhile this product is small
(“for a limited time only” is an appropriate phrase, here applying for 0 ≤ t 
 1/ε).

These examples are be a bit troubling—we have worked out higher order terms in
the asymptotic expansions since the leading order solution by itself, x0(t) = cos t ,
does not capture the differences that distinguish these two problems from each other.
Yet the additional terms yield contributions that restrict the validity of the expansion
to relatively short times, when effects like slow growth or decay or changes in the
oscillation frequency have not yet fully developed. This suggests the need for other
forms of perturbation expansions that can overcome these limitations.

9.3 Poincare–Lindstedt Expansions

The failure of the regular expansion to describe periodicmotion on long timescales in
the context of astronomy (for themotion of the planets)motivated the development of
an improved approach known as the Poincare–Lindstedt method. A key idea behind
the method is that the regular perturbation expansion is too restrictive in its form
and does not allow for the possibility that the solution may have a frequency that is
shifted from the leading order natural frequency ω0 (as in (9.10)).

The Poincare–Lindstedt approach begins with a change of variables in terms of a
frequency that can depend on the perturbation parameter,

x(t) = x̃(θ) with θ = Ω(ε)t, (9.13)

such that Ω(0) = ω0. We then seek regular perturbation expansions in terms of the
new unknowns,

x̃(θ) = x̃0(θ) + εx̃1(θ) + · · · , Ω(θ) = ω0 + εω1 + · · · . (9.14)

Wewill nowgive an example to illustrate how this seeminglyminor change allows the
Poincare–Lindstedtmethod to eliminate secular growth terms andobtain perturbation
expansions that are valid over longer times for some problems.

Consider a problem similar to (9.5),

x ′′ + 4x = −εx, x(0) = 3, x ′(0) = −8. (9.15)

After the change of variables (9.13), we arrive at the modified problem for x̃(θ),

Ω2 d2 x̃

dθ2
+ 4x̃ = −εx̃, x̃(0) = 3, Ω

dx̃

dθ

∣
∣∣∣
θ=0

= −8. (9.16)
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Substituting expansions (9.14) into (9.16) and separating by orders of ε yields, at
O(ε0),

ω2
0

d2 x̃0
dθ2

+ 4x̃0 = 0, x̃0(0) = 3, ω0
dx̃0
dθ

∣∣
∣∣
θ=0

= −8, (9.17a)

and at O(ε1),

ω2
0

d2 x̃1
dθ2

+ 4x̃1 = −x̃0 − 2ω0ω1
d2 x̃0
dθ2

, (9.17b)

x̃1(0) = 0, ω0 x̃ ′
1(0) = −ω1 x̃ ′

0(0),

and so on at higher orders. Note that lower-order terms from the expansion of the
solution (x̃k for k = 0, 1, . . . , n − 1) should be shifted to the right-hand side of the
equation for x̃n and be treated as known parts of the inhomogeneous forcing.

Identifying the natural frequency as ω0 = 2 from (9.15) with ε = 0, the leading
order solution can then be obtained from (9.17a) as

x̃0(θ) = −4 sin θ + 3 cos θ. (9.18)

Substituting these results into the O(ε) problem (9.17b) yields

4
d2 x̃1
dθ2

+ 4x̃1 = [16ω1 − 4] sin θ + [−12ω1 + 3] cos θ, (9.19)

x̃1(0) = 0, 2x̃ ′
1(0) = 4ω1.

At this point ω1 is an undetermined constant. Problem (9.19) can be solved for any
valueω1 to obtain x̃1(θ). However, noting the presence of the resonant forcing terms,
sin θ and cos θ , on the right-hand side of the equation, the solution would include
secular growth terms. But, if those resonant terms in (9.19) were eliminated by an
appropriate choice of ω1, then x̃1(θ) would be bounded and x̃0 + εx̃1 would remain
asymptotically well-ordered for all times. For this problem, this criterion selects
ω1 = 1/4. This choice yields x̃1(θ) = 1

2 sin θ , and then using (9.13) and (9.14) the
solution of the original problem can be written as

x(t) ∼ (−2 + 1
2ε) sin([2 + 1

4ε]t) + 3 cos([2 + 1
4ε]t). (9.20)

This solution holds over 0 ≤ t 
 1/ε2; compare this with (9.8), which was valid
only over 0 ≤ t 
 1/ε, see Fig. 9.3. In fact, even without going through the work of
solving for x̃1(θ), the Poincare–Lindstedt approach has yielded an improved solution
by determining ω1 through suppressing the resonant terms in the O(ε) equation; the
condition on ω1 is another example of a solvability condition.
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Fig. 9.3 Comparison of the
regular expansion and the
Poincare–Lindstedt leading
order solution against the
exact solution of (9.15).
Slight shifts between the
Poincare–Lindstedt and
exact solution are visible for
larger times

While the example above was a linear problem, the Poincare–Lindstedt method
extends directly to nonlinear equations with perturbation terms of the form ε f (x).
However, readers are right to suspect that the approach has some limitations. Noting
that the general solution of the leading order problem has two independent solution
terms, x̃0 = A sin θ + B cos θ , and that each leads to resonant forcing in (9.19),
it should be a little surprising that the coefficients of both resonant terms can be
zeroed using only one degree of freedom, ω1. In fact, this is only possible when x(t)
is a periodic solution, leading to a degenerate linear system for the coefficients of
the resonant forcing terms. Hence, the Poincare–Lindstedt method can only be used
to obtain periodic solutions, and cannot, for example, generate the slowly decaying
solution (9.11). To overcome this limitation, we consider another related perturbation
method.

9.4 The Method of Multiple Time-Scales

Like the Poincare–Lindstedt method, the method of multiple time-scales (MMTS)
determines solutions to perturbed oscillators by suppressing resonant forcing terms
that would yield spurious secular terms in the asymptotic expansions. The method of
multiple time-scales makes a less restrictive assumption on the form of the solution
than employed by the Poincare–Lindstedt method; it assumes that the solution can
be expressed as a function of multiple (for our purposes, just two) time variables,

x(t) = X (t, τ ), (9.21)

where t is the regular (or “fast”) time variable and τ is a new variable describing the
“slow-time” dependence of the solution. In a physical context, t could represent a
circadian rhythm of a daily cycle, while τ might describe changes to this cycle that
are only noticeable over the timespan of years.



192 9 Weakly-Nonlinear Oscillators

The simplest approach to determining the choice of the slow time variable, is to
identify the combinations of ε and t present in secular terms in the regular expansion.
In the examples from Sect. 9.2, τ = εt , so we focus on this case.1

The first step is to perform the change of variables (9.21), where by using the
chain rule, we arrive at

dx

dt
= ∂ X

∂t
+ ∂ X

∂τ

dτ

dt
= ∂ X

∂t
+ ε

∂ X

∂τ
, (9.22)

and similarly,
d2x

dt2
= ∂2X

∂t2
+ 2ε

∂2X

∂t∂τ
+ ε2

∂2X

∂τ 2
. (9.23)

The autonomous weakly-nonlinear oscillator equation

d2x

dt2
+ x = ε f

(
x, dx

dt

)
(9.24)

then becomes

∂2X

∂t2
+ 2ε

∂2X

∂t∂τ
+ ε2

∂2X

∂τ 2
+ X = ε f (X, Xt + εXτ )

which can be rearranged into a more useful form as

∂2X

∂t2
+ X = ε

(
f (X, Xt + εXτ ) − 2Xtτ

) − ε2Xττ . (9.25)

We still have a perturbed linear oscillator, but now, we must specify that the oscilla-
tion is with respect to the fast time variable t , and we note that the right-hand side
perturbation involves additional terms and derivatives with respect to t and τ . It may
seem peculiar to replace the simpler ODE (9.24) by a more complicated partial dif-
ferential equation, but (9.25) can still be solved through application of ODEmethods
and it provides the degrees of freedom necessary to properly describe the system over
longer times.

The next step is to expand theMMTS solution as a regular perturbation expansion,

X (t, τ ) = X0(t, τ ) + εX1(t, τ ) + O(ε2), (9.26)

and substitute into (9.25). Analogous to the Poincare–Lindstedt method, we want to
suppress any resonant terms that occur in order to determine the currently unspecified
parts of the solution. The final step is then to reconstruct the relationship between
fast and slow times, say τ = εt , to obtain the final solution as x(t) ∼ X0(t, εt).

1Other problems, and additional timescales needed for higher order expansions could involve higher-
order (slower) timescales such as τk = εk t for k = 2, 3, . . ..
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As an example, we consider a damped nonlinear oscillator,

d2x

dt2
+ x = −εκ

dx

dt
+ εx3, x(0) = 1, x ′(0) = −2, (9.27)

for ε → 0. Setting τ = εt , and following the method of multiple time-scales
decomposes the problem into the leading order problem

X0t t + X0 = 0, X0(0, 0) = 1, X0t (0, 0) = −2, (9.28a)

and at O(ε),
X0t t + X0 = −κ X0t + X3

0 − 2X0tτ , (9.28b)

X1(0, 0) = 0, X1t (0, 0) = −X0τ (0, 0).

With respect to the fast-time variable t , (9.28a) has a solution that is a linear com-
bination of sin t and cos t . However, unlike (9.3), since other (slow time) variables
appear, the coefficients in the linear combination are not constants, but are functions
dependent on the slow-time variable τ ,

X0(t, τ ) = A(τ ) sin t + B(τ ) cos t. (9.29)

From the initial conditions on X0 at t = τ = 0, we find that

A(0) = −2, B(0) = 1, (9.30)

but otherwise, A(τ ) and B(τ ) are as-yet undetermined functions.
Moving on to the O(ε) problem (9.28b), after substituting in (9.29), we obtain

X1t t + X1 =
(

−κ A + 3
4 A2B + 3

4 B3 − 2
d A

dτ

)
cos t

+
(

κ B + 3
4 A3 + 3

4 AB2 + 2
d B

dτ

)
sin t

+
(
1
4 B3 − 3

4 A2B
)
cos(3t) −

(
1
4 A3 − 3

4 AB2
)
sin(3t). (9.31)

Note that many of the terms on the right-hand side of (9.31) are a consequence of
the nonlinear term X3

0. The forcing terms must be expanded out as the sum of sines
and cosines of the fast time scale with coefficients that can only depend on the slow
time scale. For simple nonlinear products, like X3

0, this can done be through the
use of trigonometric identities (see Appendix A). For more complicated types of
nonlinear forcing terms, the right side of (9.25) should be replaced by its Fourier
series expansion (also see Appendix A). These Fourier series decompositions are
essential in separating out the resonant and non-resonant forcing terms. For (9.31),
cos t and sin t are resonant terms, while cos(3t), sin(3t) are non-resonant.
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Fig. 9.4 Comparison of the
regular expansion and the
method of multiple
time-scales leading order
solution against the exact
solution of (9.27)

To eliminate the resonant terms that would cause expansion (9.26) to break-down,
we set the respective coefficients to zero,

− κ A + 3
4 A2B + 3

4 B3 − 2
d A

dτ
= 0, κ B + 3

4 A3 + 3
4 AB2 + 2

d B

dτ
= 0. (9.32)

These two equations are the solvability conditions for this problem. They are coupled
ordinary differential equations in terms of the slow-time variable that describe the
evolution of the amplitude coefficients A(τ ), B(τ ) in solution (9.29); consequently,
they are also often called amplitude equations.

Solving the amplitude equations to determine A(τ ), B(τ ) subject to their initial
conditions (9.30) yields the MMTS leading order approximation of the solution
(9.29), as illustrated in Fig. 9.4.

9.5 Further Directions

Perturbation methods for weakly nonlinear oscillators have been developed exten-
sively in connection with many applications ranging from mechanical oscillations
and electrical systems to population dynamics. Somemore detailed introductory pre-
sentations are given in [48, 54, 56, 78], and some advanced treatments are given in
[11, 47, 58, 73, 77]. Besides Poincare–Lindstedt and the method of multiple time-
scales, other related approaches also exist, including the method of averaging [77,
92, 102] and near-identity transformations [58, 73]. The engineering approach of
harmonic balance is related to these methods.

The mathematical theory underpinning the solvability conditions coming from
the Poincare–Lindstedt and method of multiple time-scales approaches is the Fred-
holm alternative theorem [39, 93]. The Fredholm alternative supplies a criterion
for the existence or uniqueness of solutions of inhomogeneous linear problems that
applies to these oscillator equations and other classes of perturbation problems (see
Exercise 9.13).
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9.6 Exercises

9.1 Consider the problem for x(t) with ε → 0,

d2x

dt2
+ x = 32εx3, x(0) = e−ε, x ′(0) = 2 + ε.

Obtain the first two terms of the regular expansion, x(t) = x0(t) + εx1(t) + O(ε2).
Identify the homogeneous solution, resonant response and non-resonant response in
x1(t).

9.2 For each problem use the Poincare–Lindstedt expansion with the two-term
approximation of the solution, x(t) ∼ x̃0(θ) + εx̃1(θ) with θ = (ω0 + εω1)t ,
for ε → 0 to find x̃0(θ) and ω0, ω1.

(a) Are there periodic solutions for every value of a > 0 for

d2x

dt2
+ 4x = −εx3, x(0) = a, x ′(0) = 0?

(b) Find the value for a(>0) that yields a periodic solution of

d2x

dt2
+ 9x = −ε(x2 − 1)

dx

dt
, x(0) = a, x ′(0) = 0.

9.3 Apply the method of multiple scales with τ = εt to the van der Pol oscillator

d2x

dt2
+ 9x = −ε(x2 − 1)

dx

dt
ε → 0 (9.33)

to obtain a solution in the form x(t) ∼ X0(t, τ ) = A(τ ) sin(3t) + B(τ ) cos(3t).

(a) Determine the amplitude equations for A(τ ), B(τ ). Determine initial conditions
for A, B in terms of x(0), x ′(0).

(b) Let R(τ ) = √
A2 + B2. Determine the equation for d R/dτ = f (R) using the

amplitude equations from part (a). Determine the equilibrium values for R.

9.4 Show that the leading order MMTS solution for weakly nonlinear oscillators
can be written in the polar form

X0(t, τ ) = R(τ ) sin(ω0t + Φ(τ)). (9.34)

(a) Relate the amplitude R and phaseΦ to the coefficients A, B introduced in (9.29).
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(b) Show that (9.32) can be rewritten as

d R

dτ
= − 1

2κ R,
dΦ

dτ
= − 3

8 R2

and solve this simpler polar system with appropriate initial conditions.

9.5 Use the method of multiple scales to investigate the near-resonant behaviour of
the damped, driven oscillator for x(t) for ε → 0,

d2x

dt2
+ εβ

dx

dt
+ x + εαx3 = ε cos(t + γ εt),

with given parameters α, β, γ . Use the slow-timescale τ = εt . Note the presence of
τ in the forcing term on the right-hand side. (Hint: write the forcing as cos(t + γ τ))

(a) Show that the leading order solution can be written in the complex form

X0(t, τ ) = C(τ )eit + C(τ )e−i t ,

where z = x − iy denotes the complex conjugate of z = x + iy. Relate the
complex-valued function C to the real-valued functions A, B used in (9.29).

(b) Using the result of part (a) in the equation for X1(t, τ ), find the two solvability
conditions. Show that these reduce to a single complex equation for dC/dτ .

(c) Entrainment describes a solution locking onto the behaviour entirely set by a
forcing term, leaving no direct sign of the natural frequency from the unforced
problem (i.e. no homogeneous solution). Setting C(τ ) = Meiθ eiγ τ in your
equation from (b), obtain an equation for M , the real-valued constant amplitude
of the entrained solution, with θ being a (real-valued) phase constant. Determine
the detuning relation, γ = γ (M), relating the amplitude to the frequency-offset
from resonance.

9.6 Apply the method of multiple scales with τ = εt and ε → 0 to the problem

d2x

dt2
+ ε

∣∣
∣∣
dx

dt

∣∣
∣∣

dx

dt
+ x = 0, x(0) = 0, x ′(0) = 1.

Using the polar form (9.34), derive and solve the amplitude equations for R(τ ) and
Φ(τ) to obtain the leading order solution x(t) ∼ X0(t, τ ).
Hint: You will need to calculate some terms of a Fourier series. Write the series in
terms of the variable s = t + Φ on −π < s < π , namely f (s) = ∑

k ak sin(ks) +
bk cos(ks).

9.7 In Exercise 3.6, the equation for the parametrically-driven pendulum was
derived; for a specific choice of parameters, it can be written as

d2θ

dt2
+ 4 sin θ = −ε sin(4t) sin θ.

http://dx.doi.org/10.1007/978-3-319-23042-9_3
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Using the scaling for small-amplitude oscillations, θ = δx for δ → 0, at leading
order this equation yields a form of the Mathieu equation,

d2x

dt2
+ [

4 + ε sin(4t)
]

x = 0. (9.35)

Consider solutions of the Mathieu equation for ε → 0:

(a) Use the method of multiple scales with τ = εt to determine the amplitude
equations for the slowly varying coefficients in the leading order solution.

(b) Solve for the leading order solution that satisfies the initial conditions

x(0) = 5, x ′(0) = 6.

9.8 Consider the equation for the complex-valued solution x(t) with ε → 0,

dx

dt
+ i4x = ε cos(4t)x2

Apply the method of multiple time scales with τ = εt and x(t) ∼ X0(t, τ ) +
εX1(t, τ ).

(a) Write the equations for X0 and X1.
(b) Write the general solution of the O(1) equation.
(c) Determine the amplitude equation and explain the condition that selects this

result.
(d) Determine the leading order solution for x(t) that satisfies the initial condition

x(0) = 1 + i.

9.9 For the problem with ε → 0,

d2x

dt2
+ x = εx2, x(0) = 1, x ′(0) = 0,

the slow timescale for MMTS is not the usual one, τ �= εt . Attempt a regular
expansion x ∼ x0 + εx1 + ε2x2 to determine the slow time variable. Determine the
leading order solution using the Poincare–Lindstedt method.

9.10 For ε → 0, show that there is a large-amplitude periodic solution of

d2x

dt2
+ x = εx2 + ε cos t x ′(0) = 0.

To do this, let x(t) ∼ ε−β X (t, τ ) with τ = εαt and X ∼ X0 + εγ X1 + ε2γ X2 and
select α, β, γ > 0 to ensure that X0, X1, X2 have no secular growth terms.
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9.11 Delay differential equations (DDE) are equations that involve current proper-
ties of the solution coupled to the solution at earlier times [35]. Consider the DDE

d2x

dt2
+ x + εx(t − 2) = 0.

(a) This is a linear constant coefficient equation and can be solved in terms of trial
solutions of the form x(t) = eλt . Write the characteristic equation determining
λ and obtain the solutions to O(ε) for ε → 0. Are the solutions of this equation
stable or unstable? (see Sect. 1.5)

(b) Apply the method of multiple scales to obtain the amplitude equations.
(c) Similarly analyse the weakly-delayed linear oscillator equation,

d2x

dt2
+ x(t − ε) = 0.

9.12 Now we complete the derivation of the KdV equation that was started in
Exercise 8.5. There, we obtained the equations for C(x, t) = C0 + ε2C1 + · · · and
F(x, t) = F0 + ε2F1 + · · · , as
O(1) equations:

∂C0

∂t
+ F0 = 0,

∂ F0

∂t
+ ∂2C0

∂x2
= 0 (9.36)

O(ε2) equations:

∂C1

∂t
+ F1 = 1

2
∂3C0

∂t∂x2
− 1

2

(
∂C0

∂x

)2

, (9.37a)

∂ F1

∂t
+ ∂2C1

∂x2
= 1

6
∂4C0

∂x4
− F0

∂2C0

∂x2
− ∂ F0

∂x

∂C0

∂x
. (9.37b)

(a) Show from the O(1) equations that C0 and F0 each satisfy the classic wave
equation (2.52) with unit speed and having independent left/right movingwaves.

(b) Wewill now restrict attention just to right-movingwaves. It can be shown that the
O(ε2) equations would lead to solutions with secular growth, hence consider
a multiple-time scale expansion of the form C = c0(z, τ ) + ε2c1(z, τ ) and
F = f0(z, τ ) + ε2 f1(z, τ ) where z = x − t and τ = ε2t . Show that the O(1)
equations reduce to a single relation between c0, f0 and that the O(ε2) equations
reduce to a single compatibility condition given by a partial differential equation
for f0(z, τ ), the KdV equation,

∂ f0
∂τ

+ 3
2 f0

∂ f0
∂z

+ 1
6
∂3 f0
∂z3

= 0. (9.38)

http://dx.doi.org/10.1007/978-3-319-23042-9_1
http://dx.doi.org/10.1007/978-3-319-23042-9_8
http://dx.doi.org/10.1007/978-3-319-23042-9_2
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9.13 The Fredholm alternative theorem is the key principle that determines the
solvability conditions in the Poincare–Lindstedt and MMTS methods, but here we
illustrate how it also applied to determining the eigenvalues of perturbed matrices
[47].

Consider the matrix

A(ε) =
( −eε 3 − 3ε
3 + ε −1 + 2 sin ε

)
.

For the limit ε → 0, use the following steps to solve the eigenvalue problem,

Ax = λx.

(a) Write the asymptotic expansion for the matrix in powers of ε, A ∼ A0 + εA1 +
ε2A2 and similar expansions for each eigenvector and corresponding eigenvalue
x ∼ x0 + εx1 + ε2x2, and λ ∼ λ0 + ελ1 + ε2λ2.

(b) The leading order problem, A0x0 = λ0x0, can be written in the form of a
homogeneous problem,

(A0 − λ0I)x0 = 0

Obtain the eigensolutions for this matrix, {λ(k)
0 , x(k)

0 }.
(c) For this problem, every vector v can be written as a linear combination of the

leading order eigenvectors, v = c(1)x
(1)
0 + c(2)x

(2)
0 . Write the formulas for c(k)

for k = 1, 2 in terms of v and x(k)
0 .

(d) Write the O(ε) equation in the form of an inhomogeneous problem with the
same matrix operator as the O(1) equation,

(A0 − λ0I)x1 = f1(x0, A1, λ1).

Note the similarities between these equations for x0, x1 and the oscillator prob-
lems, (9.17a) and (9.17b) or (9.28a) and (9.28b). The Fredholm alternative essen-
tially states that

The solution of the O(εn) inhomogeneous problem will exist and be unique if the forcing
term has no contribution from the solution of the O(ε0) homogeneous problem.2

For oscillator problems, this addresses the existence of periodic solutions in the
absence of resonant forcing terms.

2This is the simplified version for symmetric matrices and self-adjoint differential equations. The
general version of the Fredholm alternative is similar:

The solution of the non-homogeneous problem A0x = b will be unique if and only if the
adjoint problem A†

0y = 0 has only the trivial solution [39, 93].
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For matrix equations, non-existence or non-uniqueness will result if the forcing
term includes contributions from the x(k)

0 nullvector corresponding to the λ(k) in
the matrix operator. Select the values of λ1 to eliminate those contributions and
obtain the first two terms in the expansions of the eigenvalues,λ(k) ∼ λ

(k)
0 +ελ

(k)
1

for k = 1, 2.
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