Detecting systematic anomalies affecting systems when inputs are stationary time series

Ričardas Zitikis

School of Mathematical and Statistical Sciences Western University, Ontario

&

Risk and Insurance Studies Centre York University, Ontario

March 10, 2021

You are most welcome to e-mail: rzitikis@uwo.ca

Life as usual: ups and downs...

...or is it?

Introduction

•0000000

- Inputs $(X_t)_{t\in\mathbb{Z}}$
- Ex 1: Automatic voltage regulator • Transfer function h Ex 2: Insurer processing claims
- Outputs $(Y_t)_{t\in\mathbb{Z}}$
- Observable pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$

Think of $(X_t)_{t\in\mathbb{Z}}$ as a stationary and causal time series

• Input risks $(\delta_t)_{t\in\mathbb{Z}}$

Introduction

00000000

- measurement errors
- Think of risks as \longrightarrow miscalculations

• Output risks $(\varepsilon_t)_{t\in\mathbb{Z}}$

✓ oversights

$$\bullet Y_t = \begin{cases} h(X_t + \delta_t) \\ h(X_t) + \varepsilon_t \\ h(X_t + \delta_t) + \varepsilon_t \end{cases}$$

• $Y_t = \begin{cases} h(X_t + \delta_t) & \text{when only inputs are directly affected} \\ h(X_t) + \varepsilon_t & \text{when only outputs are affected} \\ h(X_t + \delta_t) + \varepsilon_t & \text{when inputs \& outputs are affected} \end{cases}$

If h were known, we could use, e.g.,

$$\frac{1}{n} \sum_{i=1}^{n} (h(X_i) - Y_i)^2 \begin{cases} = 0 & \text{when the system is risk free} \\ > 0 & \text{when the system is risk affected} \end{cases}$$

But we only know that $h \in \mathcal{H}$ (model uncertainty)

Our philosophy

Introduction

We check (for risks) only those systems that were in reasonable order when newly installed

What does "be in reasonable order" mean?

Whose definition to use?

- Manufacturer's definition? Maybe, but likely only indirectly
- Our definition? Yes, because it is aligned with our goals

...and it is on the next slide

Definition. The risk-free outputs $Y_t = h(X_t)$ are in reasonable order if

$$B_n^0 := \frac{1}{n^{1/2}} \sum_{i=2}^n |h(X_{i:n}) - h(X_{i-1:n})| = O_{\mathbb{P}}(1)$$

where $X_{1:n} \leq \cdots \leq X_{n:n}$ are the ordered inputs X_1, \ldots, X_n

Example (to work out intuition). If $h \in \text{Lipschitz}$, then the risk-free outputs are in reasonable order because

$$B_n^0 \le \frac{\|h\|_{\text{Lip}}}{n^{1/2}} \sum_{i=2}^n |X_{i:n} - X_{i-1:n}| = \|h\|_{\text{Lip}} \frac{X_{n:n} - X_{1:n}}{n^{1/2}}$$

$$= \|h\|_{\text{Lip}} \frac{\text{Range}(X_1, X_2, \dots, X_n)}{n^{1/2}} = O_{\mathbb{P}}(1)$$

Suppose that a brand new system was in reasonable order

- If it is still risk free, then $I_n \to_{\mathbb{P}}$ somewhere $\neq 0.5$
- If it gets risk affected, then $I_n \to_{\mathbb{P}} 0.5$

What is this magical I_n ?

The system-monitoring index (statistic)

$$I_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})_+}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|}$$

where $Y_{1,n}, \ldots, Y_{n,n}$ are the concomitants of X_1, \ldots, X_n

$(X_{i:n}, Y_{i,n})$
(1,9)
(2,6)
(4, <mark>2</mark>)
(5,3)

A mathematical insight into the meaning of I_n

$$\begin{split} I_n &= \frac{\sum_{i=2}^n (Y_{i,n} - Y_{i-1,n})_+}{\sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}|} = \frac{1}{2} \bigg(1 + \frac{Y_{n,n} - Y_{1,n}}{\sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}|} \bigg) \\ & \text{because } x_+ = (|x| + x)/2 \end{split}$$

$$= \frac{1}{2} \bigg(1 + \frac{\mathsf{Pseudo} \; \mathsf{Range}(\mathit{Y}_1, \mathit{Y}_2, \dots, \mathit{Y}_n)}{\mathsf{Total} \; \mathsf{Variation}(\mathit{Y}_1, \mathit{Y}_2, \dots, \mathit{Y}_n)} \bigg)$$

if there are no risks and
$$n$$
 is large

Introduction

$$pprox rac{1}{2} igg(1 + rac{\int h'(x) \mathrm{d}x}{\int |h'(x)| \mathrm{d}x} igg)$$

1 Introduction

2 ARMA inputs and AVR transfer

3 How far beyond ARMA can we go?

4 Final notes

$$(X_t - 120) = 0.6(X_{t-1} - 120) + \eta_t + 0.4\eta_{t-1}$$

with iid Gaussian innovations $\eta_t \sim \mathcal{N}(0, \sigma_n^2)$ where σ_n^2 is such that

$$X_t \sim \mathcal{N}(120, 9)$$

Automatic voltage regulators (AVR's) often keep voltage between

$$120 \pm 6$$
 volts ($\pm 5\%$ of the nominal voltage)

The transfer function

$$h(x) = \begin{cases} x_{\min} & \text{when } x < x_{\min} \\ x & \text{when } x_{\min} \le x \le x_{\max} \\ x_{\max} & \text{when } x > x_{\max} \end{cases}$$

with

$$x_{\min} = 114$$
 & $x_{\max} = 126$

Note. Insurance layers often have similar transfer functions: deductible x_{min} , policy limit x_{max} , etc

When the risk-free AVR is in reasonable order, we see

$$I_n^0 = \frac{\sum_{i=2}^n (h(X_{i:n}) - h(X_{i-1:n}))_+}{\sum_{i=2}^n |h(X_{i:n}) - h(X_{i-1:n})|}$$

= 1 \neq 0.5 (risk free)

$$B_n^0 = \frac{1}{n^{1/2}} \sum_{i=2}^n |h(X_{i:n}) - h(X_{i-1:n})|$$

= $O_{\mathbb{P}}(1)$ (in reasonable order)

Illustrative risk specifications: let (δ_t) and (ε_t) be

- independent of (X_t)
- independent of each other
- iid Lomax(α , 1) and thus have the means

$$\mathbb{E}(\delta_t) = \mathbb{E}(\epsilon_t) = rac{1}{lpha - 1}$$

Examples:
$$\alpha = 1.2 \implies \mathbb{E}(\delta_t) = \mathbb{E}(\epsilon_t) = 5$$

$$\alpha = 11 \implies \mathbb{E}(\delta_t) = \mathbb{E}(\epsilon_t) = 0.1$$

$$I_{n} = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})_{+}}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|}$$

$$\rightarrow_{\mathbb{P}} 0.5 \text{ (risk affected)}$$

$$B_n = rac{1}{n^{1/2}} \sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}|$$

 $\rightarrow_{\mathbb{P}} \infty$ (out of reasonable order)

$$\mathbb{E}(\delta_t) = \mathbb{E}(\epsilon_t) = 0.1$$
 (slowly converging I_n and B_n)

$$I_{n} = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})_{+}}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|}$$

$$\rightarrow_{\mathbb{P}} 0.5 \text{ (risk affected)}$$

$$B_n = \frac{1}{n^{1/2}} \sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}|$$

$$\to_{\mathbb{P}} \infty \text{ (out of reasonable order)}$$

2 ARMA inputs and AVR transfer

3 How far beyond ARMA can we go?

4 Final notes

Beyond ARMA

•00000

$$I_n = \frac{\sum_{i=2}^n (Y_{i,n} - Y_{i-1,n})_+}{\sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}|} \ \to_{\mathbb{P}} \ I_\infty \ \begin{cases} = 0.5 & \text{when risk affected} \\ \neq 0.5 & \text{when risk free} \end{cases}$$

assuming

$$B_n^0 = \frac{1}{n^{1/2}} \sum_{i=2}^n |h(X_{i:n}) - h(X_{i-1:n})| = O_{\mathbb{P}}(1)$$

i.e., when risk-free outputs are in reasonable order

Definition. The outputs (Y_t) are out of reasonable order if

$$B_n := \frac{1}{n^{1/2}} \sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}| \to_{\mathbb{P}} \infty$$

...and then necessarily $I_n \rightarrow_{\mathbb{P}} 0.5$

Bevond ARMA

When do Y_t 's become out of reasonable order?

Roughly speaking, this happens when X_t 's are stationary and at least one of the risks does not vanish from I_n , that is, when δ_t 's and ε_t 's are

- noticeable (e.g., if h(x) = c, then δ_t 's vanish from I_n)
- non-degenerate (e.g., if $\varepsilon_t = c$, then they vanish from I_n)
- not disguised as X_t 's (e.g., if $\delta_t = X_t$, $\varepsilon_t = X_t$, and h(x) = x, then $Y_t = 3X_t$ and the risk-identifying "3" vanishes from I_n)

Bevond ARMA

In the risk-free scenario, when do we have

$$I_n \rightarrow_{\mathbb{P}}$$
 somewhere $\neq 0.5$?

- Let the stationary inputs (X_t) satisfy the Glivenko-Cantelli property and be temperately dependent (next two slides)
- Let h be almost everywhere differentiable with vanishing derivative outside an interval [a, b] (recall the AVR function)

Then in the risk-free scenario we have

$$I_n \to_{\mathbb{P}} I_{\infty} := \frac{\int_a^b (h'(x))_+ dx}{\int_a^b |h'(x)| dx} = \frac{1}{2} \left(1 + \frac{\int_a^b h'(x) dx}{\int_a^b |h'(x)| dx} \right)$$

$$\neq 0.5 \quad \text{unless } h(b) = h(a)$$

Bevond ARMA

Definition. Inputs (X_t) with the same marginal cdf's F satisfy the Glivenko-Cantelli property if X_1, \ldots, X_n asymptotically identify F, that is,

$$\sup_{x\in\mathbb{R}} \left| F_n(x) - F(x) \right| \to_{\mathbb{P}} 0 \quad \text{when} \quad n \to \infty$$

where F_n is the empirical cdf based on X_1, \ldots, X_n

 If the inputs (X_t) follow the stationary ARMA(p, q) model driven by iid innovations (η_n) with densities, then they satisfy the Glivenko-Cantelli property

Bevond ARMA

Definition. Inputs (X_t) with the same marginal cdf's F are temperately dependent if

$$\mathbb{P}(X_{1:n} \ge x) \to 0$$
 and $\mathbb{P}(X_{n:n} \le x) \to 0$

for all x such that $F(x) \in (0,1)$

Examples

- If (X_t) are iid, then they are temperately dependent
- If $X_t = X$ for all $t \in \mathbb{Z}$, then they are **not** temperately dependent (they are super-strongly dependent)
- If (X_t) are strictly stationary and α -mixing, then they are temperately dependent

Bevond ARMA

Introduction

2 ARMA inputs and AVR transfer

3 How far beyond ARMA can we go?

4 Final notes

$$I_n = \frac{\sum_{i=2}^n (Y_{i,n} - Y_{i-1,n})_+}{\sum_{i=2}^n |Y_{i,n} - Y_{i-1,n}|} \rightarrow_{\mathbb{P}} I_{\infty} \begin{cases} = 0.5 & \text{risk affected} \\ \neq 0.5 & \text{risk free} \end{cases}$$

- is simple to implement
- works as intended in practically plausible situations
- jointly with another index, helps to determine when the system gets affected by risks: at the input, output, or both stages

A "stopping" question
When to sound the alarm?
n=50? 100? ...

