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Abstract:

We develop a discretization method for solving the minimal energy configuration of bilayer plates
based on a mathematical model developed in [22, 6]. Our discretization method employs C1-spline
functions. A highlight of the method involves a trick to handle the nonlinear isometry constraint
in such a way that not only numerical integration becomes unnecessary, but also that the final
optimization problems are in the form of degree 4 polynomial optimization problems (POP). We
develop two different versions of the method, one resulted in a constrained degree 4 POP involving
a small tolerance ε, another resulted in an unconstrained degree 4 POP involving a large penalty
parameter µ. We develop a mathematical analysis, based on the direct method and techniques in
Γ-convergence, to show how ε and µ can be chosen according to the grid size so that the minimizers
of the discrete problems converge to that of the continuum variational problem as the grid size goes
to zero. We corroborate the theory through a series of computational experiments, and also report
an unexpected finding related to the asymmetry of the discretized problems.

Acknowledgments. TY thanks Amir Beck, Thomas Duchamp, Rehka Thomas and Larry Schu-
maker for helpful discussions. He is supported in part by the National Science Foundation grants
DMS 0512673 and DMS 0915068. PM thanks the hospitality of the departments of mathematics
at both Drexel University and University of Michigan during his pursuit of the project.

Keywords: Bilayer plates, Splines, Calculus of variation, Γ-convergence, Sparse Polynomial
optimization problems, Nonconvex optimization problems

1 Introduction

Bilayer materials appear in the ubiquitous lipid bilayer forming the cell membranes of almost all
organisms as well as in many engineering applications [28, 27, 24, 3]. In the latter realm, bilayer
plates consist of two films of different materials glued together. The films often have two different
lattice constants or material properties. Such a mismatch can then lead to internal stress or different
mechanical, thermal or electrical responses. Large deformations can form and also be controlled

*Department of Mathematics, University of Michigan. Email: preetham@umich.edu.
�Department of Mathematics, Purdue University. Email: yipn@purdue.edu.
�Department of Mathematics, Drexel University. Email: yut@drexel.edu.

1

mailto:preetham@umich.edu
mailto:yipn@purdue.edu
mailto:yut@drexel.edu


by external forcings. This phenomena is thus very useful in the design and manufacturing of nano-
devices such as nanorolls, microgrippers, and nano-tubes. Hence accurate modelling and efficient
numerical simulation of such a mechanism is extremely beneficial.

In [22, 6], a mathematical model for the bending of bilayers plates is derived based on hypere-
lasticity. The model consists of minimizing the dimensionally reduced elastic energy

E[y] =
1

2

∫∫
ω
∥H − Z∥2F , H = second fundamental form of y, (1.1)

within the set of isometries y : ω → R3, i.e. mappings satisfying dyTdy = I2×2 in the planar
domain ω ⊂ R2, and with prescribed values y|∂Dω = yD, dy|∂Dω = ΦD on the Dirichlet portion
∂Dω of the boundary ∂ω. The symbol Z refers to a constant 2 × 2 symmetric matrix and can be
viewed as a spontaneous curvature, and its presence attributes to the pre-stressed configuration of
the plate. The above model can also be deduced, or more accurately, reduced from genuine three
dimensional elasticity theory [14, 13, 15, 16] and also from atomistic models [23]. On the other
hand, the formula in (1.1) can be further simplified on the space of isometries. This will be very
useful in the formulation of our numerical method.

In this article, we focus on the computation of the the equilibrium shape of such a bilayer
plate. The main challenges are due to the high-order (4-th order) of the equation and the nonlinear
isometry constraint. These issues have been investigated in the framework of non-conforming finite
elements [5, 4, 6]. Here we employ spline elements which belong to the energy space, namely
W 2,2(ω), for our current problem. In this sense, our method is conforming in FEM parlance.
However, this ‘conforming’ characterization comes with a caveat: spline functions, being piecewise
polynomials, cannot be perfect isometries, except in trivial cases. To circumvent this difficulty, we
introduce a functional I that measures the discrepancy of a spline surface y =

∑
I cIBI from an

isometry. (Here and below, BI is any basis for our spline space, and c is the coefficient vector of
any spline function.) Our final discretized version of (1.1) takes the simple form of

(i) an ‘ε-problem’: min
c

E(c) s.t. I(c) ≤ ε, (1.2)

where ε > 0 is a suitably chosen small tolerance, or

(ii) a ‘µ-problem’: min
c

E(c) + µ I(c), (1.3)

for an appropriately chosen large penalization parameter µ.

Our use of C1-spline elements (which are in W 2,2) is in contrast to the approach advocated in
[6], which deliberately avoids C1-elements. Arguably, the use of spline elements is not harder, if
not easier, than the use of non-conforming Kirchhoff elements employed in [6], for both the design
and the mathematical analysis of the algorithm.1

The next section documents the core technical contributions of this paper.

1.1 Contributions

Our core discovery is that, in dealing with the aforementioned difficulty in handling the isometry
constraint, we can commit a sort of ‘variational crime’ in the design of the discretization method

1For general domains and higher accuracy orders, it remains to see if the use of non C1-elements result in algorithms
that are easier to implement than the spline counterparts. For more comparison of various C1-spline elements with
the merely C0-Kirchhoff elements, see Section 2.5.

2



without ‘getting into trouble’ in the analysis of Γ-convergence. Let us elaborate: the second
fundamental form H in (1.1) involves terms such as (dyTdy)−1 and division by ∥∂1y×∂2y∥, which
can be ignored if y were a perfect isometry. As spline functions y are in most cases not isometries,
an honest computation of the energy functional E[y] would require a numerical integration scheme
coupled with the evaluation of the relatively complicated integrand at quadrature points.2 However,
since we constrain I[y] to be small anyway, we may commit the misdemeanor of computing E[y]
as if (dyTdy)−1 is the identity and ∥∂1y × ∂2y∥ equals 1.

A pleasant surprise arises: the resulting energy functional, called E instead of E due to the
‘misdemeanor’, becomes a degree 6 polynomial function in the control coefficients c of y. With
one more similar trick, we can further replace E by a degree 3 polynomial function. This degree 3
polynomial function, denoted by E3, will be derived in Section 2.3.

It is immediate to see from our definition of I that it is also a polynomial – but degree 4 – in the
control variables c. As a result, both formulations (1.2) and (1.3) lead to polynomial optimization
problems. These high-dimensional polynomials are also sparse in the sense that they involve only
O(N) monomials, instead of O(ND) monomials in ‘dense’ degree D polynomials in N variables.
This opens us to the possibility of using the many proposed convexification methods for POPs; see,
for example [31, 30, 2, 7] and the references therein. (This direction, however, is not pursued in
the current paper for reasons articulated in Section 5.1.)

Not only would our formulations of I(c) and E3(c) rid us from the need of troublesome numerical
integrations, but also that the coefficients of the polynomials I(c) and E3(c) can be pre-computed
in closed-forms. See Sections 2.2 and 2.3. This significantly speeds up the overall optimization
process, as those coefficients need not be re-computed when c is updated repeatedly in the course
of optimization.

We further prove the convergence of the methods within the framework of Γ-convergence of
functionals when ε and µ are chosen appropriately based on the grid size h associated with the
spline spaces. To this end, we need to combine ideas from the theory of classical Γ-convergence
with the approximation theory of splines. The theoretical results also prove to be useful as they
suggest concrete applicable choices of ε and µ based on h that we can easily use in our simulations.

We carry out a series of numerical computations in Section 5. Besides corroborating the theory,
our computations reveal a few properties of our discretization method. In particular, we found cases
where the global minimizer of the discrete problem appears to be asymmetric, while the solution
of the continuous problem is symmetric. Such a symmetry breaking is also observed in related
geometric variational problems, see for example [10, Section 5.3].

1.2 Organization

In Section 2, we first consider the case when ω is a rectangle and a bilayer plate is approximated
by tensor product splines. The key contribution is a numerical method, as well as its analysis,
for the variational problem (1.1) in the form of a degree 4 sparse polynomial optimization problem
(POP). The assumption of ω being a rectangle and the use of tensor product spline are only for
concreteness and simplicity, as neither of them is essential for the sparse POP formulation. In
Section 2.5, we highlight the basic ingredients leading to the sparse POP formulation and outline

2This is the case in our earlier work [10], in which the Willmore energy of a subdivision surface has to be computed
using numerical integration.
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algorithms for dealing with more general domains. In Section 4, we establish existence and Γ-
convergence results for two different versions of the sparse POP method. The Γ-convergence results
imply that the discrete minimizers from our proposed POPs converge, as the discretization goes to
zero, to a minimizer of the continuum variational bilayer problem (1.1). In Section 5, we present
computational results of our methods. In Section 6, we provide a summary and some future
perspectives.

2 Formulation as Sparse Polynomial Optimization Problems (POP)

In this section, we develop numerical methods for solving the variational problem

min
y

E[y]

s.t. dyTdy = I2×2 on ω,

y|∂Dω(u, v) =
[
u, v, 0

]T
,

∂y

∂n̂

∣∣∣
∂Dω

(u, v) = n̂.

(2.1)

In the above, ω is a subset of R2. We shall assume the y : ω → R3 above lies in the Sobolev
space W 2,2(ω;R3); see Section 4. In the boundary condition, n̂ is the unit normal vector pointing
towards the interior of ω, this means the plate y is clamped at the part ∂Dω of the boundary of ω.
We shall refer to this as a clamped boundary condition. Since both E and the isometry condition
are invariant under rigid motions, the clamped boundary condition has the effect of avoiding an
obvious non-uniqueness of solution in the problem.

In this section, we focus on the case of ω being a rectangle.3 More specifically, let

ω := [0, A]× [0, B].

For simplicity we assume

∂Dω = {(0, v) : 0 ≤ v ≤ B}. (2.2)

The clamped boundary condition in (2.1) can then be expressed as

y(0, v) =
[
0, v, 0

]T
,

∂y

∂u
(0, v) =

[
1, 0, 0

]T
, 0 ≤ v ≤ B. (2.3)

The proposed numerical methods will be recorded in Section 2.4. The next three subsections
develop the basic ingredients.

2.1 Tensor product splines

For a rectangular domain, we use tensor product uniform knot splines to approximate the bilayer
plate y. Consider the space Sd

m defined by

Sd
m := {f : [0,m] → R : f ∈ Cd−1, f |[i,i+1] is a polynomial of degree ≤ d, i = 0, 1, . . . ,m− 1}.

3For our theoretical development in the next section, we fall back to a general domain satisfying (2.2).
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It is easy to see that dimSd
m = m+d. We are mostly interested in the case of d = 2, 3. The classical

result of Curry and Schoenberg [25] asserts that there is a localized basis for Sd
m, called B-splines,

denoted here by

ϕ−1, ϕ0, ϕ1, . . . , ϕm for d = 2, or

ϕ−1, ϕ0, ϕ1, . . . , ϕm, ϕm+1 for d = 3.
(2.4)

In the uniform knot case considered here, we can choose ϕi to be

ϕi(x) = B(x− i),

where

B =

{
1[0,1] ∗ 1[0,1] ∗ 1[0,1](·+ 1), d = 2

1[0,1] ∗ 1[0,1] ∗ 1[0,1] ∗ 1[0,1](·+ 2), d = 3.

Note that ϕi is symmetric about i+c for c = 0 when d is odd and c = 1/2 when d is even. Moreover,
we have ∑

i

ϕi(x) ≡ 1,
∑
i

(i+ c)ϕi(x) ≡ x, x ∈ [0,m]. (2.5)

Denote by τ : (0,m)× (0, n) → ω the linear map τ(x, y) = (h1x, h2y) where

h1 := A/m, h2 := B/n

are the grid sizes in the two dimensions. With ω fixed, write

h = (h1, h2), h = max{h1, h2}, Bh
i,j(u, v) := ϕi(u/h1)ϕj(v/h2) = ((ϕiϕj) ◦ τ−1)(u, v)

and

Sh := Sh,d :=
{
y : ω → R3 | y =

∑
i

∑
j

ci,jB
h
i,j , ci,j ∈ R3

}
. (2.6)

We call c = (ci,j) the control points or control coefficients. Note that Sh,d ⊂ Cd−1,1(ω;R3) for any
d ≥ 0 and

Sh,d ⊂ Cd−1,1(ω;R3) ⊂ W 2,2(ω;R3) when d ≥ 2. (2.7)

We now state what the boundary condition (2.3) means to the control coefficients when d = 3
and d = 2:

� When y ∈ Sh,3, the first condition of (2.3) becomes

y ◦ τ(0, h−1
2 v) =

1∑
i=−1

n+1∑
j=−1

ci,jϕi(0)ϕj(h
−1
2 v) =

[
0, v, 0

]T
which simplifies to

1

6

n+1∑
j=−1

ϕj(y)[c−1,j + 4c0,j + c1,j ] =
[
0, h2y, 0

]T
, (2.8)
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whereas the second condition of (2.3) becomes

(
∂y

∂u
◦ τ)(0, h−1

2 v) =

1∑
i=−1

n+1∑
j=−1

ci,jϕ
′
i(0)ϕj(h

−1
2 v) =

[
h1, 0, 0

]T
which simplifies to

1

2

n+1∑
j=−1

ϕj(y)[−c−1,j + c1,j ] =
[
h1, 0, 0

]T
. (2.9)

Hence (2.3) holds if and only if

c−1,j = −2c0,j+
[
−h1, 3jh2, 0

]T
, c1,j = −2c0,j+

[
h1, 3jh2, 0

]T
, −1 ≤ j ≤ n+1. (2.10)

� When y ∈ Sh,2, a similar calculation shows that the clamp condition (2.3) holds if and only
if

c−1,j =
[
−h1/2, (j + 1/2)h2, 0

]T
, c0,j =

[
h1/2, (j + 1/2)h2, 0

]T
, −1 ≤ j ≤ n. (2.11)

2.2 Isometry functional I

Note that the spline space contains the following trivial isometry: if we set c = c♭ with

c♭i,j :=

(i+ c)A/m
(j + c)B/n

0

 , c =

{
0, (for d odd),
1
2 , (for d odd),

then y(u, v) =

uv
0

 =: y♭ (2.12)

in virtue of (2.5). We refer to this as the flat plate and denote it by y♭. Of course, we can also
apply an arbitrary rigid motion to the above control data to get other trivial isometries.

However, note that the spline space does not contain any isometries other than the trivial ones.
Because of this, we define a functional I which measures the deviation of a given y from isometry
based on the following observation:

I : W 2,2(ω) −→ R+, I[y] :=
∫∫

ω

∥∥dyTdy − I2×2

∥∥2
F
du dv. (2.13)

We often identify Sh,d with the control points c ∈ R(m+d)×(n+d)×3 and write I(c) instead of I[y];
as such, we have I : R(m+d)×(n+d)×3 → R.

We now derive a formula for I(c). Write

y = y ◦ τ : [0,m]× [0, n] → R3,

where τ is the linear change of variable as in (2.6), and

si,j := [i, i+ 1]× [j, j + 1].
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Then

I(c) =
∫∫

ω

∥∥dyTdy − I2×2

∥∥2
F
du dv = det τ

∫∫
[0,m]×[0,n]

∥∥τ−TdyTdy τ−1 − I2×2

∥∥2
F
dx dy

= h1h2

m−1∑
i=0

n−1∑
j=0

∫∫
si,j

∑
p,q=1,2

[
h−1
p h−1

q ⟨∂py, ∂qy⟩ − δp,q

]2
dx dy

= h1h2

m−1∑
i=0

n−1∑
j=0

{ ∑
p,q=1,2

h−2
p h−2

q

∫∫
si,j

⟨∂py, ∂qy⟩2 dx dy−

2
∑
p=1,2

h−2
p

∫∫
si,j

⟨∂py, ∂py⟩ dx dy + 2

}
.

(2.14)

We now exploit the shift-invariant and tensor product structure of the spline space. The spline
function y restricted to any square [i, i+ 1]× [j, j + 1] is determined by the control points ci′,j′ for
i′ ∈ i +N (d), j′ ∈ j +N (d), where N (d) is a fixed set of indices dependent only on the degree d
of the spline space. We have

N (2) = {−1, 0, 1}, N (3) = {−1, 0, 1, 2}.

Now we can express the first integral in the last line for I above as∫∫
si,j

⟨∂py, ∂qy⟩2 dx dy =

∫ i+1

i

∫ j+1

j

〈 ∑
i1∈i+N (d)

j1∈j+N (d)

ci1,j1B
(ϵ(p))(x− i1)B

(1−ϵ(p))(y − j1),

∑
i2∈i+N (d)

j2∈j+N (d)

ci2,j2B
(ϵ(q))(x− i2)B

(1−ϵ(q))(y − j2)

〉2

dy dx,

where
ϵ : {1, 2} → {0, 1}, ϵ(1) = 1, ϵ(2) = 0. (2.15)

If we further define

T 4
k1,k2,k3,k4,ϵ1,ϵ2 :=

∫ 1

0
B(ϵ1)(t− k1)B

(ϵ2)(t− k2)B
(ϵ1)(t− k3)B

(ϵ2)(t− k4) dt (2.16)

for k1, . . . , k4 ∈ N (d), ϵ1, ϵ2 = 0, 1, then∫∫
si,j

⟨∂py, ∂qy⟩2 dx dy

=
∑

k1,...,k4∈N (d)

l1,...,l4∈N (d)

⟨cJ1 , cJ2⟩⟨cJ3 , cJ4⟩T 4
k1,k2,k3,k4,ϵ(p),ϵ(q)

T 4
l1,l2,l3,l4,1−ϵ(p),1−ϵ(q), Jℓ = (i, j) + (kℓ, lℓ).

(2.17)
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This in particular shows that the first integral in (2.14) is a degree 4 homogeneous polynomial in
the variables of c. Similarly, the second integral in the last line of (2.14) is a degree 2 homogeneous
polynomial in c, and can be expressed as∫∫

si,j

⟨∂py, ∂py⟩ dx dy =
∑

k1,k2∈N (d)

l1,l2∈N (d)

⟨cJ1 , cJ2⟩T 2
k1,k2,ϵ(p)

T 2
l1,l2,1−ϵ(p), Jℓ = (i, j) + (kℓ, lℓ),

(2.18)

where

T 2
k1,k2,ϵ :=

∫ 1

0
B(ϵ)(t− k1)B

(ϵ)(t− k2) dt. (2.19)

Putting everything together, we can write the isometry functional as:

I(c) =
m−1∑
i=0

n−1∑
j=0

Iloc(Pi,j(c)), (2.20)

Iloc(x) =
∑

I1,I2,I3,I4∈N (d)2

α4
I1,I2,I3,I4⟨xI1 ,xI2⟩⟨xI3 ,xI4⟩+

∑
I1,I2∈N (d)2

α2
I1,I2⟨xI1 ,xI2⟩+ 2h1h2,

where
Pi,j : R(m+|N (d)|−1)×(n+|N (d)|−1)×3 → R|N (d)|×|N (d)|×3

maps the global control vertices, c, to the local control vertices, denoted by x, that contribute to
the face indexed by (i, j), and

α4
I1,I2,I3,I4 = α4

(k1,l1),(k2,l2),(k3,l3),(k4,l4)
:=

∑
ϵ1,ϵ2=0,1

h
1−2(ϵ1+ϵ2)
1 h

1−2(2−ϵ1−ϵ2)
2 T 4

k1,k2,k3,k4,ϵ1,ϵ2T
4
l1,l2,l3,l4,1−ϵ1,1−ϵ2 ,

α2
I1,I2 = α2

(k1,l1),(k2,l2)
:= −2

∑
ϵ=0,1

h1−2ϵ
1 h

1−2(1−ϵ)
2 T 2

k1,k2,ϵT
2
l1,l2,1−ϵ.

(2.21)

We can speed up the computation of Iloc as follows: Let ≤ be any ordering imposed on N (d)×
N (d), then set

I2 := {(I1, I2) : I1, I2 ∈ N (d)×N (d), I1 ≤ I2} .

Next, let ⪯ be any ordering on I2, and set

I4 := {(I1, I2, I3, I4) : (I1, I2), (I3, I4) ∈ I2, (I1, I2) ⪯ (I3, I4)}.

We have

Iloc(x) =
∑

(I1,I2,I3,I4)∈I2×I2

β̃4
I1,I2,I3,I4⟨xI1 ,xI2⟩⟨xI3 ,xI4⟩+

∑
(I1,I2)∈I2

β2
I1,I2⟨xI1 ,xI2⟩+ 2h1h2

=
∑

(I1,I2,I3,I4)∈I4

β4
I1,I2,I3,I4⟨xI1 ,xI2⟩⟨xI3 ,xI4⟩+

∑
(I1,I2)∈I2

β2
I1,I2⟨xI1 ,xI2⟩+ 2h1h2,

(2.22)
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where β2
I1,I2 = (2− δI1,I2)α

2
I1,I2 ,

β̃4
I1,I2,I3,I4 =


α4
I1,I2,I3,I4

+ α4
I2,I1,I3,I4

+ α4
I1,I2,I4,I3

+ α4
I2,I1,I4,I3

if I1 < I2, I3 < I4
α4
I1,I2,I3,I4

+ α4
I1,I2,I4,I3

if I1 = I2, I3 < I4
α4
I1,I2,I3,I4

+ α4
I2,I1,I3,I4

if I1 < I2, I3 = I4
α4
I1,I2,I3,I4

if I1 = I2, I3 = I4

,

and β4
I1,I2,I3,I4 = (2− δ(I1,I2),(I3,I4))β̃

4
I1,I2,I3,I4 .

(2.23)

By (2.20) and the chain rule, the gradient and Hessian4 of I can then be computed as:

∇I(c) =
m−1∑
i=0

n−1∑
j=0

P T
i,j · ∇Iloc(Pi,j(c)), Hess I(c) =

m−1∑
i=0

n−1∑
j=0

P T
i,j ·Hess Iloc(Pi,j(c)) · Pi,j . (2.24)

By (2.22),

∂Iloc
∂xI

=
∑

(I1,I2,I3,I4)∈I4

β4
I1,I2,I3,I4

[
(δI,I1xI2 + δI,I2xI1)⟨xI3 ,xI4⟩+

(δI,I3xI4 + δI,I4xI3)⟨xI1 ,xI2⟩
]
+

∑
(I1,I2)∈I2

β2
I1,I2

[
δI,I1xI2 + δI,I2xI1

]
.

(2.25)

Here and below, for any functional F with variables grouped as (xI)I , we write

∂F
∂xI

:=
[ ∂F
∂(xI)1

,
∂F

∂(xI)2
,

∂F
∂(xI)3

]T
,

∂

∂xJ

∂F
∂xI

:=
[ ∂2F
∂(xJ)j∂(xI)i

]
1≤i,j,≤3

.

We refer to the latter as the (I, J)-th block of the Hessian of F . Note that ∂
∂xJ

∂F
∂xI

= [ ∂
∂xI

∂F
∂xJ

]T .

By (2.25), we have that

∂

∂xJ

∂Iloc
∂xI

=
∑

(I1,I2,I3,I4)∈I4

β4
I1,I2,I3,I4

[
(δI,I1δJ,I2 + δI,I2δJ,I1)⟨xI3 ,xI4⟩I3×3 + (δI,I1xI2 + δI,I2xI1)(δJ,I3xI4 + δJ,I4xI3)

T+

(δI,I3δJ,I4 + δI,I4δJ,I3)⟨xI1 ,xI2⟩I3×3 + (δI,I3xI4 + δI,I4xI3)(δJ,I1xI2 + δJ,I2xI1)
T
]

+
∑

(I1,I2)∈I2

β2
I1,I2

[
δI,I1δJ,I2 + δI,I2δJ,I1

]
I3×3.

(2.26)

Remark 2.1 We state here three useful properties of the isometry functional I:

(i) I(c) is a quartic polynomial in the control variables c.

4Since we use a quasi-Newton method, the Hessian evaluation is not needed by the optimization solver. The
Hessian computation, however, is used for checking if a stationary point is a local minimizer or a saddle point. See
Section 5.5.
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(ii) No numerical integration is needed for the computation of I(c) as all integrands involved are
polynomials in the spatial variables x, y.

(iii) The β2
··· and β4

··· coefficients, as well as the index sets I2 and I4, are independent of the control
data and thus can be pre-computed. (This is very useful for optimization, where I has to be
evaluated many times.)

Note that the polynomial property in (i) is irrelevant to that in (ii); in particular, the fact that I(c)
is quartic in c holds regardless of the polynomial degree d in the underlying spline space Sh,d. In
fact, property (i) holds even if we replace the spline space by any linear approximation space. See
Section 2.5.

2.3 Functional E and E3
We write the energy functional E (1.1) here again as:

E[y] =
1

2

∫∫
ω
∥H − Z∥2F du dv, H = (dyTdy)−1

[〈
∂p∂qy,

∂1y × ∂2y

∥∂1y × ∂2y∥

〉]
p,q=1,2

.

When restricted to the spline space S, it does not enjoy either property (i) or (ii) in Remark
2.1 above, as we cannot dispense with the terms (dyTdy)−1 and ∥∂1y × ∂2y∥ when y is not an
isometry. As noted earlier, a spline function is almost never an (exact) isometry. Therefore an
honest computation of E would require many numerical integrations. In order to facilitate efficient
computation, we shall replace E by another energy functional that agrees with E when applied
to a perfect isometry. And then we will adjoint our minimization problem with a near-isometry
constraint or a penalization term using the functional I defined in (2.13).

More precisely, note that for any isometry y, we have dyTdy = I, ∥∂1y × ∂2y∥ = 1, and

⟨∂p∂qy, ∂1y × ∂2y⟩2 = ∥∂p∂qy∥22. (2.27)

Hence we will consider the following functional:

E3[y] :=
1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 − 2⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q + Z2

p,q du dv

so that

E[y] = E3[y] when y is an isometry. (2.28)
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We now derive an efficient algorithm for computing E3, its gradient and Hessian.

E3(c) =
1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 − 2⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q + Z2

p,q du dv

=
h1h2
2

∑
p,q=1,2

∫∫
[0,m]×[0,n]

h−2
p h−2

q ∥∂p∂qy∥22 − 2h−1
p h−1

q h−1
1 h−1

2 ⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q + Z2
p,q dx dy

=
h1h2
2

m−1∑
i=0

n−1∑
j=0

∑
p,q=1,2

{
h−2
p h−2

q

∫∫
si,j

〈
∂p∂qy, ∂p∂qy

〉
dx dy−

2h−1
p h−1

q h−1
1 h−1

2 Zp,q

∫∫
si,j

〈
∂p∂qy, ∂1y × ∂2y

〉
dx dy + Z2

p,q

}
(2.29)

Similar to (2.17), we have∫∫
si,j

〈
∂p∂qy, ∂1y × ∂2y

〉
dx dy =

∑
k1,k2,k3∈N (d)

l1,l2,l3∈N (d)

⟨cJ1 , cJ2 × cJ3⟩T 3
k1,k2,k3,ϵ(p),ϵ(q)

T 3
l1,l3,l2,1−ϵ(p),1−ϵ(q),

∫∫
si,j

〈
∂p∂qy, ∂p∂qy

〉
dx dy =

∑
k1,k2∈N (d)

l1,l2∈N (d)

⟨cJ1 , cJ2⟩T 2
k1,k2,ϵ(p)+ϵ(q)T

2
l1,l2,2−ϵ(p)−ϵ(q),

(2.30)

where Jℓ = (i, j) + (kℓ, lℓ), ℓ = 1, . . . , 3,

T 3
k1,k2,k3,ϵ1,ϵ2 =

∫ 1

0
B(ϵ1+ϵ2)(t− k1)B

′(t− k2)B(t− k3) dt, (2.31)

and T 2
k1,k2,η

, η ∈ {0, 1, 2}, is defined exactly as in (2.19) (only that the ϵ in (2.19) is now allowed to
go up to 2.) We then have

E3(c) =
m−1∑
i=0

n−1∑
j=0

E3,loc(Pi,j(c)),

E3,loc(x) =
∑

I1,I2∈N (d)2

α̃2
I1,I2⟨xI1 ,xI2⟩ −

∑
I1,I2,I3∈N (d)2

α3
I1,I2,I3⟨xI1 ,xI2 × xI3⟩+

h1h2
2

∥∥Z∥∥2
F
,

(2.32)

where

α̃2
(k1,l1),(k2,l2)

:=
1

2

∑
ϵ1,ϵ2=0,1

h
1−2(ϵ1+ϵ2)
1 h

1−2(2−ϵ1−ϵ2)
2 T 2

k1,k2,ϵ1+ϵ2T
2
l1,l2,2−ϵ1−ϵ2

α3
(k1,l1),(k2,l2),(k3,l3)

:=
∑

ϵ1,ϵ2=0,1

h
−(ϵ1+ϵ2)
1 h

−(2−ϵ1−ϵ2)
2 Z2−ϵ1,2−ϵ2T

3
k1,k2,k3,ϵ1,ϵ2T

3
l1,l3,l2,1−ϵ1,1−ϵ2 .

(2.33)
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The degree 3 term of E3,loc(x) can be compressed using the invariance of a scalar triple product
under a circular shift of the arguments and that a scalar triple product vanishes when the arguments
are not distinct: Let ≤ be an ordering on N (d)×N (d) and

I2 := {(I1, I2) : I1, I2 ∈ N (d)×N (d), I1 ≤ I2} ,
I3 := {(I1, I2, I3) : I1, I2, I3 ∈ N (d)×N (d), I1 ≤ I2 ≤ I3} .

We have

E3,loc(x) = −
∑

(I1,I2,I3)∈I3

β3
I1,I2,I3⟨xI1 ,xI2 × xI3⟩+

∑
(I1,I2)∈I2

γ2I1,I2⟨xI1 ,xI2⟩+
h1h2
2

∥∥Z∥∥2
F

where β3
I1,I2,I3 :=

∑
π∈S3

(−1)sgn(π)α3
Iπ(1),Iπ(2),Iπ(3)

, γ2I1,I2 := (2− δI1,I2)α̃
2
I1,I2 .

(2.34)

Besides the reduction in the number of summands, the coefficients β3
··· and γ2···, as well as the

index sets I3 and I2, are independent of the control data and so can be pre-computed. (The same
comment was made about the isometry constraint functional I earlier.)

Similar to (2.24), the gradient and Hessian of E3 can be expressed as:

∇E3(c) =
m−1∑
i=0

n−1∑
j=0

P T
i,j · ∇E3,loc(Pi,j(c))

Hess E3(c) =
m−1∑
i=0

n−1∑
j=0

P T
i,j ·Hess E3,loc(Pi,j(c)) · Pi,j .

(2.35)

The above expressions show how to assemble the global gradient vector and Hessian matrix from
the local ones. By (2.34), the local gradient can be derived as follows:

∂E3,loc
∂xI

= −
∑

(I1,I2,I3)∈I3

β3
I1,I2,I3

[
δI,I1(xI2 × xI3) + δI,I2(xI3 × xI1) + δI,I3(xI1 × xI2)

]
+

∑
(I1,I2)∈I2

γ2I1,I2

[
δI,I1xI2 + δI,I2xI1

]
.

(2.36)

By (2.36), and the formula

∂

∂xI
(xJ × xK) = δI,K [xJ ]× − δI,J [xK ]×,

[
x1
x2
x3

]
×
:=

[
0 −x3 x2
x3 0 −x1
−x2 x1 0

]
,
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the (I, J)-th block of Hess E3,loc is given by:

∂

∂xJ

∂E3,loc
∂xI

= −
∑

(I1,I2,I3)∈I3

β3
I1,I2,I3

[
δI,I1

∂

∂xJ
(xI2 × xI3) + δI,I2

∂

∂xJ
(xI3 × xI1)+

δI,I3
∂

∂xJ
(xI1 × xI2)

]
+

∑
(I1,I2)∈I2

γ2I1,I2

[
δI,I1

∂

∂xJ
xI2 + δI,I2

∂

∂xJ
xI1

]
=

∑
(I1,I2,I3)∈I3

β3
I1,I2,I3

[
(δI,I2δJ,I3 − δI,I3δJ,I2)[xI1 ]× + (δI,I3δJ,I1 − δI,I1δJ,I3)[xI2 ]×

+ (δI,I1δJ,I2 − δI,I2δJ,I1)[xI3 ]×

]
+

∑
(I1,I2)∈I2

γ2I1,I2

[
δI,I1δJ,I2 + δJ,I1δI,I2

]
I3×3.

Note how the skew-symmetry of [xI ]× implies ∂
∂xJ

∂E3,loc
∂xI

= [ ∂
∂xI

∂E3,loc
∂xJ

]T , as it should.

With the above formulation, E3, being a degree 3 polynomial in the control variables, shares
similar properties (i)–(iii) stated in Remark 2.1 for the functional I.

2.4 Sparse POPs

Our proposed numerical method for (2.1) when ω is a rectangle is to solve either

min
c

E3(c)

s.t. I(c) ≤ ε

c satisfies (2.10) when d = 3 or (2.11) when d = 2.

(2.37)

or

min
c

E3(c) + µI(c)

s.t. c satisfies (2.10) when d = 3 or (2.11) when d = 2.
(2.38)

The developments in the last three subsections imply that (2.37) is a polynomial optimization
problem: recall that E3(c) and I(c) are polynomials in c of degree 3 and degree 4 respectively, the
boundary condition (2.10) or (2.11) is a linear condition on c.

Remark 2.2 The linear boundary condition reduces the dimensionality of c by 2(n + d). In sub-
sequent writing, we assume that such a dimensionality reduction has been applied and continue
to write c as the reduced variable vector, and we conveniently dispense with the boundary condi-
tion. Note that E3(c) and I(c) are still polynomials of degree 3 and 4, respectively, in the reduced
variables.

What is also crucial for computation is that E3(c) and I(c) are sparse polynomials: by (2.20)
and (2.32), both E3(c) and I(c) have only O(mn) non-zero monomials. Recall that a general degree
D polynomial in N variables has up to O(ND) monomials. The fact that E3(c) and I(c) have only
O(mn) non-zero monomials is attributed to the local supports of the B-splines (2.4).
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2.5 Spline spaces in general domains

The discussion in the previous section implies that the sparse POP formulations are a consequence
of the use of a linear approximation space with a local basis. Splines with local bases for general
polygonal domain is an extensively studied subject. Consequently, we may consider the following
extensions of our sparse POP method, for successively more general domains.

� Still for the case of a rectangular domain, replace uniform knot tensor product splines by
non-uniform knot ones.

� For a polygonal domain with only sides parallel to the coordinate axis (the type of domains
considered in [6]), tessellate it with rectangles and use Sibson splines [12].

� For a general polygonal domain, tessellate it with an arbitrary triangulation and use Powell-
Sabin splines [20].

For a review of Powell-Sabin splines and many other constructions of splines on triangulations, see
[17]. For a review of Sibson splines, see [12]. It is interesting to note that while Sibson splines
on rectangles and Powell-Sabin’s splines on triangles are quite similar in spirit, the former is not
applicable to arbitrary quadrangulations in the same way that Powell-Sabin’s splines can be applied
to arbitrary triangulations.

These methods result in C1-finite element spaces with nodal basis functions supported at the
1-ring around the vertex associated with the basis function. Of course, there are higher order spline
constructions on arbitrary triangulations, at the cost of larger local supports.

We also point out that the quadrilateral Kirchhoff elements employed in [6] are very similar
to Sibson splines: they share exactly the same degrees of freedom and 1-ring local supports. The
quadrilateral Kirchhoff elements are C0 piecewise bi-degree 3 polynomials, whereas Sibson splines
are C1-piecewise total degree 2 polynomials.

All the aforementioned splines, except the Kirchhoff elements, are regular enough to be in the
Sobolev space W 2,2(ω) which is the natural habitat for the variation problem (2.1). In this sense,
our proposed numerical methods based on such spline approximations are conforming.

The small local supports make certain inner-products, similar to (2.16) and (2.31), relatively
easy to compute. As in the case of rectangular domains, such inner-products can be pre-computed
before the optimization procedure.

3 Preparation for the theory

For the theoretical development, we shall make the blanket assumption that ω is a polygonal domain
with a portion of the boundary ∂ω being straight. In addition, there is a family of finite-dimensional
linear spaces Sh ⊂ W 2,2(ω;R), h > 0. An element yh ∈ [Sh]

3 is intended to approximate a solution
y ∈ W 2,2(ω;R3) of (2.1). More specific properties about the approximation spaces Sh will be given
in Section 3.3. We do wish to point out that the current setting, in particular the geometry of the
domain and the boundary conditions, can certainly be further generalized but our present results
can already illustrate the key ideas of the approach we are taking.
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3.1 Boundary condition in W 2,2

We first clarify the meaning of the boundary condition (2.3) for y ∈ W 2,2(ω;R3). More generally,
consider

y(0, v) = f , and
∂y

∂u
(0, v) = g, (3.1)

where f and g are ‘regular enough’ – see below – R3-valued functions defined on

E := {(0, v) : 0 < v < B} ⊂ ∂ω. (3.2)

Since
W 2,2(ω) ↪→ C0,λ(ω), ∀ 0 < λ < 1,

by Sobolev’s embedding theorem, the first boundary condition in (3.1) can be interpreted in the
classical pointwise sense, provided that f is sufficiently regular. For our purpose, it suffices that
f ∈ C1(Ē).

By the trace theorem [11, 1], the trace operator T : C∞(ω̄) → Lp(E), T (f) := f |E , has a unique
continuous extension to T : W 1,p(ω) → Lp(E). Therefore, for y ∈ W 2,2(ω;R3), the left-hand side
of the second boundary condition in (3.1) should be interpreted as the trace of ∂y

∂u , and g should
be in the image of the trace operator T : W 1,2(ω;R3) → L2(E;R3). The characterization of this
image is quite technical, see [1, Theorem 7.39]. For our purpose here, it suffices to have g ∈ C(Ē).

The right-hand sides of the clamped boundary condition (2.3), whose components are constant
and linear functions, are not only regular enough, but also can be satisfied exactly by any reasonable
spline function. This property will be exploited to simplify the analysis; see next subsection. For a
general pair of f and g, an approximant yh ∈ [Sh]

3 is only expected to satisfy (3.1) approximately
for small h.

3.2 Continuity of functionals in W 2,2

Next we state and prove some basic and useful properties of the functionals. Let

Iso2,2 := Iso2,2(ω;R3) := {y ∈ W 2,2(ω;R3) : dyTdy = I2×2 a.e.}.

Note that for y ∈ W 2,2, y ∈ Iso2,2 if and only if I(y) = 0.

We recall here the functional E3:

E3(y) =
1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 −

∑
p,q=1,2

∫∫
ω
⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q +

1

2

∑
p,q=1,2

Z2
p,q area(ω)

We introduce

E3,I[y] =
1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 and E3,II[y] =

∑
p,q=1,2

∫∫
ω
⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q. (3.3)

It is clear that E3,I is well-defined and continuous on W 2,2. In fact, E3,I : W 2,2 → R is also weakly
lower-semi-continuous:
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Proposition 3.1 (Weak LSC of E3,I.) E3,I : W 2,2 → R is weakly lower semi-continuous, i.e. if
yn ⇀ y in W 2,2(ω;R3), then

lim inf
n→∞

E3,I[yn] ≥ E3,I[y]. (3.4)

Proof: Let yn ⇀ y in W 2,2. The proof follows from a classical trick exploiting convexity: Since
ξ2 ≥ ξ20 + 2ξ0(ξ − ξ0), we have ∥∂p∂qyn∥22 ≥ ∥∂p∂qy∥22 + 2 ⟨∂p∂qy, ∂p∂qyn − ∂p∂qy⟩. Hence

lim inf
n→∞

∫∫
ω
∥∂p∂qyn∥22 ≥

∫∫
ω
∥∂p∂qy∥22+2 lim inf

n→∞

∫∫
ω
⟨∂p∂qy, ∂p∂qyn − ∂p∂qy⟩R3︸ ︷︷ ︸

=limn⟨∂p∂qy,∂p∂qyn−∂p∂qy⟩L2(ω;R3)=0, by weak convergence

=

∫∫
ω
∥∂p∂qy∥22,

as claimed.

It can also be shown that E3,I is not weakly continuous. On the other hand, we have:

Proposition 3.2 (Weak Continuity of E3,II.) E3,II is well-defined on W 2,2 and E3,II : W 2,2 → R
is weakly continuous, i.e. if yn ⇀ y in W 2,2(ω;R3), then

lim
n→∞

E3,II[yn] = E3,II[y]. (3.5)

The proof of Proposition 3.2 uses the following standard results:

(I) Applying the Rellich-Kondrachov Compactness Theorem [1] to our 2-dimensional domain ω,
we have

W 2,2(ω) ⊂⊂ W 1,q(ω), ∀ 1 ≤ q < ∞. (3.6)

(II) If fn ⇀ f in L2 and gn → g in L2, then ⟨fn, gn⟩L2 → ⟨f, g⟩L2 .

(III) If fn ⇀ f in W 2,2(ω), then fn → f in W 1,q(ω) for any q ∈ [1,∞).

Proof of Proposition 3.2. Let y ∈ W 2,2. By (3.6) with q = 4, ∂1y, ∂2y ∈ L4, so ∂1y×∂2y ∈ L2.
As ∂p∂qy ∈ L2, E3,II[y] is finite by the Cauchy-Schwarz inequality. Let yn ⇀ y in W 2,2. By (III)
above, (yn) converges strongly to y in W 1,4. This in turn implies that ∂1yn × ∂2yn → ∂1y × ∂2y
in L2. By assumption, we have ∂p∂qyn ⇀ ∂p∂qy in L2, so (3.5) follows from (II) above.

Since E3 is the sum of a weakly LSC functional and a weakly continuous one, it is weakly LSC.
At the same time, it is strongly continuous. To summarize:

Proposition 3.3 (Continuity of E3) E3 : W 2,2 → R is continuous and weakly lower semi-continuous.

Proposition 3.4 Let yn ⇀ y in W 2,2. If limn→∞ E3[yn] = E3[y], then limn→∞ ∥yn∥W 2,2 =
∥y∥W 2,2 and also yn → y in W 2,2.

Proof: Recall that E3 = E3,I + E3,II + constant. Moreover, by Proposition 3.2, limn→∞ E3,II[yn] =
E3,II[y]. So by the assumption of the proposition we also have limn→∞ E3,I[yn] = E3,I[y]. Note that
E3,I is the semi-norm |y|W 2,2 . Next, recall that weak convergence inW 2,2 implies strong convergence
in W 1,2, so ∥yn∥W 1,2 → ∥y∥W 1,2 . Altogether, we have ∥yn∥W 2,2 = ∥yn∥W 1,2 + |y|W 2,2 → ∥y∥W 2,2 .
The proof is then completed by the general fact that ‘weak convergence + norm convergence ⇒
strong convergence’.

We shall also need the following fact which follows easily from the form of I:

Proposition 3.5 (Continuity of I) I : W 1,4 → R is well-defined and continuous.
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3.3 Approximation properties of Sh(ω)

Here we state the specific properties of the discrete space Sh needed in our analysis. We assume
that the spline space Sh is at least C1 and reproduces quadratics, i.e. Π2 ⊂ Sh ⊂ C1(ω) where Π2

is the set of polynomials with total degree no more than 2. In particular, the flat plate

y♭ : ω → R3, y♭(u, v) = [u, v, 0]T , (3.7)

belongs to [Sh]
3 for any h > 0. Moreover, we assume there is an operator Qh : W 2,2 → Sh such

that

[A1] For every y ∈ W 2,2,

∥∇(y −Qhy)∥L2(ω) ≤ Ch|y|W 2,2(ω). (3.8)

[A2] For every y ∈ C1(ω), limh→0 ∥∇(y − Qhy)∥L∞(ω) = 0. Moreover, there exists a d ≥ 1 such

that for every y ∈ Cd+1(ω)

∥∇(y −Qhy)∥L∞(ω) ≤ Chd|y|Cd+1(ω). (3.9)

[A3] If y ∈ W 2,2(ω;R3) satisfies the clamped boundary condition (2.3), then so does Qhy ∈ [Sh]
3.

These properties are established in the spline literature [25, 19, 17]. The largest integer d + 1 for
which [A2] holds is the approximation order of the spline space. For the tensor product spline
space Sh,d considered in Section 5, h = |h| = max{h1, h2} and the approximation order is d + 1.
For 6-split Powell-Sabin splines, [A2] holds for d = 2. In the spline literature, different approaches
for choosing the linear operator Qh are proposed, and they all satisfy the fundamental quasi-
interpolation property Qhπ = π for all π ∈ Πd. Moreover, for most spline spaces (including tensor
product and Powell-Sabin splines), Qh can be chosen to satisfy [A3]; this is directly related to the
fact that the functions involved in the clamped boundary condition (2.3) are either constant or
linear.

Now we present a result, pertaining to our isometry function I, that illustrates how these
approximation properties enter our analysis in the next section.

Theorem 3.6 Assume Sh satisfies the said approximation properties [A1, A2, A3] above. Then
we have the following statements.

1. There is a constant C > 0, independent of h, such that for any y ∈ Iso2,2(ω),

I[Qhy] ≤ Ch2|y|2W 2,2(ω). (3.10)

2. There is a constant C > 0, independent of h, such that for any y ∈ Cd+1 ∩ Iso2,2(ω),

I[Qhy] ≤ Ch2d|y|2Cd+1(ω). (3.11)
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Proof: For any y ∈ Iso2,2(ω), write yh := Qhy. Since dyTdy = I2×2, we have

I[yh] =

∫∫
ω
∥dyT

h dyh − I2×2∥2F =

∫∫
ω
∥dyT

h dyh − dyTdy∥2F

=

∫∫
ω

∥∥(dyT
h − dyT )dyh + dyT (dyh − dy)

∥∥2
F

≤ 2

∫∫
ω

∥∥(dyT
h − dyT )dyh

∥∥2
F
+
∥∥dyT (dyh − dy)

∥∥2
F

≤ 2

∫∫
ω

(
∥dyh∥22 + ∥dy∥22

)
·
∥∥dyh − dy

∥∥2
F

(3.12)

(where in the last step we have used the fact that ∥AB∥F ≤ ∥A∥2∥B∥F with ∥ ·∥2F being the square
of the Frobenius norm, sum of squares of all the matrix elements and ∥ · ∥2 being the operator or
spectral norm in L2.)

For (3.10), since y ∈ Iso2,2, i.e. dy(·)Tdy(·) = I2×2, we have that ∥dy(·)∥2 = 1. Hence by (3.12),

I[yh] ≤ 2
(
max
ω

∥dyh(·)∥22 +max
ω

∥dy(·)∥22
)∫∫

ω

∥∥dyh − dy
∥∥2
F

≤ C ′(∥∥dyh

∥∥2
L∞ +

∥∥dy∥∥2
L∞

)∥∥dyh − dy
∥∥2
L2 .

By [A1] and the first part of [A2],

I[yh] ≤ C ′
[(∥∥dy∥∥

L∞ +
∥∥dyh − dy

∥∥
L∞

)2
+
∥∥dy∥∥2

L∞

]∥∥dyh − dy
∥∥2
L2

≤ C ′[(1 + o(1))2 + 12] [Ch|y|W 2,2(ω)]
2

≤ C ′′h2|y|2W 2,2(ω).

For (3.11), similar to above, but now utilizing (3.9),

I[yh] ≤ 2

∫∫
ω

(
∥dyh∥22 + ∥dy∥22

)
·
∥∥dyh − dy

∥∥2
F

≤ C ′ (∥dyh∥2L2 + ∥dy∥2L2

) ∥∥dyh − dy
∥∥2
L∞

≤ C ′ ·O(1) · Ch2d|y|2Cd+1(ω)

≤ C ′′h2d|y|2Cd+1(ω).

(In the second to last step, as in the proof of (3.10), we have used the fact that y is an isometry so
that dyh is close to dy in L2.)

3.4 Γ-convergence

We recall the fundamental concept of Γ-convergence, which our main results are based on. Let X
be a first countable topological space. A sequence of functionals Fn : X → R̄ (:= R ∪ {∞}) is said
to Γ-converge to F : X → R̄ as n → ∞ if the following two statements hold:

1. (Lower bound) For any sequence xn ∈ X that converges to x ∈ X , we have

lim inf
n→∞

Fn(xn) ≥ F(x).
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2. (Upper bound/Recovery sequence) For any x ∈ X , there are xn ∈ X such that limn→∞ xn =
x and

lim sup
n→∞

Fn(xn) ≤ F(x).

(Combined with the lower bound, the latter inequality is equivalent to limn→∞Fn(xn) =
F(x).)

The fundamental fact about Γ-convergence is the following:

Theorem 3.7 (Minimizers converge to minimizers) If Fn Γ-converges to F , and xn is a
minimizer for Fn, then every cluster point x∗ of the sequence xn is a minimizer of F ; moreover,
limn→∞Fn(xn) exists and equals F(x∗).

Note that this theorem says nothing about the possession of minimizers by Fn, nor does it
say anything about the existence of cluster point in the (presumably existent) sequence xn.

5 Some
coercivity and compactness properties of the functionals and the space X are needed for establishing
these existences.

The topological space X relevant to us is the Sobolev space W 2,2(ω) equipped with its weak
topology, which is first countable but not metrizable. Also, in the next section, when we have
a family of functionals Fh, parameterized by a continuous h ∈ (0, h0], by ‘Fh Γ-converges to F
as h → 0’ we mean Fhn Γ-converges to F (in the sense above) for every sequence hn satisfying
limn→∞ hn = 0.

4 Existence of Minimizer and Γ-Convergence

For notational convenience, we write

S̊h := {y ∈ [Sh]
3 : y satisfies (2.3)}

W̊ 2,2 := {y ∈ W 2,2(ω;R3) : y satisfies (2.3)}.

Our bilayer plate variational problem can be written as

min
y∈M

E[y], M := W̊ 2,2 ∩ Iso2,2. (4.1)

We consider its finite-dimensional counterparts with constaint and penalization:

min
y∈Mh,ε

E3[y], Mh,ε :=
{
y ∈ S̊h : I[y] ≤ ε

}
(4.2)

and

min
y∈S̊h

E3[y] + µ I[y]. (4.3)

In this section, we establish the following results.

5However, if we assume that a minimizer xn of Fn exists for every n, and that the sequence xn has a cluster point
x∗, then Theorem 3.7 does guarantee that F has a minimizer, namely x∗.
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Theorem 4.1 The minimization problem (4.1) has a minimizer. For any ε > 0, (4.2) has a
minimizer. For any large enough µ > 0, (4.3) has a minimizer.

We introduce the following “new functionals” purely for the convenience of formulating the
Γ-convergence result:

Ẽ[y] :=

{
E[y] if y ∈ M ,
∞ otherwise

, (4.4)

Ẽh,ε[y] :=
{

E3[y] if y ∈ Mh,ε

∞ otherwise
, (4.5)

Ẽd[y] :=

{
E[y] if y ∈ M ∩

{
y ∈ Cd+1}

∞ otherwise
, (4.6)

Ẽh,µ[y] :=

{
E3[y] + µI[y] if y ∈ Mh,ε

∞ otherwise
. (4.7)

In the above, d is the integer in condition [A2] and the second part of Theorem 3.6 (i.e. the
approximation order of Sh is d+ 1.)

Theorem 4.2 1. Let εh be such that

lim
h→0

εh = 0 and lim
h→0

h2

εh
= 0, (4.8)

then Ẽh,εh Γ-converges to Ẽ as h → 0.

2. Let εh be such that

lim
h→0

εh = 0 and lim
h→0

h2d

εh
= 0, (4.9)

then Ẽh,εh Γ-converges to Ẽd as h → 0.

Theorem 4.3 1. If µh is such that

lim
h→0

µh = ∞, and lim
h→0

µhh
2 = 0, (4.10)

then Ẽh,µh
3 Γ-converges to Ẽ.

2. If µh is such that

lim
h→0

µh = ∞, and lim
h→0

µhh
2d = 0, (4.11)

then Ẽh,µh
3 Γ-converges to Ẽd.

The above results will be proved in the next few sections.

Our final theoretical result which shows that discrete minimizers converge to continous ones
is mostly a consequence of Theorem 4.2 and 4.3. The main missing ingredient to be filled is a
compactness property for any solution y∗

h of (4.2) and (4.3), respectively.
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Theorem 4.4 Let

1. y∗
h = y∗

h,εh
be a solution of (4.2) with εh chosen according to (4.8) or

2. y∗
h = y∗

h,µh
be a solution of (4.3) with µh chosen according to (4.10),

then

(i) {y∗
h} has a cluster point y∗ in the weak W 2,2 topology.

(ii) Any cluster point y∗ of y∗
h is a solution of (4.1), and limh→0 E3[y∗

h] = E3[y∗] = E[y∗] =
miny∈M E[y].

(iii) The weak W 2,2 convergence of (a subsequence of) y∗
h to y∗ can be improved to strong conver-

gence.

If we assume additionally that any solution of (4.1) is Cd+1 smooth with its Cd+1-norm bounded
by some constant K ′ > 0, then the same conclusions (i)-(iii) hold if we set either

3. y∗
h = y∗

h,εh
to be a solution of (4.2) with εh chosen according to (4.9), or

4. y∗
h = y∗

h,µh
to be a solution of (4.3) with µh chosen according to (4.11).

Proof: We first collect the coercivity results for the functionals E, E3 and E3 + µI:

∥y∥W 2,2 ≤ C1E(y) + C2, ∀y ∈ M ;

∥yh∥W 2,2 ≤ C1E3(yh) + C2, ∀yh ∈ Mh,ε and h > 0,

∥yh∥W 2,2 ≤ C1(E3[yh] + µI[yh]) + C2, ∀yh ∈ S̊h and µ large enough.

The first and third come from (4.13) and (4.19) while the second is an easy adaptation of (4.13)
due to the fact that ∥∂1y × ∂2y∥2L2(ω) ≤ AI(y) +B.

Using the flat plate y♭ (3.7) as a candidate, the following uniform apriori bound also holds for
some constant K♭:

∥y∗∥W 2,2 , ∥y∗
h,εh

∥W 2,2 , ∥y∗
h,µh

∥W 2,2 ≤ K♭. (4.12)

Then (i) follows from weak compactness of bounded balls in W 2,2.

Statement (ii) is a consequence of Γ-convergence, Theorem 3.7.

Statement (iii) is then a direct consequence of Proposition 3.4 and the second statement in (ii).

4.1 Proof of Theorem 4.1

4.1.1 Existence of minimizer for (4.1)

We use the direct method in calculus of variations; see, for example, [29, Theorem 1.2]. This part
of the theorem follows after we show:

(i) Coercivity of E: E(y) → ∞ as ∥y∥W 2,2 → ∞, y ∈ M . Or more precisely, there exist C1, C2

such that

∥y∥W 2,2 ≤ C1E(y) + C2, ∀y ∈ M. (4.13)
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(ii) Weak closedness of M : If M ∋ yn ⇀ y in W 2,2, then y ∈ M .

(iii) Weak LSC of E: If M ∋ yn ⇀ y in W 2,2, then lim infn→∞E(yn) ≥ E(y).

Proof of (i). When y ∈ W 2,2 satisfies the boundary condition (2.3), then, together with the
Poincaré inequality, we have boundedness for ∥y∥W 1,2 =

∫∫
ω ∥y∥22 +

∑
p=1,2 ∥

∫∫
ω ∂py∥22. Therefore

∥y∥W 2,2 = ∥y∥W 1,2 +
∑

p,q=1,2

∫∫
ω
∥∂p∂qy∥22 ≤ C ′′ +

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22, (4.14)

When y ∈ Iso2,2,

E(y) = E3(y) =
1

2

∑
p,q=1,2

{∫∫
ω
∥∂p∂qy∥22 − 2

∫∫
ω
⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q + Z2

p,q area(ω)

}
≥ c

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 + C, for some c > 0 and constant C.

(4.15)

In the above, we have used the fact that 2|ab| ≤ σa2 + b2/σ for any σ > 0 and (consequently)

2
∑

p,q=1,2

∣∣∣∣∫∫
ω
⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q

∣∣∣∣ ≤ ∑
p,q=1,2

σZp,q

∫∫
ω
∥∂p∂qy∥22 +

Zp,q

σ

∫∫
ω
∥∂1y × ∂2y∥22︸ ︷︷ ︸

=1a.e.


= ϵ

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 + C ′

(4.16)

for some small ϵ > 0 and constant C ′.

The desired coercivity estimate (4.13) follows by combining (4.14) and (4.15).

Proof of (ii). First, we consider a q ∈ M – this is possible as M ̸= ∅. Then any y ∈ M can be
decomposed as y = ỹ + q where ỹ satisfies:

ỹ(0, v) = 0,
∂ỹ

∂u
(0, v) = 0, (4.17)

dỹTdỹ + dqTdỹ + dỹTdq = 0. (4.18)

We define M̃0 =
{
ỹ ∈ W 2,2 : ỹ satisfies (4.17)

}
and M̃1 =

{
ỹ ∈ W 2,2 : ỹ satisfies (4.18)

}
. Then

M = M̃0 ∩ M̃1 + q.

Since M̃0 is the closure under the W 2,2-norm of the space

C̃∞
0 (ω) =

{
f̃ ∈ C∞(ω̄) : f̃(0, v) = 0,

∂ f̃

∂u
(0, v) = 0

}
,

it is a Hilbert space itself. As any Hilbert space is reflexive, M̃0 is closed under weak convergence.

Second, by Sobolev embedding again, W 2,2(ω) is compactly embedded in W 1,4(ω). Hence (4.18)
is preserved under weak convergence of W 2,2.
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Together, we have shown that M̃0 ∩ M̃1 is closed under weak convergence of W 2,2. Then the
same holds for M .

Proof of (iii). This follows simply from the weak LSC of E3 (Proposition 3.3) restricted to M ,
using again the fact that E|M = E3|M .

With the above established, we then consider a minimizing sequence for E. By (i), the sequence
has a uniform bound in W 2,2. By (ii), the sequence has a weak W 2,2 limit y∗ in M . Statement (iii)
ensures that y∗ is a minimizer.

4.1.2 Existence of minimizer for (4.2)

Since E3(c) is s polynomial function in c, it is also continuous. The constraint set Mh,ε, viewed as
a subset of RdimSh , is

M :=
{
c ∈ RdimSh : I(c) ≤ ε and c satisfies the affine condition determined by (2.3)

}
.

To prove existence of minimizer, it suffices to show that M is a non-empty compact subset of
RdimSh . Note that M is non-empty, as Mh,ε always contains the flat plate y♭. It remains to show
that M is closed and bounded.

Since I : RdimSh → [0,∞) is a polynomial function, it is also continuous, therefore I−1([0, ε])
is closed. Next, recall that the boundary conditions (2.3) impose a set of affine conditions on c.
We conclude that M is closed as it is the intersection of a closed subset and an affine subspace of
RdimSh .

It remains to be shown that M is bounded. Since Sh is a finite-dimensional susbspace of
L2(ω;R3), M is bounded in RdimSh if and only if Mh,ε is bounded in L2. For the latter, note that
an upper bound for

∫∫
ω ∥dyTdy − I2×2∥2F – given by the I(c) ≤ ε assumption – gives an upper

bound for
∑

p=1,2

∫∫
ω ∥∂py∥22. As in the previous section, we can then invoke a Poincaré inequality

and the boundary condition to obtain a uniform upper bound for ∥y∥L2 .

4.1.3 Existence of minimizer for (4.3)

We first establish a coercivity estimate, similar to (4.13), but of the form (for large enough µ)

∥y∥W 2,2 ≤ C1(E3[y] + µI[y]) + C2. (4.19)

Reusing the basic trick in (4.16), but without assuming that y is an isometry, we have

E3[y] =
1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 − 2⟨∂p∂qy, ∂1y × ∂2y⟩Zp,q + Z2

p,q du dv.

≥ 1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 −

1

µ
Zp,q∥∂p∂qy∥22 − µZp,q∥∂1y × ∂2y∥2 du dv + C ′.

Note that ∫∫
ω
∥∂1y × ∂2y∥2 du dv ≤ AI(y) +B. (4.20)
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Hence for µ large enough, it holds that

E3[y] + µI(y) ≥ 1

2

∑
p,q=1,2

∫∫
ω
∥∂p∂qy∥22 −

1

µ
Zp,q∥∂p∂qy∥22 + C ′

≥ C
∑

p,q=1,2

∫∫
ω
∥∂p∂qy∥2 du dv −D

= C|y|W 2,2 −D.

So (4.19), with ∥y∥W 2,2 (= ∥y∥W 1,2 + |y|W 2,2) replaced by the semi-norm |y|W 2,2 , holds for any
large enough µ. Finally, the imposed boundary condition (2.3) guarantees, in virtue of the Poincaré
inequality, that ∥y∥W 1,2 is bounded (recall (4.14)), and the desired coercivity estimate follows.

Since the boundary condition (2.3) is equivalent to an affine condition on the spline control
variables c, S̊h can be identified with an affine subspace of RdimSh , and E3 + µI|S̊h

is a degree 4

polynomial function, hence continuous, in dim S̊h (> 0) variables. By norm equivalence in finite-
dimensions and (4.19), this polynomial function is also coercive for large µ. We therefore conclude
that a minimizer must exist for E3 + µI : S̊h → R.

Remark 4.5 The mere fact that (4.2) and (4.3) are POPs does not warrant existence of a min-
imizer. In fact, even an unconstrained POP of which the objective polynomial is bounded below
may not possess a minimizer. For instance, min (1 − x1x2)

2 + x21 has no minimizer in R2. Note
that this degree 4 polynomial objective function lacks the coercivity property.

4.2 Proof of Theorem 4.2

It suffices to show that,

Lower bound: If yh ⇀W 2,2 y, then

lim inf
h→0

Ẽh,εh [yh] ≥ Ẽ(y).

Upper bound/Recovery sequence: For any y ∈ X , there are yh ∈ X such that yh ⇀ y and

lim
h→0

Ẽh,εh [yh] = Ẽ(y).

First we consider Part 1 of the Theorem for X = M .

Proof of lower bound: Let yh ⇀W 2,2 y. Without loss of generality, suppose lim infh→0 Ẽh,εh [yh] <
∞, otherwise, there is nothing to prove. Then there is a sequence hn, such that yhn ∈ Mhn,εhn

and
hence

Ẽhn,εhn
[yn] = E3[yhn ] and lim inf

h→0
Ẽh,εh [yh] = lim inf

n→∞
E3[yhn ] < ∞.

In particular, I[yhn ] ≤ εhn for large enough n. Furthermore, since yhn ⇀ y in W 2,2, yhn converges
strongly to y in W 1,4. So, by the continuity of I in W 1,4 (Proposition 3.5) and I[yn] ≤ εhn → 0,
we have that

I[y] = lim
n→∞

I[yhn ] = 0.
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In other words, y ∈ Iso2,2. Moreover, yhn satisfies the boundary condition (2.3), which is preserved
under weak convergence in W 2,2 (see the proof of weak closedness of M in Section 4.1.1), so y
satisfies (2.3) also. Therefore, y ∈ M . The lower bound inequality then follows from the LSC of
E3 (Proposition 3.3):

lim inf
h→0

Ẽh,εh [yh] = lim inf
n→∞

E3[yhn ] ≥ E3[y] ≥ Ẽ[y].

Proof of upper bound/recovery sequence: Let y ∈ W 2,2 be given. It suffices to assume
y ∈ M , otherwise Ẽ[y] = ∞ and the desired upper bound is trivial. For y ∈ M , we choose the
recovery sequence to be yh := Qhy. By property [A1] in Section 3.3, Qhy ⇀W 2,2 y.

As y satisfies the clamped boundary condition (2.3), so does Qhy (Property [A3], Section 3.3),
i.e. Qhy ∈ S̊h. By the continuity of E3 : W 2,2 → R (Proposition 3.3),

lim
h→0

E3[yh] = E3[y]. (4.21)

By the first part of Theorem 3.6, we have

I[Qhy] ≤ Ch2∥y∥2W 2,2

Consequently, for h small enough, we have I[Qhy] = O(h2) ≪ εh and hence Eh,εh [yh] = E3[yh].
Thus we have,

lim
h→0

Eh,εh [yh] = lim
h→0

E3[yh] = E3[y] = Ẽ[y].

For Part 2 of the Theorem, we consider X = M ∩ Cd+1(ω), endowed with the weak-W 2,2

topology. The proof of the lower bound remains the same. For the proof of the upper bound, the
only change is that the recovery sequence is chosen according to [A2] in Section 3.3. Then by the
second part of Theorem 3.6, we have

I[Qhy] ≤ Ch2d∥y∥2Cd+1(ω) ≪ εh.

Hence we similarly have Eh,εh [yh] = E3[yh] and that

lim
h→0

Eh,εh [yh] = lim
h→0

E3[yh] = E3[y] = Ẽd[y].

4.3 Proof of Theorem 4.3

For the first part of the theorem, we consider X = M .

Lower bound. Let yh ⇀W 2,2 y. If y ∈ M , then

lim inf
h→0

Eh,µh [yh] ≥ lim inf
h→0

E3[yh] ≥ E3[y] = Ẽ[y]. (4.22)

In the above, we have used the weak LSC of E3 (Corollary 3.3.)

If y /∈ M , then y either fails to satisfy the boundary condition (2.3) or I[y] > 0. At the same
time, Ẽ[y] = ∞.
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� Suppose y does not satisfy the boundary condition (2.3). We claim that, for all small enough
h, yh will not satisfy (2.3) either and hence lim infh→0 Ẽh,µh [yh] = ∞ and so the lower bound
is automatically satisfied. For otherwise, there exists hn → 0 such that each yhn satisfies
the boundary condition, then by the preservation of the boundary condition under weak
convergence, y will satisfy the boundary condition also, which causes a contradiction.

� Next, if I(y) > 0, then limh→0 I[yh] = I(y) > 0 (as yh → y in W 1,4). Combined with the
assumption that limh→0 µh = ∞, we have limh→0 µhI[yh] = ∞. Note that (4.22) implies in
particular that E3[yh] is bounded from below uniformly in h. Hence we also have

lim
h→0

E3[yh] + µhI[yh] = ∞,

and lim infh→0 Ẽh,µh [yh] = ∞ = Ẽ[y].

Upper bound/Recovery sequence. For any y, if y /∈ M , then Ẽ[y] = ∞, and there is nothing to
prove. If y ∈ M , yh := Qhy ∈ Sh satisfies (2.3), limh→0 E3[yh] = E3[y] = Ẽ(y), and I[yh] = O(h2)
by the first part of Theorem 3.6. Consequently, the condition on µh gives limh→0 µhI[yh] = 0.
Hence limh→0 Ẽh,µh [yh] = limh→0 E3[yh] = Ẽ[y].

For Part 2 of the Theorem with X = M ∩ Cd+1(ω), again the only change is in the proof
of the upper bound. The use of [A2] in Section 3.3 leads to I[yh] = O(h2d) by the second
part of Theorem 3.6. Consequently, the condition on µh gives limh→0 µhI[yh] = 0. Hence
limh→0 Ẽh,µh [yh] = limh→0 E3[yh] = Ẽd[y].

5 Algorithmic Considerations & Computational Results

Let us summarize what our numerical solution of the bilayer problem (2.1) so far. We have devel-
oped two numerical solutions, (2.37) and (2.38). Both methods are based on uniform knot tensor
product B-splines applied to a rectangular domain ω = [0, A] × [0, B], and we developed efficient
algorithms for computing the relevant functionals I and E3 defined in Sections 2.2-2.3. The first
method is a constrained polynomial optimization problem with the specification of a tolerance ε,
whereas the second is an unconstrained one with the specification of a penalization parameter µ.

The Γ-convergence results from Section 4 say that if ε and µ are chosen according to

ε(h) = Cϵ|h|2d−ϵ, µ(h) = cϵ|h|−2d+ϵ (5.1)

for any arbitrarily small ϵ > 0 and any constants Cϵ, cϵ > 0, then ‘discrete minimizers converge
to the continuum minimizer’ as h → 0. (The above requires the assumption that the solution is
smooth enough.) When Z = 1

r I2×2, h = max{h1, h2} can be replaced by h1; see below. In practice,
ε (resp. µ) should be chosen to be as small (resp. big) as possible in order for the computed surface
to be close to an isometry, but yet not too small (resp. big), lest the resulted surface may be forced
to be close to the flat plate which is the only spline surface that satisfies I = 0. We shall show in
Section 5.2 that this is indeed the case. The difficult conundrum in the choice of ε and µ may be
attributed to the use of a linear spline space for approximating the inherently nonlinear space of
isometries.

As a benchmark, when Z = 1
r I2×2 and ω = [0, A]× [0, B], the variational problem (2.1) has the

unique minimizer

y(u, v) = [r cos (u/r − π/2) , v, r + r sin (u/r − π/2)]T ; (5.2)

26



see [22]. Its energy is

E =
AB

2r2
. (5.3)

The parameterized surface above is the flat rectangle ω ‘rolled up’ into a cylinder of radius r and
height B.6 This is an interesting result as the isotropic Z = 1

r I2×2 encourages the plate to be
umbilical, but this is disallowed by the isometry constraint. It is also a representative result, as the
fabrication of nanotubes based on bilayer films is a predominant motivation for the study of (2.1).

In general, we need h = |h| = max(h1, h2) to be small in order to have a good approximation
of the solution. But in this special case, it can be shown that minimizers of our proposed discrete
problems, (4.2) or (4.3), converge to that of the continuum problem, i.e. (5.2), with any fixed n
– in fact just n = 1 – and m → ∞, with the proviso that ε and µ are chosen according to (5.1),
but with |h| = max(h1, h2) replaced by h1. In other words, we only need h1 = A/m, but not
h2 = B/n, to be small in order to obtain a good approximation. (This is nothing but a reflection
of the fact that the exact solution depends on only one variable.) The proof is an easy adaptation
of the arguments based on Γ-convergence in Section 4; the only extra argument needed is the fact
that the cylinder (5.2) satisfies ∂2y/∂v2 = 0, which yields, by a result on tensor-product splines
[26, Theorem 8], that∥∥∂u(y −Qhy)

∥∥
L∞ ≤ Chd1

∥∥∂d+1
u y

∥∥
L∞ ,

∥∥∂v(y −Qhy)
∥∥
L∞ ≤ Chd+1

1

∥∥∂d+1
u ∂vy

∥∥
L∞ , (5.4)

provided that the degree of the spline d is at least 1. (Recall from (2.7) that we choose d to be at
least 2.)

After discussing our choice of optimization solvers, the numerical results will be presented in
Sections 5.2 to 5.8. The following are some further remarks about our numerical experimentation.

1. We will present results for both the ε- and µ-problems. But in comparison and in hindsight,
we do find the latter, being an unconstrained problem, is relatively easier to implement and
runs faster. Hence starting from Section 5.5, we will only report results for the µ-problem.

2. Due to the refinability of spline functions, it seems reasonable and advantageous to iteratively
refine the mesh instead of always starting from the same initial data, for example the flat
plate. We have tried both but the results do not indicate much difference or reveal any
significant phenomena. Hence, due to space constraint, for some of the following sections, we
will selectively present only one of the two methods.

3. In the most challenging computations reported in Figures 5 and 6, typical running times on
a personal desktop (with an Intel i7 CPU processor at 3.7 GHz) can range from tens of hours
to a few days. On a processor in Google cloud, they can range from a couple of hours to one
or two days, rougly three times faster.

6In fact, if we dispense with the boundary conditions in (2.1), and Z continues to be isotropic, i.e. Z = 1
r
I2×2,

then the rectangle ω rolled up into a cylinder of radius r along any axis would have the same (minimal) energy
area(ω)

2r2
; and the result is not specific to ω being a rectangle.
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5.1 Choice of optimization solvers

Ideally, we would like to use the sparse POP solver [31, 30], as in principle the convexification
approach guarantees the finding of a global minimizer. However, the inevitable dimension eleva-
tion in the convexification renders the method impractical for our problem, except for very small
problem sizes. As a simple illustration of such a dimension elevation, consider the one-dimensional
unconstrained POP: minx∈R p(x), where p(x) is a degree 4 polynomial. This nonconvex problem
is equivalent to the following convex optimization problem:

max
γ,Q

γ s.t. p(x)− γ = [1, x, x2]Q[1, x, x2]T , γ ∈ R, 0 ⪯ Q ∈ R3×3
sym.

The univariate ‘x’ in the original non-convex problem is replaced by the 7 variables in γ and the
upper triangular part of Q in the convex semi-definite program. This convexification relies on the
fact that an univariate non-negative polynomial is always a sum of squares, an innocent-sounding
fact that is no longer true in higher-dimensions. This is where the wisdom of Lasserre’s relaxation
[18], founded on Putinar’s Positivstellensatz [21], comes in. For a general POP, we no longer have
a clear-cut equivalent convex reformulation. Instead, the theory promises a hierarchy of convex
problems of which their solutions, somewhere deep enough in the hierarchy, give the solution of the
POP. None of the unknown depth, the dimension elevation, or the practical difficulty in solving
high-dimensional semi-definite programs is helpful. With the tools currently available to us, the
cost of convexification simply outweighs the benefit.7

We resort to traditional solvers based on quasi-Newton methods. However, not all is lost, as
the POP structure facilitates:

1. the use of the formulas derived in Section 2.2 and Section 2.3 to compute I, ∇I, E3 and ∇E3
without the need of any numerical integration, and

2. the ease of implementing exact line search, as solving mint≥0 p(x + tv) amounts to finding
the global minimizer of a univariate degree 4 polynomial when p is a (multivariate) degree 4
polynomial.

For the ε-problem, we simply use fmincon in the optimization toolbox of Matlab. In solving
the µ-problem, we find that in a number of cases our exact line search BFGS solver, denoted by
BFGS-exact in later writing, gives more accurate results than Matlab’s fminunc, which is supposed
to implement BFGS with a version of Wolfe line search.

5.2 ε and µ should not be too big or too small

Our first set of computation results confirm the basic premise that ε and µ in (4.2) and (4.3)
(respectively) should not be chosen to be too big or too small. We consider a relatively easy case
of the problem, namely A = 2, B = 1, Z = I2×2, and apply our methods with small discretization

7At the time of the writing of this article, we became aware of the recent article [32] for solving very large semi-
definite programs. Potentially, this can be combined with the convexification methods of POPs to efficiently find
a near global optimizer, which can then be used an initial guess for a traditional quasi-Newton or gradient descent
method. It is an open problem to see how practical such a method is and if such an approach can provably guarantee
the finding of a global minimizer.
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ε = 10−1 ε = 10−3 ε = 10−5 ε = 10−7 ε = 10−9

µ = 51 µ = 53 µ = 54 µ = 55 µ = 57

Figure 1: In each panel, the red surface is the exact solution (5.2) of (4.1), with A = 2, B = 1,
Z = I2×2. The wireframes depict the control points of the blue B-spline surfaces, which are the
computed minimizers. Top row: minimizers of the ‘ε-problem’ (4.2), with spline degree d = 3, grid
size (m,n) = (3, 1), and ε = 10−i for i = 1, 3, 5, 7, 9. Bottom row: minimizers of the ‘µ-problem’
(4.3), with spline degree d = 2, grid size (m,n) = (18, 1), and µ = 5i for i = 1, 3, 4, 5, 7.

parameters. When the problem size is small, it is possible to use the sparse POP solver [31] to
verify if our computed solutions are close to a global minimizer.

The top row of Figure 1 shows the computed solutions of the ε-problem (4.2), with spline degree
d = 3 and grid sizes m = 3, n = 1, and various values of ε. It is evident that when ε is too big
(ε = 10−1 and 10−3), the solution (in blue) is far away from the true solution of (4.1) (in red). In
particular, the surface is far from being isometric to the flat plate. In this example, ε = 10−5 gives
the best approximation to the true solution (5.2). If ε is too small, the minimizer approaches the
flat rectangle.

The same behavior is observed for the µ-problem (4.3). The computed solution is far from an
isometry if µ is too small, and close to the flat plate when µ is too big. In the bottom row of
Figure 1, it is visually clear that the intermediate µ = 54 gives the best approximation to the true
solution among the five values of µ.

5.3 Empirical convergence

In this and the following sections we report computational results by choosing ε and µ to be

ε(h) = |h|2d−1, µ(h) = |h|−2d+1. (5.5)

This is (5.1) with ϵ = 1 and Cϵ = cϵ = 1. According to our theory, this choice guarantees Γ-
convergence.

Figure 2 depicts our computed solutions for the case of A = 2, B = 1, Z = 2I2×2. The grid size
is chosen to be m = 2i, i = 3, 4, 5, 6 and n = 1, and ε or µ is chosen according to (5.5), but with
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|h| = max(A/m,B/n) replaced by h1 = A/m – recall the comments around (5.4) for a justification
of this choice.

We explore the ε- and µ-problem for both d = 2 and d = 3. In all four cases, we employ iterative
refinement. More precisely, the initial guess of the smallest sized problem, namely (m,n) = (8, 1),
is solved with the flat plate as the initial guess. For larger values of m, the control mesh of the
resulted minimizing B-spline surface is refined, using the refinability of spline functions, to a control
mesh that is double in size in the first direction. Then resulted control mesh is used as the initial
guess of the numerical optimization with the next larger problem size.

We shall now make a series of observations based on Figure 2. Along the way, we expose some
of the elusive behaviors of the numerical solutions, caused by the confluence of floating point errors,
an unexpected asymmetry property of discretization, a (not so well-known) symmetry-preserving
property of standard optimization methods, and the non-convexity of the problem.

We begin with a mundane comment: the computational results support our theoretical predic-
tion that the method converges. By inspecting the figures from top to bottom in each column of
Figure 2, as the grid size m increases, the computed solution appears to approach the true solution
of the continuous problem (5.2), both visually and according to the values of I, E3 and the L∞

error. By (5.3), the energy of the cylinder is 4 in this case. As m increases, we indeed observe
that I approaches 0, E3 approaches the value 4 and the L∞ error decreases. As expected, degree 3
splines give more accurate results than degree 2 splines.

It happens that in this example, the degree 3 cases are more susceptible to ‘symmetry breaking’
than degree 2 – compare columns 2 and 4 vs columns 1 and 3, although such a symmetry breaking
is also observed in the degree 2 cases – see Section 5.6. We will have more discussion on this
phenomenon in Section 5.5.

When ε is too small or µ is too big, our solvers may encounter numerical difficulties due to
floating point issues. This can be seen in the bottommost panel of the second and fourth columns:
in these two cases, not only that the computed surface with m = 26 has a higher L∞ error compared
to the one computed with m = 25, but also that the solver fails to find a feasible point. Notice
that the I value of the bottommost panel in the second column is higher than the desired ε.
The problem must be caused by floating errors and numerical issues pertaining to the constraint
optimization solvers. Both fmincon() in Matlab and SNOPT fail to find a feasible point in this case.
To get an idea of the level of floating errors, consider the control data c♭ defined by (2.12) with
(m,n) = (64, 1) and d = 3. Our Matlab implementation of I gives I(c♭) = −7.22 . . .× 10−11, while
I should always be non-negative and I(c♭) = 0.

5.4 Minimizer of the ε-problem is at the boundary

Our computations also show that the minimizer of the ε-problem is located at the boundary of the
constraint set, i.e. I(c∗) = ε if c∗ is a minimizer of the ε-problem. See the numerical results in the
captions reported in the first two columns of Figure 2. We offer an intuitive explanation for the
observation. Recall from (2.28) that the functional E3 only coincides with the energy functional E
when applied to an isometry, but a B-spline surface is almost never perfectly flat. Recall also that
E is always non-negative, whereas E3 is a cubic polynomial, meaning that there are directions so
that its value goes to −∞. In other words, E and E3 can be very different away from the isometries!
When minimizing E3 over the constraint ‘tube’ I(c) ≤ ε, the optimization method pushes c towards
a surface that approximates the solution of the variational problem, but the ‘by-and-large correct’
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ε = .0156, I = .0156 ε = 9.7656 × 10−4, I = 9.7656 × 10−4 µ = 64, I = .0079 µ = 1024, I = 1.284 × 10−4

E3 = 2.2443, L∞ = .4335 E3 = 3.2713, L∞ = .5272 E3 = 2.5999, L∞ = .4427 E3 = 3.6967, L∞ = .3465

ε = .001953, I = .001953 ε = 3.0518 × 10−5, I = 3.0518 × 10−5 µ = 512, I = 4.2192 × 10−4 µ = 32768, I = 3.2187 × 10−7

E3 = 3.1191, L∞ = .2859 E3 = 3.8327, L∞ = .1534 E3 = 3.5583, L∞ = .1715 E3 = 3.9733, L∞ = .0551

ε = 2.4414 × 10−4, I = 2.4414 × 10−4 ε = 9.5367 × 10−7, I = 9.5368 × 10−7 µ = 4096, I = 1.2719 × 10−5 µ = 1048576, I = 1.1713 × 10−9

E3 = 3.626, L∞ = .1072 E3 = 3.9587, L∞ = .0708 E3 = 3.9046, L∞ = .0418 E3 = 3.9968, L∞ = .0232

ε = 3.0518 × 10−5, I = 3.0518 × 10−5 ε = 2.9802 × 10−8, I = 4.625 × 10−8 µ = 32768, I = 4.6286 × 10−7 µ = 33554432, I = 5.886 × 10−11

E3 = 3.8427, L∞ = .0392 E3 = 3.988, L∞ = .083 E3 = 3.9765, L∞ = .0134 E3 = 3.9996, L∞ = .0275

Figure 2: In each panel, the red surface is the exact solution (5.2) of (4.1), with A = 2, B = 1,
Z = 2I2×2 and the blue surface is the computed solution. First and second columns: minimizers
of the ‘ε-problem’ (4.2), with spline degree d = 2 (first column) and d = 3 (second column), third
and fourth columns: minimizers of the ‘µ-problem’ (4.3), with spline degree d = 2 (3rd column)
and d = 3 (4th column). In each column, the grid sizes are chosen to be, from top to bottom,
(m,n) = (2i, 1) for i = 3, 4, 5, 6. In each case, ε or µ is chosen according to (5.5), with |h| replaced
by h1. The value denoted by L∞ is the error between the computed and exact (cylinder) solutions.
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search direction has a ‘bad component’ that pushes c towards an −∞ direction of E3. The latter
also means that the method pushes c towards the boundary of the constraint set.

5.5 Symmetry

The cylinder (5.2) has a reflectional symmetry about the y = B/2 plane. Let us first spell out some
elementary algebra: If S ⊂ R3, then its reflection about the plane y = B/2 is given by

flip(S) := {[x,B − y, z]T : [x, y, z]T ∈ S}.

If S is a parametric surface with parameterization y : [0, A]× [0, B] → R3, then it is most natural
to parameterize flip(S) by

flip(y) : [0, A]× [0, B] → R3,

flip(y)(u, v) := [y1(u,B − v), B − y2(u,B − v),y3(u,B − v)]T . (5.6)

Then we have the following equivalent (reflectional) symmetry property:

S = flip(S) (as point sets) ⇐⇒ flip(y) = y (as maps). (5.7)

Also, y satisfies the clamped boundary condition (2.3) iff flip(y) satisfies the same condition.

The map in (5.2) clearly satisfies flip(y) = y. In this case, should we expect that our numerical
solution satisfies the same symmetry? The numerical solutions shown in of Figure 2 suggest that
the answer is positive when d = 2 (columns 1 and 3), but negative when d = 3 (columns 2 and 4).
(We also use ∥y − flip(y)∥∞ to quantify the degree of symmetry breaking in our exploration.)

We focus on the fourth column, as it is easier to analyze unconstrained optimization methods.
We first point out that the BFGS method (used for solving the µ-problem), in exact arithmetic,
preserves symmetry, i.e. if the initial guess satisfies (5.7), such as the flat plate y♭, then all
subsequent iterates satisfy the same symmetry. (This symmetry preserving property was explored in
our recent work [10].) This holds regardless of whether the (discrete) global minimizer is symmetric
or not.

When d = 2, the global minimizer appears to be symmetric, while for d = 3, the global
minimizers appear to be asymmetric. Floating point errors seem to help break the symmetry
preservation property in the case when the actual (discrete) global minimizer is asymmetric. We
observe also in Figure 2, columns 2 and 4, that the degree of asymmetry vanishes as m grows, as
it should in virtue of our Γ-convergence results.

Such a convoluted situation deserves a recap and further explorations. We first summarize:

(i) The solution of the variational problem, when Z = 1
r I2×2, is reflectional symmetric.

(ii) Yet, the solution of the discrete problem may not share the same reflectional symmetry.

(iii) Our optimization algorithm preserves symmetry in exact arithmetic.

(iv) Yet, floating point error helps breaking symmetry.

We provide firmer evidences for (ii) above.
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E3 + µI ≈ 3.8282 E3 + µI ≈ 3.8282 E3 + µI ≈ 3.8293

Figure 3: Solutions of the µ-problem with m = 8, n = 1, d = 3, Z = 2I2×2, µ = 1024. First
two panels: solutions obtained from our BFGS-exact solver with a Gaussian perturbed flat plate
as initial guess. They are flipped versions of each other. Third panel: solution obtained from the
same BFGS-exact solver but with a symmetrization step added, and using the flat plate as initial
guess.

We explore the case of the µ-problem for (m,n, d) = (8, 1, 3), i.e. the one in the panel on
the second row and fourth column of Figure 2. The results are illustrated in Figure 3. Instead
of running the BFGS method with the flat plate as initial guess, we perturb every coordinate of
the flat plate by a Gaussian random number ∼ N(0, σ2) with σ = 0.1. When solving the same
problem in this way, approximately half of the times we obtained the same solution as shown in
the panel, and the rest of the times we obtain the flipped version of the same surface. In all trials,
the objective value agrees up to 10 significant digits, with E3 + µI ≈ 3.828199. We increase σ to 1
and to 10 even, and the same results are obtained. These are strong evidences that the asymmetric
blue surface in the panel, and the flipped version of it, are the unique global minimizers.

In contrast, if we compare the results above with what would be gotten by replacing the BFGS
solver with a ‘symmetrized counterpart’, i.e. in each BFGS step we replace the iterate ck by
(ck + flip(ck))/2 in order to remove the asymmetry in ck caused by floating point errors.8 Using
either the flat plate or a quasi-interpolator of the exact solution (both reflectional symmetric) as
the initial guess, the minimal objective value is E3 + µI ≈ 3.829258 (> 3.828199)! This strongly
suggests that the global minimum of the objective, when restricted to the subspace of symmetric
control meshes, is strictly greater than the true global minimum.

Note that the symmetric solution in the third panel of Figure 3 is a more accurate approximation
to the true solution of the continuum variational problem (the red surface), while being a less
accurate approximation to a global minimizer of the discrete problem. (Of course, the use of the
‘symmetrized solver’ is a cheat and is just for the sake of our argument here.)

Finally, our computations suggest that the symmetric blue surface in the third panel of Figure 3
is likely to be a saddle point of the objective functional E3 + µI, while the blue surfaces in the
first and second panels are (local) minimizers of the same functional. These statements are seen
by computing the lowest eigenvalue of the Hessian of E3 + µI, using the formulas developed in
Sections 2.2 and 2.3. In the former case, the lowest eigenvalue is found to be negative, hence the
solution is a saddle point, while in the latter case, the lowest eigenvalue is found to be positive,
hence a local minimizer.

8The flip operator in (5.6) descends to an operator for the control vertices of tensor product B-spline surfaces.
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(a) I = 4.6× 104,
E3 = −3.11× 104

(b) I = 1.79× 102,
E3 = −4.62× 102

(c) I = 2.59, E3 = 447.25

(d) I = .0894, E3 = 505.36

(e) I = 0.00485, E3 = 504.11

Figure 4: Solutions of the µ-problem in subsection 5.6, with m = 2i, i = 3, 4, 5, 6, 7, n = 1, d = 2.
As m increases, I approaches 0 and E3 approaches AB/2r2 = 500. (With m = 256, the minimizer
satisfies I = .000305, E3 = 501.41, and the surface is visually the same as that in panel (e).)

5.6 A challenging problem: A = 10, B = 4, Z = 5I2×2

We use our method to solve the problem with parameters listed in the subsection heading. With
a larger physical size but a much smaller radius (r = 1/5), the plate rolls up a lot more. As such,
this instance of the problem is considered by [6] to be numerically challenging.

Our method is able to handle this situation. In Figure 4, we show the results with spline degree
d = 2 and grid sizes (m,n) = (2i, 1), i = 3, 4, 5, 6, 7. We use the µ-method, again with µ chosen
by (5.5) with |h| replaced by h1. As in Figure 2, we use iterative refinement, and the flat plate
as the initial guess for the coarsest grid. Unlike the situation in Figure 2, we see clear ‘symmetry
breaking’ – which is necessarily caused by floating point errors – even with d = 2. The symmetry
breaking manifests itself in the protrusion seen in the rolled-up plate; see panel (c) and (d). The
degree of protrusion diminishes as the grid size increases, and is hardly visible in panel (e).

As expected, we obtain similar, but more accurate, results with spline degree d = 3.

Given the non-convexity of the problem and that the flat plate is quite far away from the
cylinder, it is a pleasant surprise that the method succeeds in finding the global minimizer using
the flat plate as an initial guess. However, we confess that in solving this cylinder problem, there
are many cases with bigger values of A, B and/or smaller values of r = 1/α for which our method
would not converge to the cylinder (5.2). In these cases, the method leads to ‘spurious’ critical
points which do not look like the expected solution at all. This is a clear reflection of the highly
non-convex nature of the problem.
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5.7 A non-diagonal, anisotropic problem: A = 6, B = 4, Z =
[

3 −2
−2 3

]
In this subsection, we consider the case listed in the heading, following the corkscrew shape example
in [6, Section 6]. Note that the spontaneous curvature matrix Z is not only non-diagonal, but also
anisotropic: the principle curvatures are 5 and 1, and the principle directions are [1,−1]T and
[1, 1]T , respectively. The plate is expected to roll up along a line forming the angle 45◦ with the
coordinate axes.

The left column of Figure 5 shows the numerical solutions of the µ-problem with (m,n) =
(2iA, 2iB), i = 1, 2, 3, d = 3, with µ chosen by (5.5). We again use the BFGS-exact solver, and use
the flat plate as the initial guess for the smallest problem, and progress to the larger size problems
using iterative refinements. We obtain similar results (shown on the right column) for the same
µ-problem without using iterative refinements, with (m,n) = (kA, kB), k = 3, 5, 7, 9, d = 3 and
always using the flat plate as the initial guess. While we do not observe clear distinction between
the two sets of solutions, iterative refinement is certainly faster.

5.8 Diagonal anisotropic spontaneous curvatures

Notice that when Z = [ α 0
0 0 ], the cylinder (5.2) with r = 1/α, being an isometry with second

fundamental form H = Z, has zero energy and hence must be the unique minimizer for the
continuous problem. In [22], Schmidt established that the same cylinder is a minimizer of the
problem when Z = [ α 0

0 α ]. Given this, it seems natural to conjecture that the same cylinder is a
minimizer of the problem when Z =

[
α 0
0 β

]
when 0 ≤ β ≤ α, with minimal energy

E =
1

2

∫ A

0

∫ B

0

∥∥[ α 0
0 0 ]−

[
α 0
0 β

]∥∥2
F
du dv =

β2AB

2
.

This same cylinder appears to be a minimizer even when β ∈ [−α, α]. See the first row of Figure 6
for an evidence of this conjecture when A = 6, B = 4 and Z =

[
5 0
0 −5

]
. Note that at coarse

discretization level, the solution surface (first panel, top row) is far from an isometry and exhibits
hyperbolic points at the two ends of the cylinder.

When β is outside [−α, α], the solution surface should, by the same conjecture, have a tendency
to roll up like a cylinder, but now in the v-direction. The clamped boundary condition at u = 0,
however, would disallow this to happen. Hence, the solution is not expected to be a cylinder. The
second row of Figure 6 shows our simulation result when A = 6, B = 4 and Z = [ 5 0

0 6 ].

6 Summary and Perspectives

The main challenges of the current problem are due to the high order (4-th order) of the equation
and also the nonlinear isometry constraint. As demonstrated in this paper, appropriate choice of
the approximation spaces which are in particular conforming, renders an efficient and yet simple
strategy - a sparse polynomial type optimization algorithm. It is certainly of interest to see how
such an approach can be understood in a broader context and also extended to a wider range of
problems. Here we provide some points for further exploration.

First, the current Γ-convergence results Theorems 4.2, 4.3, and 4.4 that relate the discrete and
continuum problems are qualitative results. It will definitely be of practical interest to investigate
the convergence rate of the approximate solution. The error estimate might depend, among other
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I = 2.043, E3 = 51.24

I = .0036, E3 = 52.47

I = .0000294, E3 = 55.65

I = .04, E3 = 42.82

I = .00068, E3 = 54.57

I = .000069, E3 = 55.51

I = .000014, E3 = 55.74

Figure 5: Left column: solutions of the µ-problem in subsection 5.7, with (m,n) = (2iA, 2iB),
i = 1, 2, 3, d = 3, using iterative refinements. Right column: solutions of the same µ-problem, with
(m,n) = (kA, kB), k = 3, 5, 7, 9, d = 3 and without using iterative refinements.
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I = 1.8624, E3 = 215.54 I = 0.0075604, E3 = 288.87 I = 0.000067338, E3 = 295.86

I = 34.104, E3 = 226.06 I = 0.0079126, E3 = 396.67 I = 0.000079560, E3 = 403.97

Figure 6: Simulation results for (A,B) = (6, 4), Z =
[
5 0
0 β

]
, β = −5 (top row) and β = 6 (bottom

row). The solutions are based on the µ-problem, with grid sizes (m,n) = (2iA, 2iB), i = 1, 2, 3,
spline degree d = 3, and using iterative refinements.

things, on the approximation space, the discretization method, (higer-order) regularity (beyond
W 2,2) and the non-degeneracy of the solutions. In the current setting, the isometry constraint is
relaxed or penalized by the small and large parameters ε and µ. What is the description of the
Γ-limit if these parameters fall out of the range depicted by Theorems 4.2 and 4.3? It might also
be interesting to provide the next order information in terms of Γ-expansion.

As described in Section 5.5, the discrete solutions are arguably asymmetric even if the continuum
solutions are symmetric. How genuine is such a phenomenon? Our Γ-convergence result certainly
says that such an asymmetry will disappear as h → 0. Can this also be quantified? In a broader
context, what is the relationship of discrete symmetries or invariances in connection to those of
continuum problems?

As indicated in Section 2.5, we may replace the tensor-product splines by the Kirchhoff elements
in [6] to produce yet another family of POPs, in either the constrained or unconstrained form.
However, we believe that the resultant method will fail to converge. Note that a lot of expertise is
required to make the non-conforming elements to work [6, 8, 9]. The specific discretization method
proposed in this paper bypasses those techniques and, as a by-product, gives rise to the POP
formulation not found in other related works.

Our functional E, under the isometry constraint, becomes E3 which is a simple quadratic form of
D2y. In a broader context, there are lots of rooms to explore about the Γ-limits of functionals that
depend on second order or curvature information. A well known example is Willmore functional
and its discretization – see for example [10]. Solutions can be non-trivial due to the underlying
geometric invariance and topological constraints.
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